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Abstract. Many scientific experiments are performed using scientific
workflows, which are becoming more and more data-intensive. We con-
sider the efficient execution of such workflows in the cloud, leveraging the
heterogeneous resources available at multiple cloud sites (geo-distributed
data centers). Since it is common for workflow users to reuse code or data
from other workflows, a promising approach for efficient workflow execu-
tion is to cache intermediate data in order to avoid re-executing entire
workflows. In this paper, we propose a solution for distributed caching
of scientific workflows in a multisite cloud. We implemented our solution
in the OpenAlea workflow system, together with cache-aware distributed
scheduling algorithms. Our experimental evaluation on a three-site cloud
with a data-intensive application in plant phenotyping shows that our
solution can yield major performance gains, reducing total time up to
42% with 60% of same input data for each new execution.

Keywords: Multisite cloud · Distributed Caching · Scientific Workflow
· Workflow System · Workflow Scheduling.

1 Introduction

In many scientific domains, e.g., bio-science [7], complex numerical experiments
typically require many processing or analysis steps over huge datasets. They can
be represented as scientific workflows, or workflows, for short, which facilitate
the modeling, management and execution of computational activities linked by
data dependencies. As the size of the data processed and the complexity of the
computation keep increasing, these workflows become data-intensive [7], thus
requiring high-performance computing resources.

The cloud is a convenient infrastructure for handling workflows, as it allows
leasing resources at a very large scale and relatively low cost. In this paper, we
consider the execution of a large workflow in a multisite cloud, i.e., a cloud with
geo-distributed cloud data centers (sites). Note that a multisite option is now
well supported by all popular public clouds, e.g., Microsoft Azure, Amazon EC2,
and Google Cloud, which provide the capability of using multiple sites with a
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single cloud account, thus avoiding the burden of using multiple accounts. The
main reasons for using multiple cloud sites for data-intensive workflows is that
they often exceed the capabilities of a single site, either because the site imposes
usage limits for fairness and security, or simply because the datasets are too
large. In scientific applications, there can be much heterogeneity in the storage
and computing capabilities of the different sites, e.g., on premise servers, HPC
platforms from research organizations or federated cloud sites at the national
level [4]. As an example in plant phenotyping, greenhouse platforms generate
terabytes of raw data from plants, which are typically stored at data centers
geographically close to the greenhouse to minimize data transfers. However, the
computation power of those data centers may be limited and fail to scale when
the analyses become more complex, such as in plant modeling or 3D reconstruc-
tion. Other computation sites are then required.

Most Scientific Workflow Management Systems (workflow systems) can ex-
ecute workflows in the cloud [12]. Some examples are Swift/T, Pegasus, SciCu-
mulus, Kepler and OpenAlea [9]. Our work is based on OpenAlea [14], which
is widely used in plant science for simulation and analysis. Most existing sys-
tems use naive or user-based approaches to distribute the tasks across sites. The
problem of scheduling a workflow execution over a multisite cloud has started
to be addressed in [11], using performance models to predict the execution time
on different resources. In [10], we proposed a solution based on multi-objective
scheduling and a single site virtual machine provisioning approach, assuming
homogeneous sites, as in public cloud.

Since it is common for workflow users to reuse code or data from other
workflows [5], a promising approach for efficient workflow execution is to cache
intermediate data in order to avoid re-executing entire workflows. Furthermore,
a user may need to re-execute a workflow many times with different sets of pa-
rameters and input data depending on the previous results generated. Fragments
of the workflow, i.e. a subset of the workflow activities and dependencies, can
often be reused. Another important benefit of caching intermediate data is to
make it easy to share with other research teams, thus fostering new analyses at
low cost.

Caching has been supported by some workflow systems, e.g., Kepler, Vis-
Trails and OpenAlea. Kepler [1] provides a persistent cache on the cloud, but at
a single site, and does not support multisite. VisTrails [3] provides a persistent
cache, but only for local execution on a personal desktop. In [6], we proposed an
adaptive caching method for OpenAlea that automatically determines the most
suited intermediate data to cache, taking into account workflow fragments, but
only in the case of a single cloud site. Another interesting single site method, also
exploiting workflow fragments, is to compute the ratio between re-computation
cost and storage cost to determine what intermediate data should be stored [16].
All these methods are single site (centralized). The only distributed caching
method for workflow execution in a multisite cloud we are aware of is restricted
to hot metadata (frequently accessed metadata) [8], ignoring intermediate data.
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Caching data in a multisite cloud with heterogeneous sites is much more
complex. In addition to the trade-off between re-computation and storage cost
at single sites, there is the problem of site selection for placing cached data.
The problem is more difficult than data allocation in distributed databases [13],
which deals only with well-defined base data, not intermediate data produced
by tasks. Furthermore, the scheduling of workflow executions must be cache-
aware, i.e., exploit the knowledge of cached data to decide between reusing and
transferring cached data versus re-executing the workflow fragments.

