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Abstract11

A method to reduce repeatability error in multivariate data for Analysis12

of variance-Simultaneous Component Analysis (REP-ASCA) has been devel-13

oped. This method proposes to adapt the acquisition protocol by adding a14

set containing repeated measures for describing repeatability error. Then,15

an orthogonal projection is performed in the row-space to reduce the re-16

peatability error of the original dataset. Finally, ASCA is performed on the17

orthogonalized dataset. This method was evaluated on NIR spectral data of18

coffee beans. This study shows that the repeatability error due to physical19

variations between measurements can alter results of the analysis of variance.20

These effects are predominant in factors analysis and can be seen on spec-21

tra as constant or non-constant baselines. By reducing repeatability error22
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with REP-ASCA, baselines are removed and factor analysis provides more1

information about chemical content of the factors of interest.2

1. Introduction3

When conducting measurements in experiments, measured values can dif-4

fer from the true values of the samples. Measurement error is the difference5

between a measured quantity and its true value. For reliable measures, the6

measurement error must be relatively small compared to the variance of the7

measured samples [1].8

The reproducibility error is the difference between two measurements of9

the same sample under two different conditions, for example, change of lab-10

oratory or operator. When conditions of acquisitions do not change, the11

reproducibility error is also called repeatability error [2]. In this paper, the12

repeatability error stands for differences observed between two measurements13

performed on the same physical sample.14

In an experiment, the observed responses can contain repeatability error15

and this may affect the results of processing carried out on this data. This is16

especially true when we want to study the influence of independent variables,17

i.e., the so-called factors.18

The use of design of experiments (DoE) allows defining the experiments19

to perform in an optimal way, in order to test the influence of the identified20

factors on the observed responses [3, 4]. The statistical analysis called the21

ANalysis Of Variance (ANOVA) of a dataset from an experimental design,22

was historically formalized in 1925 by Fischer with the first edition of [5]. The23

aim of this analysis is to split the total variance of the measured responses24
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into several sources of variances [6] However, the repeatability error may alter1

the results of ANOVA, even when the factors have a relevant influence on the2

response(s) of a studied system. Indeed, it may become more complicated to3

differentiate which part of the variance is explained by the factors and which4

part is due to the repeatability error.5

In spectroscopy, measurement error may be due to both the variation of6

the measurement conditions (e.g. angle of view, reference, sensor tempera-7

ture, etc) and the physical properties of the measured sample (e.g. particle8

size, roughness, physical texture, etc). In addition, a change in sample chem-9

ical composition modifies the light diffusion process. Measuring non-uniform10

samples adds a major difficulty compared to homogeneous powdered samples11

[7]. For example, variations in oil, water, fiber, protein, and mineral content12

of the same individual change the nature of the light-scattering medium.13

These chemical and physical variations can lead to unwanted variations in14

spectra. These variations can for example modify the spectra by adding15

them with baselines, which can be horizontal lines or slopes, even curves.16

When the changes are proportional to the intensity value, the effect is called17

multiplicative effect. These phenomena are well known in spectroscopy [8, 9]18

and are one of the sources of repeatability error.19

Some sources (sensors, operator, etc.) of errors can be described as fac-20

tors. If we consider these factors should have negligible effects on the total21

variance, we don’t account for these factors in the analysis of variance and22

they are referred to as hidden. Some of these factors can be described as23

a random factor. In the case of univariate data, these random factors can24

be accounted for, using adapted methods such as Generalized Linear Mixed25
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Models (GLMMs) [10]. In the case of multivariate data, solutions lie in (1)1

