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Abstract: Wildfire is known to create the pre-conditions leading to accelerated soil erosion.
Unfortunately, its occurrence is expected to increase with climate change. The objective of this
study was to assess the impacts of fire on runoff and soil erosion in a context of global change, and
to evaluate the effectiveness of mulching as a post-fire erosion mitigation measure. For this, the
long-term soil erosion model LandSoil was calibrated for a Mediterranean catchment in north-central
Portugal that burnt in 2011. LandSoil was then applied for a 20-year period to quantify the separate
and combined hydrological and erosion impacts of fire frequency and of post-fire mulching using four
plausible site-specific land use and management scenarios (S1. business-as-usual, S2. market-oriented,
S3. environmental protection and S4. sustainable trade-off) and an intermediate climate change
scenario Representative Concentration Pathway (RCP) 4.5 by 2050. The obtained results showed
that: (i) fire had a reduced impact on runoff generation in the studied catchment (<5%) but a marked
impact on sediment yield (SY) by about 30%; (ii) eucalypt intensification combined with climate
change and fires can increase SY by threefold and (iii) post-fire mulching, combined with riparian
vegetation maintenance/restoration and reduced tillage at the landscape level, was highly effective
to mitigate soil erosion under global change and associated, increased fire frequency (up to 50%
reduction). This study shows how field monitoring data can be combined with numerical erosion
modeling to segregate the prominent processes occurring in post forest fire conditions and find the best
management pathways to meet international goals on achieving land degradation neutrality (LDN).

Keywords: sediment yield; runoff; fire frequency; erosion control techniques; mulching; global change

1. Introduction

Erosion is a serious environmental problem worldwide including on-site effects (e.g., depletion in
soil organic carbon stocks and decline in agronomic yields) and off-site effects (e.g., non-point source
pollutions and reservoir siltation) [1]. Although it is a natural phenomenon, it can be exacerbated by
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climate change; fire and grazing [2] and is often accelerated by human activities [3]. The problem is
especially disruptive in the Mediterranean area where erosion rates measured at the outlet of river
basins of different sizes are high [4,5], especially because soils are usually thinner than in northern
Europe [6] but also because croplands of the Mediterranean have a predominance of fallow land and
lack of adoption of conservation practices [7]. The Mediterranean basin is very prone to erosion in
all its forms because of the climate, topography, soil characteristics and a very long history of human
presence and intense cultivation [8,9]. In addition, the occurrence of human-related forest fires affecting
thousands of hectares each year is also a significant problem in both the northern and southern areas
of the Mediterranean basin because wildfires have frequently been reported to produce strong and
sometimes extreme hydrological and erosion responses in recently burnt areas, especially during the
first few post-fire years [10,11].

Mediterranean-type ecosystems are particularly prone to fires, as the cool wet season is propitious
for vegetation growth and fuel production, while the summer dry season promotes the drying of fuel
and propitious conditions for fire occurrence and spread [12]. In the north-western Iberian Peninsula,
the more humid climate has favored the commercial plantation of fast-growing but fire-prone species
such as eucalypts and maritime pines, further exacerbating the wildfire problem [13]. Besides damaging
vegetation and leading to loss of life and property, fires have a large number of indirect impacts,
which may be more important in the long term, such as impacts on health through smoke inhalation;
disruptions of social functions such as road and air traffic or business closures; environmental impacts
in burned areas such as enhanced soil erosion, flooding and water contamination in and downstream
of burned areas and long-term disruption of social-ecological dynamics [14]. In the Mediterranean, the
enhancement of soil erosion in burned areas is particularly disruptive because, once the forest soils are
directly exposed to the water action, they can be rapidly degraded by post-fire erosion and associated
carbon and nutrient losses [15,16]. The export of fine sediments, associated with ashes and nutrients,
can also contaminate streams and impact aquatic ecosystems and human water resources [17–19].

Fires are strongly dependent on climate [12,20]. Therefore, climate change projections of warmer
and, in many fire-prone regions, drier climates indicate an increase of fire frequency and extend in
the Mediterranean [21] and other regions [22,23]. However, fires are also dependent on vegetation,
both in terms of potential vegetation growth and fuel production [12] and of changes to vegetation
distribution, caused by climate or socioeconomic changes [24,25]. The resulting changes in wildfire
regimes may lead to changes in their impacts, and requires an assessment of both the magnitude of
these changes and the effectiveness of existing measures to mitigate them. The impacts of wildfire on
soil fertility losses can often be effectively mitigated through soil conservation measures, especially
when applied as emergency post-fire interventions. These measures include the application of
organic residues to the soil surface (i.e., mulching, with straw or forest logging residues), log and
shrub barriers, infiltration enhancement through scarifying or plowing or re-seeding and ecological
restoration [17,26–29]. However, it is typically impractical to treat all burnt areas entirely, thus requiring
knowledge of the effectiveness of these measures under different fire and post-fire conditions [29–34].