In this paper, we propose a distributed solution for caching of scientific
workflows in a multisite cloud. Based on a distributed and parallel architec-
ture [13], composed of heterogeneous sites (including on premise servers and
shared-nothing clusters), we propose algorithms for adaptive caching, cache site
selection and dynamic workflow scheduling. We implemented our caching solu-
tion in OpenAlea, together with a multisite scheduling algorithm. Based on a
real data-intensive application in plant phenotyping, we provide an extensive
experimental evaluation using a cloud with three heterogeneous sites.

This paper is organized as follows. Section 2 presents our real use case in
plant phenotyping. Section 3 introduces our workflow system architecture in
multisite cloud. Section 4 describes our cache management solution. Section 5
gives our experimental evaluation. Finally, Section 6 concludes.

2 Use Case in Plant Phenotyping

In this section, we introduce a real use case in plant phenotyping that will serve
as motivation for the work and basis for the experimental evaluation. In the last
decade, high-throughput phenotyping platforms have emerged to allow for the
acquisition of quantitative data on thousands of plants in well-controlled envi-
ronmental conditions. For instance, the seven facilities of the French Phenome
project 5 produce each year 200 Terabytes of data, which are various (images,
environmental conditions and sensor outputs), multiscale and originate from dif-
ferent sites. Analyzing such massive datasets is an open, yet important, problem
for biologists [15].

The Phenomenal workflow ([2]) has been developed in OpenAlea to ana-
lyze and reconstruct the geometry and topology of thousands of plants through
time in various conditions. It is composed of nine fragments such as image bi-
narization, 3D volume reconstruction, organ segmentation or intercepted light
simulation. Different users can conduct different biological analyses by reusing
some workflow fragments on the same dataset to test different hypotheses [6]. To
save both time and resources, they want to reuse the intermediate results that
have already been computed rather than recompute them from scratch.

The raw data comes from the Phenoarch platform, which has a capacity
of 1,680 plants within a controlled environment (e.g., temperature, humidity,
irrigation) and automatic imaging through time. The total size of the raw image

5 https://www.phenome-emphasis.fr/phenome_eng/
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4 Gaëtan Heidsieck et al.

dataset for one experiment is 11 Terabytes. To limit data movement, the raw
data is stored at a server near to the experimental platform, with both data
storage and computing resources. However, these computing resources are not
enough to process a full experiment in a relatively short time. Thus, scientists
who need to do a full experiment will execute the Phenomenal workflow at a
more powerful site by transferring the raw data for each new analysis.

In this Phenomenal use case, the cloud is composed of heterogeneous sites,
with both on premise servers close to the experimental platform and other more
powerful cloud sites. The on premise server has high storage capacity and hosts
the raw data. Other sites are used to computational intensive executions, with
high-performance computing resources. On premise servers are used locally to
execute some Phenomenal fragments that do not require powerful resources. In
this case, one has to choose between transferring the raw data or some inter-
mediate data to a powerful site or re-executing some fragments locally before
transferring intermediate data. The trade-off between data re-computation and
data transfer is complex in a multisite cloud with much heterogeneity. In par-
ticular, one needs to pay attention to cached data placement, so as to avoid
bottlenecks on the most used intermediate data.

3 Multisite Cloud Workflow System Architecture

In this section, we present our workflow system architecture that integrates
caching and reuse of intermediate data in a multisite cloud. We motivate our
design decisions and describe our architecture in terms of nodes and components
(see Figure 1), which are involved in the processing of workflows.

Our architecture capitalizes on the latest advances in distributed and par-
allel data management to offer performance and scalability [13]. We consider a
distributed cloud architecture with on premise servers, where raw data is pro-
duced, e.g., by a phenotyping experimental platform in our use case, and remote
sites, where the workflow is executed. The remote sites (data centers) are shared-
nothing clusters, i.e., clusters of server machines, each with processor, memory
and disk. We adopt shared-nothing as it is the most scalable and cost-effective
architecture for big data analysis.