reducing dimensionality or (2) modelling multiple responses (e.g., longitudi-2

nal analysis by using GLMMs; [11]). However, GLMMs are unsuitable in3

most cases, especially with spectral data [12].4

For multivariate data, chemometric methods can be used to take advan-5

tage of the DoE [13]. Among those methods, the Analysis of Variance -6

Simultaneous Component Analysis (ASCA) [14] is the most used, but the7

repeatability error is not taken into account in ASCA. This method system-8

atically averages the repetitions of measurements on an individual. Aver-9

aging observations helps to reduce the repeatability error but requires in-10

creasing the number of measurements. Climaco-Pinto et al. [15] propose a11

method consisting in reducing the residual variance after each step of the12

ANOVA-PCA. This method makes the separation of factors clearer by re-13

ducing within-variance. This method does not focus on the repeatability14

error.15

In this study, a method named Reduction of the error of repeatability-16

Analysis of variance-Simultaneous Component Analysis (REP-ASCA) is pro-17

posed to reduce repeatability error by adding additionnal dataset. REP-18

ASCA is evaluated on NIR spectral data collected on coffee beans.19

The objectives of this paper are: (1) to suggest a method (REP-ASCA)20

to reduce the repeatability error (2) to apply REP-ASCA to real data from21

NIR spectroscopy (3) to study the influence of the number of measurement22

in the additionnal set on the reduction of the repeatability error.23
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2. Theory1

2.1. ASCA2

Multivariate data can be represented as a matrix X of size (N , P ) where3

N is the number of observations and P the number of the measured variables.4

The analysis of variance establishes a model in order to decompose the matrix5

X into different sources of variation. By doing so, relationships between the6

factors and the measured variables can be studied.7

The ASCA method includes of three main steps: The first one consists8

of partitioning the observation matrix X into matrices associated with the9

effect of the studied factors and their interactions. For example, in a DoE10

involving two studied factors A and B, X can be written according to the11

ASCA approach as follows:12

X = µ+ XA + XB + XAB + E (1)

With µ the mean of all observations, XA and XB the terms associated13

respectively to the main effects of the factors A and B, XAB , the interaction14

term between A and B and E the residuals. Matrices XA, XB and XAB15

contain identical replicates of the average spectra collected at each level of16

the particular factor (A, B and AB, respectively). For example, for a given17

level of the factor A, all the rows of XA corresponding to this level will contain18

the same spectrum.19

For a complete and balanced design, factors A, B and AB are indepen-20

dent of one another [16]. More specifically, matrices XA, XB and XAB are21

all orthogonal to one another [17]. Thus: var(X) = var(XA) + var(XB) +22

var(XAB)+var(E). The term var(E) contains the within-level variance and23
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the other terms the between-level variance for the corresponding factor. In1

practice, the variances of the factors are replaced by the sum of the squares of2

the elements of the associated matrix. For example, with ‖XA‖2 correspond-3

ing to the square Frobenius’ norm of XA, the variance of XA is replaced by4

[18, 17, 19]:5

SSQ(XA) = ‖XA‖2 (2)

The second step of ASCA tests if factors have a significant effect on6

the total variance. To do that, a permutation test is performed and a p-7

value is estimated by comparing variance value on the original data with the8

distribution of variance obtained by permutations. The permutation test can9

be performed for data which does not necessarily respect the conditions of10

normality [12]. For a factor i and its associated matrix Xi, the p-value is11

calculated according to the following equation [20]:12

p-value(Xi) =
nbr(SSQ(Xi,perm ≥ SSQ(Xi))

k
(3)

Where nbr() calculates the number of occurrences, k is the number of13

permutations and Xi,perm the matrix obtained after a random row permuta-14

tions. The p-value is then calculated by counting the number of cases where15

the variance of the studied factor is lower than the variances resulting from16

the permutations. Indeed, by doing so, the effect of the studied factor is17

compared to its distribution under the null hypothesis as estimated by the18

permutations.19

For the last step, a Simultaneous Component Analysis (SCA) [21, 22] is20

performed on all the terms of the matrices belonging to equation 1. Thus,21
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for a given factor i, the decomposition of the corresponding matrix Xi is1

written:2

Xi = TiP
t
i (4)

Where Ti and Pi correspond respectively to the scores and the loadings of3

the principal components. Ti and Pi are respectively matrices of size (N,L)4

and (P,L) with L is the number of levels of factor i minus one.5

This analysis reduces the representation space. These loadings define a6

subspace spanned by Xi and highlight the spectral directions related to the7

factors studied. The scores are the new coordinates of the observations on8

these principal components.9

2.2. Repeatability error10

When a sample measurement is repeated several times, measurements11

are never identical. Observed variation between measurements is due to the12

repeatability error. When measurements are performed on different samples,13

variance differences are due to the variance between samples but also con-14

tain repeatability error. The greater the repeatability error, the greater the15

within-variance increases at the expense of between-variance. In fact, the16

variance of the factor becomes smaller relatively to the total variance. This17

tends to decrease the significance of the factors.18

Some of the error can be due to a random phenomenon whose average is19

null. In ASCA, the repeatability error is reduced because repeated measures20

are systematically averaged over every sample. As a consequence, when the21

repeatability error is high, one solution is to reduce its variance by increasing22
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the number of observations. As a result, the number of acquisitions increases1