The impact of fire frequency on post-fire hydrological and erosion response has not yet been fully
established for the forests of NW Iberia (Portugal and Spain) [35], and approaches to prioritize post-fire
recovery are not widely applied in practice, except in Galicia [34]. More knowledge is also needed
about the potential combined impacts of fires and global change on runoff and soil erosion, given the
potential to exacerbate the already damaging impacts of fires on land degradation. The objective of
this study was to assess the potential of soil conservation measures, including post-fire mulching, to
mitigate the impacts of global change in a Mediterranean forested catchment of NW Portugal.

To this end, the long-term soil erosion model LandSoil was first calibrated using
rainfall-runoff-erosion measurements on a catchment that burnt in 2011, and then applied over
a 20-year period to quantify the individual and combined impacts on runoff and sediment yield (SY)
of fire frequency (from no fire to two fires every 20 years), post-fire mulching and global change
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scenarios derived from four plausible land use and management scenarios under an intermediate
climate change scenario.

2. Material and Methods

2.1. Study Site Macieira

The study was carried out in the Macieira de Alcôba experimental watershed, of 96 ha, located
at an altitude of 470 m asl in the Caramulo mountain range of north-central Portugal (Figure 1).
The climate can be classified as humid Mediterranean (Csb in the Koppen-Geiger classification) with
annual precipitations ranging from 818 to 1294 mm (Pousadas rainfall station). About 70% of the
precipitation falls during autumn and winter. The average air temperature in winter is 8 ◦C, while
that in summer is 17 ◦C. Soils are shallow, mostly Luvisols and Cambisols, overlaying moderately
impermeable bedrock of schist and granite [15,19]. The Southern part of the watershed contains the
village surrounded by terraced agricultural fields with a rotation of maize in summer and pasture
in winter, irrigated year-round with the “águas da lima” system [19]. Until the 1930s, the watershed
was mainly occupied by agricultural fields on terraces and by shrublands on the steepest slopes; from
the 1930s to 1970s, there was a large-scale afforestation of shrublands and part of the agricultural
lands with Maritime Pine (Pinus pinaster); from the 1970s to present, afforestation with eucalypt
(Eucalyptus globulus) occurred [36]. Around the village and agricultural area, the forest is present on
slopes steeper than 5%. With a reliable map of burnt areas starting in the mid-1970s, major fires have
affected the region about once per decade [37].
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Figure 1. Location of Macieira de Alcoba, Portugal.

2.2. Data Collection

The Macieira watershed was monitored between 01 November 2010 and 30 September 2014, with
continuous measurements of rainfall and other climatic variables, and streamflow and water turbidity
at the outlet (Table 1). Observation showed that sediment exportation at the outlet is mainly due to
suspended material because bedload is negligible in this site [28]. A fire burned c. 10% of the watershed
on 11th August 2011, and about half of the burnt area was clear-cut and ploughed in February and
March 2012; therefore, the available data set included two periods: before the fire (2010–2011) and
after fire (2012–2014). Outlet data collection was complemented by a survey of linear erosion features
composed of rills and ephemeral gullies after major storms, which the resulting volumes of eroded soil
converted to mass using bulk density measurements. Furthermore, a characterization of soil texture,
depth, hydrological properties (water retention curve, saturated hydraulic conductivity and others),
roughness and shear strength, was carried out through a survey at 25 points within the catchment.
A more detailed description of data collection can be found in Nunes et al. (2018) [38].
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Table 1. Geomorpological and Hydrological Research Unit (HRU) characterization.

Characteristics Value

Altitude 440 to 620 m asl
Gravelius compactness coefficient 1.2

Average Slope 16%
Average channel slope 11%

Drainage density 2.4 km km−2

Landuse forest (60%), cropland (23%), terraced cropland (12%),
urban (5%)

Geology granite (lowland), schist (slopes)
Soil CMu (lowland), LPu (slopes)

2.3. Model Setup and Calibration Procedure

The LandSoil model (LandSoil: landscape design for soil conservation under land use and
climate change) is a spatial raster-based model for simulating water and tillage erosion and landscape
topography evolution over time spans on the orders of 10–100 years [39,40]. After simulating each
event, LandSoil recalculates the elevation raster. Soil surface properties control water infiltration, runoff

and sediment concentration for each grid-cell and rainfall event. As the result of water infiltration
balance, runoff is routed over the catchment using a D8 algorithm [41] integrating the upstream/upslope
cells contribution and the runoff generated within each cell. Linear landscape elements as ditches and
tillage rows are also used to impose preferential directions to the flow [42].