In the cloud, metadata management has a critical impact on the efficiency of
workflow scheduling as it provides a global view of data location, e.g., at which
nodes some raw data is stored, and enables task tracking during execution [8].
We organize the metadata in three repositories: catalog, provenance database
and cache index. The catalog contains all information about users (access rights,
etc.), raw data location and workflows (code libraries, application code). The
provenance database captures all information about workflow execution. The
cache index contains information about tasks and cache data produced, as well as
the location of files that store the cache data. Thus, the cache index itself is small
(only file references) and the cached data can be managed using the underlying
file system. A good solution for implementing these metadata repositories is a
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key-value store, such as Cassandra6, which provides efficient key-based access,
scalability and fault-tolerance through replication in a shared-nothing cluster.

The raw data (files) are initially produced and stored at some cloud sites,
e.g., in our use case, at the phenotyping platform. During workflow execution,
the intermediate data is generated and consumed at one site’s node in memory.
It gets written to disk when it must be transferred to another node (potentially
at the same site), or when explicitly added to the cache. The cached data (files)
can later be replicated at other sites to minimize data transfers.

We extend the workflow system architecture proposed in [9] for single site. It
is composed of six modules: workflow manager, global scheduler, local scheduler,
task manager, data manager and metadata manager, to support both execution
and intermediate data caching in a multisite cloud. The workflow manager pro-
vides a user interface for workflow definition and processing. Before workflow
execution, the user selects a number of virtual machines (VMs), given a set of
possible instance formats, i.e., the technical characteristics of the VMs, deployed
on each site’s nodes. When a workflow execution is started, the workflow man-
ager simplifies the workflow by removing some workflow fragments and partitions
depending on the raw input data and the cached data (see Section 4). The global
scheduler uses the metadata (catalog, provenance database, and cache index) to
schedule the workflow fragments of the simplified workflow. The VMs on each
site are then initialized, i.e., the programs required for the execution of the tasks
are installed and all parameters are configured. The local scheduler schedules the
workflow fragments received on its VMs.

Fig. 1: Multisite Workflow System Architecture

The data manager module handles data transfers between sites during execu-
tion (for both newly generated intermediate data and cached data) and manages
cache storage and replication. At a single site, data storage is distributed be-
tween nodes. Finally, the task manager (on each VM) manages the execution of
fragments on the VMs at each site. It exploits the provenance metadata to decide
whether or not the task’s output data should be placed in the cache, based on

6 https://cassandra.apache.org
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the cache provisioning algorithm described in Section 4. Local scheduling and
execution can be performed as in [6].

Figure 1 shows how these components are involved in workflow processing,
using the traditional master-worker model. In this architecture, we consider two
types of cloud sites, i.e., coordinator and participant. The relationship between
the site is also based on the master-worker model, the coordinator site, managing
the participant sites. The workflow manager and the global scheduler modules are
implemented on the coordinator site. The remaining modules are implemented
on all sites.

At each site, there are three kinds of nodes: master, compute and data nodes,
which are mapped to cluster nodes at configuration time, e.g. using a cluster
manager like Yarn ( http://hadoop.apache.org). There is one active master
node per site. There is also a standby node to deal with master node failure.
The master nodes are the only ones to communicate across sites. The local
scheduler and metadata management modules are implemented on the master
node, which manages communication, metadata and scheduling. The master
nodes are responsible for transferring data between sites during execution.

4 Multisite Cache-aware Workflow Execution

In this section, we present in more details how the global scheduler performs
multisite cache-aware workflow execution. In particular, the global scheduler
must decide which data to cache (cache data selection) and where (cache site
selection), and where to execute workflow fragments (execution site selection).
Since these decisions are not independent, we propose a cost function to make a
global decision, based on the cost components for individual decisions. We start
by giving an overview of distributed workflow execution. Then, we present the
methods and cost functions for cache data selection, cache site selection and
execution site selection. Finally, we introduce our cost function for the global
decision.

4.1 Distributed Workflow Execution Overview

We consider a multisite cloud with a set of sites S={s1, ..., sn}. A workflow
W (A,D) is a a directed acyclic graph (DAG) of computational activities A and
their data dependencies D. A task t is the instantiation of an activity during
execution with specific associated input data. A fragment f of an instantiated
workflow is a subset of tasks and their dependencies.