considerably. In addition, it is impossible to link the repeatability error2

to a specific factor in ASCA. Indeed, it is a nested factor [23]. The solution3

proposed in this study is to use an additional set of repeated measures to take4

away the repeatability error of the observations before analysis of variance.5

[24]6

2.3. Proposed method: REP-ASCA7

The method proposed in this study consists in identifying the spectral8

directions responsible for the repeatability error and removing them from9

X. By definition, X can be represented in two dual spaces: the column-10

space of dimension RN spanned by the observations and the row-space of11

dimension RP spanned by the variables. In ASCA, the decomposition part12

of the variance is performed in the column-space. Equation 1 can be written13

as a series of orthogonal projections [17]:14

X = M1X + MAX + MBX + MABX + E (5)

Where each matrix Mi is an orthogonal projection matrix in the column-15

space (RN) defined by the following equation:16

Mi = Di(D
t
iDi)

−1Dt
i (6)

Where Di called the dummy-matrix or design matrix is a binary matrix17

encoding the class belonging of the factor i.18

The variance of repeatability error can be included into all factors. This19

variance cannot be expressed into a unique factor and therefore represented20
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by an orthogonal projection. This error cannot be reduced in the column-1

space.2

The spectral directions of the repeatability error can be described in the3

row-space through the space W spanned by the repeatability error. Let Xs4

be a matrix containing the repetitions of measurements performed on a set5

of samples representative of X. Each repeated set is centered and all the6

centered sets are stored in a matrix W. The matrix W contains only the7

effects related to the repetition of measurements. A Principal Component8

Analysis (PCA) is performed on W and provides loadings P which define the9

repeatability error subspace. The matrix X is then projected orthogonally10

to P using the following formula:11

X⊥ = X(I−PPt) (7)

ASCA is then performed on X⊥ instead of X. This method contains two12

parameters to adjust: the number k of dimensions removed by the projection,13

i.e. the number of rows of P and the minimum number of spectra required14

in W, i.e. the number of rows of W.15

The setting of the parameter k can be done according to a set of criteria.16

First, the scree plot of the PCA eigenvalues can be examined, and the value17

of k that corresponds to a net break is the selected. Another criterion is18

to study the evolution of the ratio between-variance/total-variance for the19

design factors and identify a break, a plateau. When the data are signals as it20

is the case with spectral data, studying shape of loadings (break, baseline) can21

provide information about the nature of repeatability errors and thus allow22

to adjust the k parameter accordingly. The REP-ASCA method assumes23
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that the repeatability error is structured, i.e. a large part of this error has a1

subspace of limited size, which can be removed by orthogonal projection into2

the row-space. When the number k is too high, the loadings become noisy.3

When building W, that is to say acquiring Xs, it is necessary to check4

that enough repeated measures are available to describe the repeatability5

error. This can be verified by monitoring the evolution of the structure6

of the subspace spanned by W. Let Jn be the inertia matrix of W when7

it contains n spectra. The RV coefficient [25, 26] between Jn and Jn−1 is8

calculated for each addition of elements. The evolution of this coefficient as9

a function of n reflects the evolution of the subspace structure generated by10

W. In practice, the filling of W is stopped when this coefficient no longer11

changes.12

3. Materials13

3.1. Experimental data14

The REP-ASCA was tested on data resulting from near infrared spec-15

troscopy of coffee beans [18]. The aim of the experiment was to study species16

and roasting times influences on spectra. Spectra were recorded over a spec-17

tral range of 1000 nm to 2500 nm with a resolution of 1.2 nm and trans-18

formed in pseudo-absorbance (− log 1/R). Initially, ten geographical origins19

were compared representing a total of 800 spectra. For this study, only one20

origin (80 spectra) was selected.21

Two species of coffee (Robusta and Arabica) were roasted during four22

different periods (0mn, 25mn, 50mn, 75mn) at a constant temperature of23

180 ◦C. Seven successive spectral measurements were collected on each sam-24
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ple. This DoE yielded a matrix X of 56 spectra (2 species x 7 spectral1