LandSoil can simulate both rill and inter-rill erosion processes. The first is based on factors such
as runoff friction and cohesion, topography (slope) and accumulated flow in an empirical relationship
with the observed rill sections [43]. The latter, responsible for the remobilization of the soil particles
detached by splash erosion, is controlled by the sediment concentration responding to rainfall intensity
and soil surface properties such as vegetation cover, soil roughness and soil crusting as declined in
expert rules issue of observations at parcel scale [44,45]. In LandSoil, sediment concentration is limited
by threshold functions combining local topography, including profile curvature (concavity > 0.055 m−l)
and slope gradient (<0.02 mm−), and land use/vegetation cover (>60%). Sediment concentration limits
the range from 2.5 to 10 gl−. Tillage erosion is simulated following the formulation of Govers et al.
(1994) [46], both contour and downslope were modeled in different fields with tillage transport
coefficients spanning from 111 to 139 kgm−g [47].

The implementation of LandSoil on the studied catchment was based on a 2 m resolution grid
based on a digital elevation model (DEM) derived from interpolating 1:10,000 contour lines using the
ridge line method [48]. The set-up for LandSoil modeling mainly consists on defining the monthly
calendars for soil roughness and crusting, vegetation cover, and tillage operation per land use based on
a field sampling campaign in 2010 to determine soil texture, chemistry and origin (Table 1, Tables S4–S9).
A digital elevation model (DEM) derived from interpolating 1:10,000 contour lines using the ridge
line method [48], at 25 m of spatial resolution has been used to represent the catchment topography.
In LandSoil, climate forcing is provided through a time series of precipitation events expressed through
the effective volume and duration of precipitation, previous precipitation over 48 h and maximum
precipitation over five minutes. The calibration of the model was made using events that occurred
during the four years monitoring period in a 2-steps procedure: first for runoff, and then for erosion.
Calibration for runoff consisted in manually adjusting the soil infiltration parameter. Calibration for
erosion consisted in manually adjusting the sediment concentration in runoff and the rill sections.
Parameters optimization was based on runoff and sediment exportation at the catchment outlet,
as well as field measurements of hydrological soil properties and rill distribution sizes. In LandSoil,
soil and land use parameters evolution are provided at a monthly base although simulations are made
at the event rainfall base. This choice is consistent with the objective of simulating runoff and erosion
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over time pans of more than 10 years as it ensures a good representativity of erosion at the catchment
scale [49].

All the events generating effective runoff and corresponding to a duration above 3 h, volume
above 40 mm and maximum 5-min intensity above 2 mm/h were selected and used in the calibration
process. This selection includes both pre- and post-fire events generating together about 90% of the
total measured soil erosion. Additionally, in order to inspect a priori the influence of the rainfall factors
on runoff and erosion, a regression analysis was performed to relate runoff and SY with rainfall volume,
antecedent rainfall, maximum intensity and duration of the event.

2.4. Climate and Fire-Related Scenarios

In this study, climate data were downloaded from the platform Medcordex.eu for both historical
(1986–2005) and future (2041–2060) periods. Only the intermediate Representative Concentration
Pathway (RCP) 4.5 climate emission scenario [50] was used because differences between RCP scenarios
by 2050 were very small. The Regional Climate Model (RCM) ALADIN was chosen in the Mediterranean
Agricultural Soils Conservation under global Change (MASCC) project; it was considered as a valid
climate model in the comparison of RCM by Fantini et al. (2018) [51]. A statistical downscaling based
on a quantile mapping approach was applied on the daily time rainfall series for bias correction, and a
temporal downscaling based on an analog approach was then applied to transform the daily rainfall
time series into five minutes’ time series. Thus, the 5-min time series have a real temporal structure as
a direct result of the observations.