The execution of a workflow W (A,D) in S starts at a coordinator site sc and
proceeds in three main steps:

1. The global scheduler at sc simplifies and partitions the workflow into frag-
ments. Simplification uses metadata to decide whether a task can be replaced
by corresponding cached data references. Partitioning uses the dependencies
in D to produce fragments.

http://hadoop.apache.org
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2. For each fragment, the global scheduler at sc computes a cost function to
make a global decision on which data to cache where, and on which site to
execute. Then, it triggers fragment execution and cache placement at the
selected sites.

3. At each selected site, the local scheduler performs the execution of its re-
ceived fragments using its task manager (to execute tasks) and data manager
(to transfer the required input data). It also applies the decision of the global
scheduler on storing new intermediate data into the cache.

We introduce basic cost functions to reflect data transfer and distributed
execution. The time to transfer some data d from site si to site sj , noted
Ttr(d, si, sj), is defined by

Ttr(d, si, sj) =
Size(d)

TrRate(si, sj)
(1)

where TrRate(si, sj) is the transfer rate between si and sj .
The time to transfer input and cached data, In(f) and Cached(f) respec-

tively, to execute a fragment f at site si is Tinput(f, si):

Tinput(f, si) =

S∑
sj

(Ttr(In(f), sj , si) + Ttr(Cached(f), sj , si)) (2)

The time to compute a fragment f at site s, noted Tcompute(f, s), can be
estimated using Amdahl’s law [17]:

Tcompute(f, s) =
(αn + (1− α)) ∗W (f)

CPUperf (s)
(3)

where W (f) is the workload for the execution of f , CPUperf (s) is the average
computing performance of the CPUs at site s and n is the number of CPUs
at site s. We suppose that the local scheduler may parallelize task executions.
Therefore, α represents the percentage of the workload that can be executed in
parallel.

The expected waiting time to be able to execute a fragment at site s is
noted Twait(s), which is the minimum expected time for s to finish executing
the fragments in its queue.

The time to transfer the intermediate data generated by fragment f at site
si to site sj , noted Twrite(Output(f), si, sj), is defined by:

Twrite(Output(f), si, sj) = Ttr(Output(f), si, sj) (4)

where Output(f) is the data generated by the execution of f .

4.2 Cache Data Selection

To determine what new intermediate data to cache, we consider two different
methods: greedy and adaptive. Greedy data selection simply adds all new data
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to the cache. Adaptive data selection extends our method proposed in [6] to
multisite cloud. It achieves a good trade-off between the cost saved by reusing
cached data and the cost incurred to feed the cache.

To determine if it is worth adding some intermediate data Output(f) at site
sj , we consider the trade-off between the cost of adding this data to the cache
and the potential benefit if this data was reused. The cost of adding the data to
site sj is the time to transfer the data from the site where it was generated. The
potential benefit is the time saved from loading the data from sj to the site of
computation instead of re-executing the fragment. We model this trade-off with
the ratio between the cost and benefit of the cache, noted p(f, si, sj), which can
be computed from equations 2, 3 and 4,

p(f, si, sj) =
Twrite(Output(f), si, sj)

Tinput(f, si) + Tcompute(f, si)− Ttr(Output(f), sj , si)
(5)

In the case of multiple users, the probability that Output(f) will be reused
or the number of times fragment f will be re-executed is not known when the
workflow is executed. Thus, we introduce a threshold Threshold (computed by
the user) as the limit value to decide whether a fragment output will be added
to the cache. The decision on whether Output(f) generated at site si is stored
at site sj can be expressed by

εi,j =

{
1, if p(f, si, sj) < Threshold.

0, otherwise.
(6)

4.3 Cache Site Selection

Cache site selection must take into account the data transfer cost and the hetero-
geneity of computing and storage resources. We propose two methods to balance
either storage load (bStorage) or computation load (bCompute) between sites.
The bStorage method allows preventing bottlenecks when loading cached data.
To assess this method at any site s, we use a load indicator, noted LbStorage(s),
which represents the relative storage load as the ratio between the storage used
for the cached data (Storageused(s)) and the total storage (Storagetotal(s)).

LbStorage(s) =
Storageused(s)

Storagetotal(s)
(7)

The bCompute method balances the cached data between the most powerful
sites, i.e., with more CPUs, to prevent computing bottlenecks during execu-
tion. Using the knowledge on the sites’ computing resources and usage, we use
a load indicator for each site s, noted LbCompute(s), based on CPUs idleness
(CPUidle(s)) versus total CPU capacity (CPUtotal(s)).