measurement x 4 duration times). In addition, 3 repetitions of measure-2

ments have been made on each of the 8 samples leading to 24 spectra in the3

matrix Xs.4

3.2. REP-ASCA model5

The matrix X was projected orthogonally to the k first loadings extracted6

from Xs yielding X⊥. The value of k was varied from 0 (classical ASCA)7

to 12. In accordance with ASCA modelling, X⊥ was decomposed into the8

following terms:9

X⊥ = µ+ Xspecies + Xtime + XspeciesXtime + E (8)

With: Xspecies and Xtime factors related respectively to species and roast-10

ing duration time. XspeciesXtime is the interaction term and E the residuals.11

4. Results and discussion12

4.1. Preliminary analysis of spectra13

:14

The X spectra are shown in 1a. We can observe some characteristic15

peaks of coffee spectra according to the literature [27, 28, 29]. Positions and16

characteristics of these peaks are presented in Table 1:17

However, some differences between spectra can be observed. There is18

a shift in the baseline. This shift increases with the wavelength. This is19

frequently observed in NIR spectroscopy when the spectra are acquired in20
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(a) (b)

Figure 1: (a) All spectra forming by X , (b) 3 spectra measured on one sample

Table 1: Position and peak characteristic of coffee spectra

Wavelength (nm ) Bond vibration Assignment

1212 C H stretching 2nd overtone Caffeine

1450 C H stretching 1st overtone H2O and Cellulose

1725/1765 C-H stretching 1st overtone CH2 Fatty acids

1940 O H stretching + O H deformation H2O

2080-2150 C O (1st overtone) and O–H (combination) Protein/Fatty acids/Carbohydrates

2309/2350 C–H + C C (combination) Carbohydrates : Cellulose

reflectance [30, 31, 9, 32]. This phenomenon is due to differences in the light1

scattering.2

Figure 1 b shows three spectra of Xs measured on the same sample and3

illustrating the repeatability error. These spectra present the same kind of4

variation observed on X spectra (Fig. 1a). A vertical translation as a shift5

in a constant baseline appears between spectra at all wavelengths. This is6

because each spectrum was measured on a different area of the same sam-7

ple. In each area, the reflectance intensity varies according to the geometric8

configuration of the measured grains in relation to the sensor. These aspects9
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are also observed over the whole databases X and Xs.1

The baselines also vary in slopes (see Fig. 1b). This is due to a variation2

of particle size and surface roughness of the product [30]. It can therefore be3

assumed that the internal structure of coffee beans varies within the same4

sample.5

A more detailed analysis of 1b shows three distinct spectral regions for6

baseline variations:7

• Between 1000 nm and 1400 nm, a negative slope is observed, which8

varies for each repetition.9

• Between 1400 nm and 2000 nm, baselines are increasing, but appear to10

have identical slopes to ones observed at other spectral ranges.11

• Between 2000 and 2500, baselines are increasing, but appear to have12

different slopes. It can be hypothesized that all of these baseline vari-13

ations are due to several scattering regimes (e.g., Mie and Rayleigh).14

These scattering regimes are governed by the relationship between par-15

ticle size and light wavelength [7].16

All these baselines deform the information contained in the spectra. These17

undesired effects should be removed to better describe the factors.18

4.2. ASCA on X19

The Explained variance and the p-value for each factor are obtained from20

ASCA on X and summarized in Table 2. We can then observe that the21

largest source of variance is explained by the residuals. 82.01% of the total22

variance could not be related to a studied factor. 5.93% of the variance is23
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Table 2: Explained variances and p-values of the factors