Burnt area scenarios were calculated from climate scenarios according to Sousa et al. (2015) [21].
To this end, the annual burnt area in the region surrounding Macieira (the Águeda river basin) between
1990–2016 was calculated from Portuguese historical databases [13], and a multiple linear regression
was calculated with monthly rainfall anomalies, extreme fire weather (days with daily severity rating
(DSR) above the 90th percentile [52]) and fire history in the preceding years. Meteorological data was
taken from the ECMWF Re-Analysis [53]. While the agreement with observations was not very high
(r2 = 0.50), it was sufficient to provide a “best guess” of how much and when the burned area would
change for the climate scenarios. Burnt area scenarios under climate change were calculated using
rainfall and DSR projections, the latter with a correction for bias using an empirical quantile mapping
approach [54]. The estimated doubling of burnt area, reflecting an increase in fire frequency rather than
the size of the burnt areas, was more conservative than the three- to four-fold increase obtained with
the same methodology for northwestern Iberia [21]. The results for the Águeda were subsequently
downscaled for Macieira watershed, by assuming a doubling of fire frequency, from 1× to 2× every
20 years. Fire location was that of the 2011 fire, while the burnt area was the same in all scenarios,
except for S2 with 5% larger burn area due to the eucalypt stand in the southern part of the catchment
(Figure 2).

2.5. Land Use and Management Scenarios

Four narrative storylines and land use scenarios were used in this study (Figures 3 and 4,
Supplementary S1). For this, six local researchers working in different institutions of the Central Portugal
NUTS II region (where Macieira is located) were interviewed and completed a survey on writing
narrative scenario storylines for four contrasted socio-economics trajectories, initially, designated in
the MASCC project: S1 (business-as-usual), S2 (market-oriented), S3 (environmental protection) and S4
(sustainable) in the context of global change in the Caramulo region (Supplementary S1, Tables S1–S3).
The survey encompassed a table with future land use distribution, a table with allocation constraints
per land use, and a ranking exercise on post-fire soil management rated by local experts. The main
elements of the narratives of the four expert-based scenarios are shown in Figure 3.
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Figure 3. The four narrative land use scenarios elaborated under the MASCC project and used in
this study.
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Figure 4. Land use scenarios.

The current situation (S0) in Macieira is described as that of traditional agriculture (including
corn and grassland) that has gradually been abandoned for afforestation, especially with Eucalyptus
plantations that now occupy both abandoned agricultural areas and large areas of former pine forest
and shrubland (Figure 4). Orchards, although still marginal, are increasing in all our scenarios as being
a new profitable production system (berries). In all the scenarios, pine plantation decreases due to
low profitability and due to reported increased pests and diseases, while oak is re-introduced in the
environmental protection scenario (S3) and the sustainable scenario (S4) for biodiversity conservation
and increase in soil water holding capacity, with incentives from local associations and/or government.
In the S3 scenario, the maintenance and/or restoration of riparian vegetation is foreseen to capture
sediments along the stream (with vegetated strips), in combination with adoption of conservation
agriculture with lower tillage intensity. In S4, the same biodiversity and soil protection measures were
implemented as in S3 but to only half the extent. In S3 and S4, soil tillage was also adjusted to follow
contour lines.

As post-fire management, we selected application of mulch because it was suggested by
local-experts as the most cost-effective post-fire conservation measure in this region, which is consistent
with the findings of studies in the region [28,29,32,55] as well as in other parts of Iberian Peninsula [56,57].

2.6. Simulation Design

Model simulations concerned the period from 1986 to 2005 as well as a future period of 20 years
between 2041 and 2060. They included the simulation of the exhaustive time series of major rainfall
events, i.e., rainfall events with a mean lager than 40 mm. First, we assessed the impact of fire frequency
and mulch application on runoff and soil erosion (Table 2) and then we assessed the combined impacts
of land use and climate change scenarios, following the matrix in (Table 3).

Table 2. Impact of fire frequency and mulching on runoff and sediment yield (SY) on the baseline
scenario S0.

No Climate Change (noCC)

No fire
1 fire

1 fire + Mulch
2 fires

2 fires + Mulch
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Table 3. Impact of global change on runoff and sediment yield (SY).

No Climate Change
(noCC)

Climate Change (CC)
Including 1 Fire

Climate Change (CC)
Including 2 Fires

S0 Control

Period: 1986–2005
1 fire in 1995

Period: 2041–2060
1 fire in 2051

Period: 2041–2060
2 fires in 2042 and 2051

S1 Business as usual
S2 Market-oriented
S3 Environmental

protection
S4 Sustainable

2.7. Data Analysis

The impact of fire frequency, mulch application and changes in climate and land use and
management on runoff and erosion were analyzed by comparing the LANDSOIL simulations outputs
with R studio software Version 1.0.136. In this paper, three levels of fire frequency were tested
(i.e., 0, 1 and 2 fires every 20 years); two levels of mulch application (with or without application);
two levels of climate change (with or without) and five scenarios of land use and management (S0 to
S4). The simulation of the combinations of factors described in Tables 3 and 4 permitted to evaluate the
distinct and combined impacts of these factors for the 2041–2060 period compared to the 1986–2005
period. A period of 3 post-fire years was also used to analyze the direct impact of fire and related
contribution over 20 years. When there was no fire, we calculated the runoff and erosion produced
during the period when fire would have had occurred to be able to compare with the period with fire.
When two fires occurred, we calculated the runoff and SY that occurred two times: for three years after
each fire.