LbCompute(s) =
1− CPUidle(s)
CPUtotal(s)

(8)
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The load of a site s, depending on the method used, is represented by L(s),
ranging between 0 (empty load) and 1 (full). Given a fragment f executed at
site si, and a set of sites sj with enough storage for Output(f), the best site
s∗ to add Output(f) to its cache can be obtained using Equation 1 (to include
transfer time) and Equation 6 (to consider multiple users),

s∗(f)si = argmax
sj

(εi,j ∗
(1− L(sj))

Twrite(Output(f), si, sj)
) (9)

4.4 Execution Site Selection

To select an execution site s for a fragment f , we need to estimate the execution
time for f as well as the time to feed the cache with the result of f . The execution
time f at site s (Texecute(f, s)) is the sum of the time to transfer input and
cached data to s, the time to get computing resources and the time to compute
the fragment. It is obtained using Equations 2 and 3.

Texecute(f, s) = Tinput(f, s) + Tcompute(f, s) + Twait(s) (10)

Given a fragment f executed at site si and its intermediate data Output(f),
the time to write Output(f) to the cache (Tfeed cache(f, si, sj)) can be defined
as:

Tfeed cache(f, si, sj , εi,j) = εi,j ∗ Twrite(Output(f), si, sj) (11)

where sj is given by Equation 9.

4.5 Global Decision

At Step 2 of workflow execution, for each fragment f , the global scheduler must
decide on the best combination of individual decisions regarding cache data,
cache site, and execution site. These individual decisions depend on each other.
The decision on cache data depends on the site where the data is generated and
the site where it will be stored. The decision on cache site depends on the site
where the data is generated and the decision of whether or not the data will
be cached. Finally, the decision on execution site depends on what data will
be added to the cache and at which site. Using Equations 10 and 11, we can
estimate the total time (Ttotal) for executing a fragment f at site si and adding
its intermediate data to the cache at another site sj :

Ttotal(f, si, sj , εi,j) = Texecute(f, si) + Tfeed cache(f, si, sj , εi,j) (12)

Then, the global decision for cache data (ε(f)), cache site (s∗cache) and exe-
cution site (s∗exec) is based on minimizing the following equation for the n2 pairs
of sites si and sj

(s∗exec, s
∗
cache, ε(f)) = argmin

si,sj

(Ttotal(f, si, sj , εi,j)) (13)
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This decision is done by the coordinator site at before each fragment execu-
tion and only takes into account the cloud site’s status at that time. Note that
s∗exec, s

∗
cache can be the coordinator site and can be the same site.

5 Experimental Evaluation

In this section, we first present our experimental setup, which features a hetero-
geneous multisite cloud with multiple users who re-execute part of the workflow.
Then, we compare the performance of our multisite cache scheduling method
against two baseline methods. We end the section with concluding remarks.

5.1 Experimental Setup

Our experimental setup includes a multisite cloud, with three sites in France, a
workflow implementation and an experimental dataset. Site 1 in Montpellier is a
server close to the Phenoarch phenotyping platform. It has the smallest number
of CPUs and largest amount of storage among the sites. The raw data is stored
at this site. Site 2 is the coordinator site, located in Lille. Site 3, located in
Lyon, has the largest number of CPUs and the smallest amount of storage.

To model site heterogeneity in terms of storage and CPU resources, we use
heterogeneity factor H in three configurations: H = 0, H = 0.3 and H = 0.7.
For the three sites altogether, the total number of CPUs is 96 and the total
storage on disk for intermediate data is 180 GB (The raw data is stored on an
additional node at Site 1). On each site, several nodes are instantiated for the
executions, they have a determined number of CPUs from 1, 2, 4, 8 or 16 CPUs.
The available disk size for each node is limited by implementation. With H = 0
(homogeneous configuration), each site has 32 CPUs (two 16 CPUs nodes) and
60 GB (30 GB each). With H = 0.3, we have 22 CPUs and 83 GB for Site 1, 30
CPUs and 57 GB for Site 2 and 44 CPUs and 40 GB for Site 3. With H = 0.7
(most heterogeneous configuration), we have 6 CPUs and 135 GB for Site 1, 23
CPUs and 35 GB for Site 2 and 67 CPUs and 10 GB for Site 3.