Factor Explained Variance (%) p-value

Xspecies 5.93 0.056

Xtime 8.61 0.128

XspeciesXtime 3.45 0.548

E 82.01

explained by the species, 8.61% of the total variance is explained by the1

roasting duration time and 3.45% by the interaction term.2

In addition, the p-values obtained after the permutation test, show that3

none of the factors is statistically significant at 5%. These results can be4

explained in part by a large part of variance not explained by the model.5

The factor variances are too low in comparison to the residual variance.6

Here, the case study shows that the repeatability error is so large that none7

of the identified factors are expressed. Within-variance of repeated measures8

are more important than variances between-level of factors. It is then very9

difficult in this particular case to draw conclusions with ASCA.10

4.3. REP-ASCA11

4.3.1. Selection of the number k of component removed12

The parameter k, which corresponds to the number of components of W13

to remove, must be set. For this purpose, consequences on ASCA performed14

on X⊥in terms of explained variances and p-values are studied according to15

k.16

Fig. 2a shows, that part of variance carried by E decreases up to the17
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(a) (b)

Figure 2: Evolution of: (a) explained variances by factors, (b) p-value for each factor ;

according to the projection number.

5th component. Then, it subsequently increases. Inversely, the term Xspecies1

explains more and more variance and that up to the 5th component. The ef-2

fects related to the repeatability error hide the expression of the term Xspecies3

to the 5th component. For the Xtime term, projecting orthogonally to the4

1st component increases the variance part from 8.61% to 30.81%. This large5

increase shows that the 1st component of W mainly masked variance due to6

roasting time. Nevertheless, the variance explained by this term decreases7

thereafter. This means that from the second component, the repeatability8

error is very much related to roasting. For the interaction term XspeciesXtime9

explained variance is very small. It increases very slowly as the repeatability10

error is removed.11

By reducing the variance due to the repeatability error, the variances of12

the factors can be modified in different proportions. Information is extracted13

in different proportions from the different factors. The significativity of each14

factor can then potentially change. The evolution of p-value (Fig. 2b) shows15

that the repeatability error masks the effects of the factors. By removing the16
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information carried by the first component of W (i.e., projection orthogo-1

nally to the 1st component of the repeatability error), the Xtime and Xspecies2

factors become both significant, in agreement with what reported in the orig-3

inal study [18]. The interaction term becomes significant after a projection4

orthogonal to the first three components.5

4.3.2. Analysis of the repeatability error6

Let’s examine in detail the results of REP-ASCA for k=5. The sources7

of repeatability can be explored through the analysis of the loadings of the8

first 5 component (Fig 3).9
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Fig. 3a shows the percentages of explained variance by component. The1

first component explains 91.6% of the total variance. The loadings of the first2

component (Fig. 3b) are all positive. This indicates a systematic variation3

across all variables. The shape of these loadings is the same as the aver-4

age spectrum of the individuals of Xs. This reflects the vertical translation5

observed in (Fig. 1a).6

The second component explains 6.53% (Fig. 3a) of the total variance.7

Surprisingly, the loadings of the second component (Fig. 3c) are similar to8

the loadings of the first component (Fig. 3b). However, slight differences9

can be observed: first, the loadings of the second component are centered10

on zero. This indicates an overall slope variation. Secondly, these loadings11

show a zero slope between 1000 nm and 1400 nm, whereas it is negative on12

the loadings of the first component of this same spectral range. As a result,13

the deflection is not homogeneous over all wavelengths.14

The third component explains 1.13% (Fig. 3a) of the total variance. The15

loadings of the third component (Fig. 3d) show two slopes: one between16

1000 nm and 1400 nm and another between 2000 nm and 2500 nm. This17

corresponds to different scattering regimes related to the size of the scattering18

media in respect to the wavelength. This scattering phenomenon is finer than19

what we saw before. This phenomenon results in a non-constant curving20

baseline effect. The fourth component explains 0.2% of the total variance21

(Fig. 3a). On the loadings (Fig. 3e), a first slope is visible between 1000 nm22

and 1300 nm and a second between 1900 nm and 2300 nm. Unlike previous23

components, slopes are less visible. This component is therefore less related24

to physical phenomena. This gives information related to the chemistry of the25
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(a) (b)

(c) (d)

(e) (f)

Figure 3: PCA performed on W: (a) Part of variances explained by principal components

(b) Loadings on PC1, (c) Loadings on PC2 (d) Loadings on PC3, (e) Loadings on PC4,

(f) Loadings on PC5.
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medium. A characteristic peak at 1940 nm is related to the presence of water1