Table 4. Impact of fire frequency and mulch application on runoff and sediment yield (SY) over 20 years
(1986–2005). Control represents «S0 + 1 Fire» in 20 y, ii represents «no fire», iii represents «1 Fire
including post-fire mulch application», iv represents «2 Fires» and v represents «2 Fires including
post-fire mulch application». Relative values are in italics.

Cumulative
Runoff during

3 Post-Fire
Years (mm)

Cumulative
Runoff
(mm)

Relative
Contribution of

Fire Events *
to Runoff

SY during
3 Post-Fire

Years
(Mg ha−1)

SY (SY)
(Mg ha−1)

Relative
Contribution of

Fire Events *
to SY

Absolute
values

Control (S0 + 1 fire) (i) 299 1948 15% 0.27 0.63 43%
Control without fire (ii) 229 1878 12% 0.06 0.42 15%

Control + mulch (iii) 279 1927 14% 0.17 0.53 32%
2 fires (iv) 755 2042 37% 0.56 0.81 69%

2 fires + mulch (v) 710 1992 36% 0.34 0.59 58%

Relative
values (%)

Impact of preventing
fire occurrence (ii − i)/i −23% −3% −82% −33%

Impact of doubling fire
frequency (iv − i)/i 153% 5% 86% 28%

Impact of mulch if 1 fire
(iii − i)/i −7% −1% −35% −16%

Impact of mulch if 2
fires (v − iv)/iv −6% −2% −40% −28%

* Fire events represents the 3 years after the fire occurred.

3. Results

3.1. Variable Explaining Runoff and Sediment Yield in Macieira de Alcoba

Multiple linear regression analyses of event-wise runoff volumes (in m3) and SYs (in Mg) gave
satisfactory fits. This was especially true for runoff with an R2 of 0.85 as opposed to 0.58 for SY.
The best-fitting equations were:

Runo f f = 581.12× Pt− 97.28× PI30− 165.74× Pd + 213.34×AP48− 20354.82, (1)
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SY = 49.46× Pt− 18.55× PI30− 14.64× Pd + 131.97×AP48− 2964.59, (2)

where: Pt is rainfall volume (in mm), PI30 is the maximum 30-min rainfall intensity (in mm.h−1), Pd is
the duration of the rainfall event and AP48 is the amount of rainfall over the 48 h preceding the event.
The regressions results showed that rainfall and SY were explained best by Pt (p < 0.001), then by AP48
(p < 0.01) and less significantly Pd and PI30 (see Supplementary S1).

3.2. Calibration of Runoff and Sediment Yields Using the LandSoil Model (2010–2014)

The calibration results were obtained from creating two sets of infiltration rates according to the
rainfall events (pre-fire and 3 years of post-fire disturbance) and by creating two sets of erosion by
calibrating sediment concentration for diffuse erosion and rill dimension according to pre-fire conditions
and fire conditions (three years following fire event) based on the observed data. The calibration
of 30 events resulted in a satisfactory simulated runoff with R2 of 0.92 and R2 of 0.85 for simulated
SY (Figure 5). We observed a better performance of the simulated runoff and sediment yield in the
period post-fire than pre-fire however the period before fire had much lower values than after fire.
The averages and SD were similar in both periods and variables. The NSE has the total value of 0.91
for runoff and 0.86 for sediment yield (see Supplementary S9).
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3.3. Impact of Climate Change on Major Precipitation Events

Under the future climate conditions, the total number of major rainfall events over the 20-year
period was 5% higher than under present climate conditions. Furthermore, the cumulative rainfall
of these events was 7% higher under the future than present climate conditions (Figure 6 and
Supplementary S1). At the same time, rainfall duration and maximum intensity, as well as
antecedent rainfall, were between 15% and 30% higher under future climate conditions than under the
current situation.
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3.4. Impacts of Fire Frequency and Post-Fire Mulching on Erosion under Present Climate Conditions