The input dataset for the Phenomenal workflow is produced by the Phe-
noarch platform (see Section 2). Each execution of the workflow is performed
on a subset of the input dataset, i.e. 200 GB of raw data, which represents the
execution of 15,000 tasks. For each user, 60% of the raw data is reused from
previous executions. Thus each execution requires only 40% of new raw data.
For the first execution, no data is available in the cache.

We implemented our cache-aware scheduling method, which we call cacheA,
in OpenAlea and deployed it at each site using the Conda multi-OS package
manager. The metadata distributed database is implemented using Cassandra.
Communication between the sites is done using the protocol library ZeroMQ.
Data transfer between sites is done through SSH. We have also implemented
two baseline methods, Sgreedy and Agreedy, based on the SiteGreedy and Act-
Greedy methods described in [10], respectively. The Sgreedy method extends
SiteGreedy, which schedules each workflow fragment at a site that is available
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for execution, with our cache data/site selection methods. Similarly, the Agreedy
method extends ActGreedy, which schedules each workflow fragment at a site
that minimizes a cost function based on execution time and input data transfer
time, with our cache data/site selection methods. These baseline methods per-
form execution site selection followed by cache data/site selection while CacheA
makes a global decision.

5.2 Experiments

We compare CacheA with the two baseline methods in terms of execution time
and amount of data transferred. We define total time as execution time plus
transfer time. In experiment 1, we consider a workflow execution with caching
or without. In Experiment 2, we consider multiple users who execute the same
workflow on similar input data, where 60% of the data is the same. In Experiment
3, we consider different heterogeneous configurations for one workflow execution.

Experiment 1: with caching. In this basic experiment, we compare two work-
flow executions: with caching, using CacheA and bStorage; and without caching,
using ActGreedy. We consider one re-execution of the workflow on different input
datasets, from 0% to 60% of same reused data.

CacheA outperforms ActGreedy from 20% of reused data. Below 20%, the
overhead of caching outweighs its benefit. For instance, with no reuse (0%), the
total time with CacheA is 16% higher than with ActGreedy. But with 30%, it is
11% lower, and with 60%, it is 42% lower.

Experiment 2: multiple users. Figure 2 shows the total time of the workflow
for the three scheduling methods, four users, H = 0.7 and our two cache site
selection methods: (a) bStorage, and (b) bCompute.

Let us first analyze the results in Figure 2.a (bStorage method). For the first
user execution, CacheA outperforms Sgreedy in terms of execution time by 8%
and in terms of data and intermediate data transfer times by 51% and 63%,
respectively. The reason Sgreedy is slower is that it schedules some compute-
intensive fragments at Site 1, which has the lowest computing resources. Fur-
thermore, it does not consider data placement and transfer time when scheduling
fragments.

Again for the first user execution, CacheA outperforms Agreedy in terms of
total time by 24%, when considering data transfer time to the cache. However,
CacheA execution time is a bit slower (by 9%). The reason that Agreedy is slower
in terms of total time is that it does not take into account the placement of the
cached data, which leads to larger amounts (by 67%) of cache data to trans-
fer. For other users’ executions (when cached data exists), CacheA outperforms
Sgreedy in terms of execution time by 29%, and for the fourth user execution,
by 20%. This is because CacheA better selects the cache site in order to reduce
the execution time of the future re-executions. In addition, CacheA balances the
cached data and computations. It outperforms Sgreedy and Agreedy in terms of
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(a) bStorage method (b) bCompute method

Fig. 2: Total times for multiple users (60% of same raw data per user) for three
scheduling methods (Sgreedy, Agreedy and CacheA).

intermediate data transfer times (by 59% and 15%, respectively), and cache data
transfer times (by 82% and 74%, respectively).

Overall, CacheA outperforms Sgreedy and Agreedy in terms of total times by
61% and 43%, respectively. The workflow fragments are not necessarily scheduled
to the site with shortest execution time, but to the site that minimizes overall
total time. Considering the multiuser perspective, CacheA outperforms baseline
methods, reducing the total time for each new user (up to 6% faster for the
fourth user compared to the second).