[33] as a result of the combination of the O-H stretch band and the O-H22

torsion band. Two peaks are located at 1710 nm and at 2307 nm respectively3

linked to lipids and proteins content. The fifth component explains 0.11%4

of the total variance (Fig. 3a). As shown in (Fig. 3f), the loadings of this5

component show slopes between 1000 nm and 1300 nm and 2400 nm and6

2500 nm. Peaks of 1730 nm and 1762 nm correspond to the lipids.7

The description of the loadings of the first five components highlights8

that the variance of the repeated measures is related to physical phenomena.9

These physical phenomena induce essentially shifts in baselines on spectra.10

In the next components, chemical information appears. The repeatability11

error is therefore mainly of a physical nature, and to a lesser extent also due12

to a chemical difference, changing the diffusion of light in the medium.13

4.4. Factor analysis after REP-ASCA (with k =5)14

4.4.1. Species15

Without or after orthogonal projection (Fig. 4a and 4b), the water con-16

tent differentiates the two species by the peak of water located at 1930 nm.17

A second smaller peak located at 1398 nm corresponds to the hydrogen bond.18

It is also called weakly-hydrogen-bonded water [34]. Note that without or-19

thogonal projection the loadings are all negative except the peak located at20

1930 nm (Fig. 4a). After orthogonal projection according to the first 5 com-21

ponents of W, the loadings (Fig. 4b) are centered on zero. The orthogonal22

projection therefore removed the baseline.23

Some information that did not appear before is now apparent (Fig. 4b).24

The three peaks at 2309 nm, 2348 nm and 2400 nm show a difference in fat25
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(a) (b)

Figure 4: Loadings on PC1 of the term Xspecies : (a) Without pretreatment (b) by using

the projection orthogonally to the 5 first components of W.

content [7]. The peaks at 1728 nm and 1763 nm reveal a strong presence1

of fatty acids [28]. It’s known that Arabica beans has higher lipid content2

than Robusta ones [28]. The two species can be differentiated by the lipid3

content. A less important peak at 1212 nm also shows a difference in caffeine4

and carbohydrates. A negative plateau between 2070 nm and 2238 nm shows5

a difference in proteins and chlorogenic acids content.6

4.5. Impact of the number of spectra in W7

4.5.1. Number required for W8

In this study, W contains 24 spectra. This number is more than enough to9

describe the repeatability error. The impact of the number of observations10

on the structure of the subspace of W is studied using the RV coefficient11

between the matrices Jn and Jn−1 with n ranging from 4 to 24 spectra.12

Bootstrap is performed to check that the results are not due to the random13

selection of observations available.14

The graph 5 shows the evolution of the mean and standard deviation of15

this coefficient according to n. Mean values are higher than 0.90 for all the16
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Figure 5: Evolution of the mean (red circle) and the standard deviation (grey area) of the

RV coefficient between Jn and Jn−1 according to the number n of spectra contained in W

values of n. A plateau is visible with values close to 1 when n is greater than1

10. The standard deviation displayed is about 0.18 when n < 6 . When n2

increases (n > 11), standard deviation gradually decreases to values below3

0.01. For a given n, a high value of the standard deviation means that4

the RV coefficient varies according to the n-th spectrum added in W. The5

opposite is true, with a low standard deviation, the RV coefficient random6

varies slightly.7

For n < 8 , RV coefficients have low values meaning that the repeatability8

error is not correctly described. Additional observations must then be added.9

The increase of RV coefficient values with n is expected. Indeed, adding an10

observation has less impact in a dataset containing many observations. The11

plateau located from n = 10 shows that the structure of subspace W is12

stabilizing. From 10 observations, adding spectra in W does not provide13
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Figure 6: Explained variance of residuals according to number of projections and spectra

number

more information on the repeatability error.1

4.5.2. Impact on the selection of k2

In this study, repeated measures are used to construct the Xs matrix.3

This matrix is used to describe the repeatability error. The impact of the4

number of spectra used for Xs matrix and the number of components used5

for orthogonal projection on the explained variance of residuals is illustrated6

in Fig. 6. The variance decreases up to the 5th component for a spectra7

number ranging from 15 to 24 in Xs. The part of variance explained by the8

residuals is 37.31% and is 18.88% respectively for a number of 15 and 249

spectra in Xs. The fewer spectra in Xs, the greater residual variance. As a10

result, the repeatability error is then less described.11

The p-values for each factor are presented in Fig. 7 according to the12

number of spectra used for Xs matrix and the number of components used13

for orthogonal projection. For the species factor (Fig. 7a), reducing the14

number of spectra from 24 spectra to 15 does not have an impact on the15

significance even after projection because species is the predominant factor16
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(a) (b)