Compared to the control scenario (one fire over the 20 years period 1986–2005), the scenario
without fire reduced runoff by 3% over 20 years and by 23% during the 3 years of post-fire disturbance
while the scenario with two fires increased runoff by 5% over 20 years and by 153% during the
2 × 3 years of post-fire disturbance (Table 4). In turn, post-fire mulching reduced runoff by 1% and 2%
in the case of one and two fires over 20 years, respectively and up to 7% during the post-fire period
only. Sediment yield was more strongly affected by fire frequency and post-fire erosion mitigation than
runoff. The scenario without fire decreased SY by 33% over the 20 year period (and by 82% during the
post-fire period only) compared to the control scenario, while the one with two fires increased it by 28%
over the 20 years and by 86% (during the post-fire period only). The scenarios involving post-fire mulch
application decreased SY by 16% and 28% in the case of one and two fires, respectively (and by 35% and
40% during the post-fire period only). While with one fire, the years of fire disturbance represents 15%
of the runoff generation, when doubling fire frequency, the two periods of fire disturbance generation
about 37% of runoff. Concerning SY, under the control situation, the fire disturbance period represents
43% of the SY but when fire frequency doubles, 69% of the sediments are produced during both fire
periods (six years out of 20). In the scenario without fire, we showed that during the 3 years when
fire would have occurred; only 12% and 15% of runoff and SY were respectively produced. Finally,
the contribution of interrill erosion to total erosion accounted for 1%–8% of the total erosion in all
the simulations.

3.5. Runoff and Sediment Yield Under Future Climate Conditions

Without changes in fire frequency, cumulative runoff under future climate conditions was 9%–21%
higher than under present climate conditions (Table 5, Figures 7 and 8). With a doubling of fire
frequency, the cumulative runoff was 13%–25% higher under the future than present climate conditions.
The impacts of changes in climate conditions, as well as fire frequency, were most pronounced in the
case of the business-as-usual (S1) and market-oriented scenarios (S2). Land use had reduced impacts
on runoff under present climate conditions (with differences of up to 3%, in the case of S2) but marked
impacts under future climate conditions, with runoff differences amounting to 11%–13% for the S3 and
S4 scenarios and to 22%–23% for the S1 and S2 scenarios.
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Table 5. Impact of fire frequency under land use and management and climate change on cumulative
runoff and sediment yield (SY) over 20 years. Runoff is in mm and sediment yield in Mg ha−1.
The impact is quantified as a percentage of change relative to the control. noCC represents no climate
change within the 1986–2005 period and CC represents climate change within the 2041–2060 period.

Parameter Runoff (mm) Sediment Yield (Mg ha−1)

Scenario S0 S1 S2 S3 S4 S0 S1 S2 S3 S4

Absolute
values

Control (noCC + 1 fire) (i) 2046 2064 2098 2029 2044 0.61 0.80 1.17 0.29 0.47
CC including 1 fire (ii) 2227 2489 2513 2262 2311 0.73 1.17 1.65 0.35 0.52

CC including 2 fires (iii) 2314 2576 2612 2340 2465 0.90 1.38 1.78 0.46 0.65

Relative
changes

Impact of CC if 1 fire
((ii) − (i))/(i) 9% 21% 20% 11% 13% 19% 45% 41% 21% 11%

Impact of CC if 2 fires
((iii) − (i))/(i) 13% 25% 24% 15% 21% 48% 73% 52% 59% 38%

Impact of fire under CC
((iii) − (ii))/(ii) 4% 3% 4% 3% 7% 23% 18% 8% 29% 12%

Impact of LU under present climate
conditions

(comparison of Sx − S0 /S0 for (i))
1% 3% −1% 0% 31% 92% −52% −23%

Impact of LU under CC
(comparison of Sx − S0 /S0 for (iii)) 11% 13% 1% 7% 53% 98% −49% −28%

Combined impact of LU + CC (with 2 fires)
(comparison of S1−S4 including CC (iii) to