Let us now consider Figure 2.b (bCompute method). For the first user exe-
cution, CacheA outperforms Sgreedy and Agreedy in terms of total time by 36%
and 10% respectively. bCompute stores the cache data on the site with most idle
CPUs, which is often the site with the most CPUs. This leads the cached data
to be stored close to where it is generated, thus reducing data transfers when
adding data to the cache. For the second user, CacheA outperforms Sgreedy and
Agreedy in terms of total time by 46% and 21% respectively. The cached data
generated by the first user is stored on the sites with more available CPUs,
which minimizes the intermediate and reused cached data transfers. From the
third user, the storage at some site gets full, i.e. for the third user’s execution,
Site 3 storage is full and from the fourth user’s execution, Site 2 storage is full.
Thus, the performance of the three scheduling methods decreases due to higher
cache data transfer times. Yet, CacheA still outperforms Sgreedy and Agreedy in
terms of total time by 49% and 25% respectively.

Experiment 3: cloud site heterogeneity. We now compare the three meth-
ods in the case of heterogeneous sites by considering the amount of data trans-
ferred and execution time. In this experiment (see Figure 3), we consider only
one user who executes the workflow and that previous executions with 60% of the
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same raw data have generated some cached data. We use the bStorage method
for cache site selection.

(a) Execution time (b) Amount of data transferred

Fig. 3: Execution times and amounts of data transferred for one user (60% of
same raw data used), on heterogeneous sites with three scheduling methods
(Sgreedy, Agreedy and CacheA).

Figure 3 shows the execution times and the amount of data transferred using
the three scheduling methods in case of heterogeneous sites. With homogeneous
sites (H = 0), the three methods have almost the same execution time. CacheA
outperforms Sgreedy in terms of amount of intermediate data transferred and
total time by 44% and 26%, respectively. CacheA has execution time similar to
Agreedy (3.1% longer). The cached data is balanced as the three sites have same
storage capacities. Thus, the total times of CacheA and Agreedy are almost the
same.

With heterogeneous sites (H > 0), the sites with more CPUs have less avail-
able storage but can execute more tasks, which leads to a larger amount of in-
termediate and cached data transferred between the sites. For H = 0.3, CacheA
outperforms Sgreedy and Agreedy in terms of total time (by 40% and 18%, re-
spectively) and amount of data transferred (by 47% and 21%, respectively).

With H = 0.7, CacheA outperforms Sgreedy and Agreedy in terms of total
time (by 58% and 42%, respectively) and in terms of amount of data transferred
(by 55% and 31%, respectively). CacheA is faster because its scheduling leads
to a smaller amount of cached data transferred when reused (48% smaller than
Agreedy) and added to the cache (62% smaller than Agreedy).

5.3 Concluding Remarks

Our cache-aware scheduling method CacheA always outperforms the two baseline
methods (which also benefit from our cache/data selection method), both in the
case of multiple users and heterogeneous sites.
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The first experiment (with caching) shows that storing and reusing cached
data becomes beneficial when 20% or more of the input data is reused. The sec-
ond experiment (multiple users) shows that CacheA outperforms Sgreedy and
Agreedy in terms of total time by up to 61% and 43%, respectively. It also shows
that, with increasing numbers of users, the performance of the three scheduling
methods decreases due to higher cache data transfer times. The third experi-
ment (heterogeneous sites) shows that CacheA adapts well to site heterogeneity,
minimizing the amount of cached data transferred and thus reducing total time.
It outperforms Sgreedy and Agreedy in terms of total time by up to 58% and
42% respectively.

Both cache site selection methods bCompute and bStorage have their own
advantages. bCompute outperforms bStorage in terms of data transfer time by
13% for the first user and up to 17% for the second user. However, it does not
scale with the number of users, and the limited storage capacities of Site 2 and
3 lead to a bottleneck. On the other hand, bStorage balances the cached data
among sites and prevents the bottleneck when accessing the cached data, thus
reducing re-execution times. In summary, bCompute is best suited for compute-
intensive workflows that generate smaller intermediate datasets while bStorage
is best suited for data-intensive workflows where executions can be performed
at the site where the data is stored.

6 Conclusion

In this paper, we proposed a solution for distributed caching of scientific work-
flows in a cloud with heterogeneous sites (including on premise servers and
shared-nothing clusters). Based on a distributed and parallel architecture, we
proposed algorithms for adaptive caching, cache site selection and dynamic work-
flow scheduling. We implemented our solution in OpenAlea, together with a
multisite scheduling algorithm. Using a real data-intensive application in plant
phenotyping (Phenomenal), our extensive experimental evaluation using a cloud
with three heterogeneous sites shows that our solution can yield major perfor-
mance gains. In particular, it reduces much execution times and data transfers,
compared to two baseline scheduling methods (which also use our cache/data
selection method).
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