(c)

Figure 7: Impact of the spectra number in Xs and of the number k of components removed

on p-values obtained for (a) Species, (b) Roasting time, (c) Interaction; The surface in red

represents the value of 0.05 for the p-value.
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in terms of portion of variance explained. For the roasting time (Fig. 7b)1

and the interaction terms (Fig. 7c), the number of spectra in Xs and the2

number of components used for orthogonal projection affect the results of3

the permutation tests. As presented in Fig. 7b, the roasting time term is not4

significant after a projection orthogonal to the first five components of W5

when Xs contains less than or equal to 15 spectra. For the interaction term6

(Fig. 7c), significance may change depending on the number of spectra used7

to build Xs. Permutation tests may be strongly influenced when reducing the8

number of spectra in Xs. Here, to study the interaction term and the roasting9

time term, it is necessary to have at least 20 spectra in Xs. As a general,10

the number of observations must be sufficient to reduce the repeatability11

error. The more components to be removed, the higher the number of spectra12

required to be included in Xs.13

In the previous study [18], the Standard Normal Variate transform (SNV)14

[35] was used to reduce additive effects. This pretreatment is common in15

spectroscopy. It corrects the constant baselines over the whole dataset but16

SNV cannot correct non-constant (sloping or curving) baseline effects [36, 9].17

The advantage of the proposed method is to reduce the repeatability error18

with more accuracy. Based on the analysis of repeated measures, the com-19

ponents of the repeatability error contain non-constant (sloping or curving)20

baselines. Indeed, they reflect diffusion and absorption phenomena of both21

physical and chemical nature.22
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5. Conclusion1

In this study, a method to reduce the repeatability error (REP-ASCA)2

was tested on spectral data containing large repeatability error. Indeed, the3

interpretation of the factors through ASCA on such raw data (without correc-4

tion) could mislead to wrong conclusions. The loadings of factor components5

contain then only the information related to the repeatability error. It was6

also illustrated how the significance of the factors can be influenced by the7

nature of the repeatability error.8

The proposed method reduces these effects with the help of an additional9

set. The description of the repeatability error is then made through the study10

of repeated measurement introduced in the additional set. This description11

highlights the spectral regions related to the repeatability error. While re-12

peatability error description is carried out in the column-space, reducing this13

error is realized in the row-space.14

The choice of the number of components to be removed is done by study-15

ing the impact of projections orthogonally to these components on the various16

factors of the analysis of variance. Moreover, this choice can be improved by17

the inspection of the loadings of the main components of the repeatability18

error. While removing the error due to repeatability, the results obtained19

with REP-ASCA allow to highlight the spectral regions due to the factors of20

interest.21

REP-ASCA was tested on a dataset containing a repeatability error22

mainly caused by samples with highly variable physical specificities and as-23

sociated measurement errors (particle size, angle of view, etc). It would be24

interesting to apply REP-ASCA to another dataset containing other kinds of25
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repeatability errors. In addition to reducing repeatability error, REP-ASCA1

could remove other undesired effects (temporal effect, specific chemical con-2

tent) by incorporating other components related to these effects. Futhermore,3

the REP-ASCA methodology could correct any type of unwanted effects, pro-4

vided that the spectral subspace generated by these effects can be identified.5

A lot of methods can be used to carry out this identification [37].6

On the practical side, adding an additional set to reduce repeatability7

error may considerably reduce the number of repetitions per modality in the8

set for the analysis of variance. Using this method, acquisition protocols9

should include observations to describe these errors independently of the10

observations for analysis of variance. This is required to make the measures11

for the analysis of variance more robust. However, a sufficient number of12

observations should be kept to study the significance of the factors.13
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