S0 without CC)
13% 26% 28% 14% 20% 48% 126% 192% −25% 7%
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Figure 7. Cumulative sediment yield (SY) in Mg ha−1 vs. rainfall in mm between 1986 and 2005 with
one fire occurrence in 1995.
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Figure 8. Cumulative sediment yield (SY) in Mg ha−1 vs. rainfall in mm under climate change between
2041 and 2060 with two fire occurrences in 1941 and 1951.
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Concerning sediment yield (Table 5), we observed that the impact of climate change increased SY
from 11% (S4 scenario) up to 45% in the S1 scenario under one fire and the impact of increasing fire
frequency could increase SY up to 29%. Concerning the impact of land use, we observed high contrasts
between scenarios. Without climate change, SY increased from 32% in S1 up to 90% in S2 while we
observed a decrease in SY in S3 and S4, respectively by 52% and 21%. The combined impacts of climate
change and land use change show an increase of SY by 60% and 126% in S1 and S2 respectively and a
decrease by 22% and 47% in S4 and S3 respectively. Land use change and management have a strong
impact on SY with nearly a doubling of SY in S2 and a reduction by half in S3 scenario. Figure 9
shows the net cumulative erosion (soil loss) and deposition (soil gain) between 1986 and 2005 for the
S2 scenario. Three fields, including two burned fields, show the highest cumulative soil loss between 7
and 9 Mg ha−1, while the areas in the north of the catchment show net deposition probably coming
from the road located on the NW of the catchment. In Figure 10, the impact of increasing riparian
vegetation in S3 shows the impact of sediment deposition around the stream. Overall, we show that
the highest negative impact would be to change the landscape to mainly Eucalyptus plantations with
no conservative land management approaches (S2); while with sustainable management (S3) SY can
be reduced by half.
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4. Discussion

4.1. Application of LandSoil to Macieira

In our study, we found that the volume of rainfall during and 48 h before the fire event was the
most important climatic driver of the catchment-scale soil erosion. From these, rainfall volume had the
strongest correlation with erosion rates and this can be due to the humid Mediterranean climate in
Macieira de Alcoba, with usually bigger and longer events than in drier Mediterranean regions, and
concurs with the results of similar other studies in NW Iberia [58]. The calibration of the infiltration
rate, sediment concentration and rill dimension led to a good performance of LandSoil in representing
current runoff and SY. The only land use that had to be calibrated according to literature was the
re-introduction of oak forest, which leads in time to a higher soil water infiltration than Eucalypt [59]).
Performance of LandSoil might be improved with an extended field measurement dataset but this
would have required more field monitoring and probably another fire occurrence with a different
extent and location in the catchment.

4.2. Overall LandSoil Results

The model application to Macieira indicates that the impact of climate change is relatively low,
increasing runoff generation by 9% and sediment yield by 19%. Doubling fire frequency has low
impacts on runoff in the long-term, increasing by 5%, but larger impacts on SY, which increases by
28%. However, the model also shows the effectiveness of mulch application after fires on SY with
a reduction of 16%–28% with one and two fires respectively (and up to 40% reduction during the
post-fire disturbance period only). The application of mulch had a lesser impact on runoff than on SY
(up 2% reduction) over 20 years and up to 7% during the post-fire disturbance period. Finally, the
model indicates that land use change had the lowest impact on runoff, with changes between −1%
and 3%, but the largest impacts on SY, changing between −23% and 92%. These results show that
land use allocation and management was the most important factor impacting SY with a potential
exacerbation of fire and climate change impacts in the case of S1 and S2 scenarios and strong potential
of mitigation in S3 and S4 scenarios. In these latter scenarios, a large part of sediments was trapped in
riparian fields, therefore preventing sediments to reach the stream and outlet (Figure 10).

This decreased SY more than soil erosion; while this would not mitigate land degradation in
burned areas, it would limit stream contamination by ash transport after a fire event, which can have
significant impacts on water resources [19]. Compared to the modeling study by Nunes et al. (2018b),
our results showed less impact of fire on runoff and SY; while in Nunes et al. (2018a) [60] a ‘no fire
situation’ decreases SY by 2/3, in our case SY was decreased by 1/3. This could be due to the duration
of the calculated cumulative SY. In Nunes et al. (2018a, b), this is done for a 10-yr period as opposed to
for a 20 years period in this study. In fact, when our results were only compared during the three years
of post-fire disturbance, the efficiency of mulch application decreased runoff by 7% and SY by 40%.
Compared to Prats et al. (2019, 2012) where mulch application reduced runoff by 15%–25% and SY by
more than five times, our results were more conservative probably because our burnt field area only
represented 10% of the watershed area; while Prats et al. (2012, 2019) calculated SY at the field area
scale and they burned 100% of the area while in our case 10% of the catchment burned. Moreover, our
simulations ran over 20 years vs. 5–10 years in other studies [32,61].

Our study shows the low impact of mulch application on runoff generation. This could be
due to high soil water repellency in the eucalypt burnt forest. Soil water repellency also exists in
Eucalyptus forests and in a pre-fire situation due to preponderant ligneous root materials compared to
oak and pine trees [59,62]. However, soil water repellency has a limited impact on runoff generation,
in the early autumn [61]; and this is only important for patches since at the hillslope scale there are
always non-repellent zones where water can re-infiltrate [15]. The low impact of mulching on runoff

reduction is also probably due to the low total amount of runoff generation in both burnt and unburnt
eucalypt plantations, at least at the hillslope scale [15,37]. Finally, the risk of increasing floods remains
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relatively low compared to predicted extreme rainfall events [60] due to the low impact of fires on
runoff production.

Concerning sediment reduction caused by mulching, Shakesby et al. (1996) [63], showed that
Eucalyptus logging litter reduced soil erosion by 95%. The average reduction was five times in Prats et al.
(2019, 2012); it should be noted that, in the latter study, maximum erosion rates were lower than in our
study site. As previously said, the study site of Prats et al. (2012) also presents smaller temporal and
spatial scales. In our study, mulch could reduce SY by up to 40%, which was quite high considering that
fire only impacted roughly 10% of the watershed. We also suggest that these values vary with the type
and quantity of mulch that is applied, the soil type, the percentage of soil cover and the slope of the
site (Prats et al., 2014, 2012). Finally, Figures 5 and 6 show that erosion was mainly a raindrop-driven
process with the detachment of sediments in eucalypt forest and some tilled field. The highest levels
of soil loss occurred in the burnt field area and in one field with a slope above 10◦ in the S2 scenario
(about 7–8 Mg per parcel) and these three areas contribute to 37% of total soil loss in scenario S2
(Figures 7 and 8). The combined impact of fire on SY at the outlet and the spatial representation of
soil loss coming from burned areas show that erosion was mainly due to soil detachment rather than
transported by water to the outlet via sedimentation on the riparian field close to the stream and in
the terraces.

4.3. Distinct and Combined Impacts of Global Change and Fire Frequency

In light of future climate change, it is likely that fire frequency could increase in a context of
climate change and that doubling fire frequency might be conservative in our study when compared
with burned area projections for this region [21]. The land use scenarios might also impact fire
frequency and extent; for example, the increase of Eucalyptus plantation and intensification in S1 and
S2 might exacerbate the risk of fire occurrence and propagation, while in S3 and S4 the adoption of
crop diversification and protective land use and management should lead to lower risks of fires and
erosion. However, we did not take these differences into account because we wanted to have the
same number of fires in our land use scenarios so the specific impact of fire would be comparable.
In any case, our results show that fire frequency had a larger impact on soil erosion (up to 33% change)
than on runoff generation (up to 5% change). In addition, our results also show 43% of the erosion
was produced during 3 years after the fire event representing 15% of the duration of the simulation
(Table 4). This concurred with multiple studies, which showed that the indirect impacts of climate
change, such as associated changes to land use and fire occurrence can have larger impacts than those
of changes to climatic variables alone [9,64–66]. In the fire-prone forests of NW Iberia, efforts to limit
the impact of climate change on land degradation should, therefore, focus on fire prevention and
post-fire impact mitigation.

4.4. Status of Post Fire Measures Implementation

Our study shows the potential of using soil management measures to mitigate post-fire erosion in
NW Portugal with a mix of numerical modeling and field experiments. The biophysical effectiveness
of erosion control measures is well understood in NW Portugal [67,68]. Studies show the high
performance of mulching and erosion control barriers, and the lesser effectiveness of erosion control
measures such as post-fire seedling, which are more difficult to manage due to the time lag of seed
germination and the availability of native seeds [69]. However, there is currently only one study
calculating the costs of post-fire control erosion measures [68]. The benefits produced by controlling
overland runoff and SY with control erosion measures on hydrological services should be biophysically
and economically quantified so that implementation of erosion control measures can be communicated
at the science-policy management level [70]. For instance, the risk of water contamination must
be studied and costs of prevention (with erosion control measures) compared to the costs of water
treatment must be evaluated [18,60,71,72]. The same applies to the hydrological service of flood
regulation and enhanced water soil content and fertility with post-fire erosion control measures via
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increased soil organic matter, soil aggregate stability and nutrient availability [73]. For this work
to proceed, more studies are needed on the socio-economic aspects of fire prevention and post-fire
contamination control.

5. Conclusions

This study evaluated the potential impacts of global change and fire frequency on water runoff

and soil erosion. The novelty of this study lies with the assessment of global change with field and
landscape conservation management techniques such as application of mulch in post-fire conditions,
implementation of vegetated strips (or restoration of riparian vegetation) and decreased soil tillage on
water runoff and soil erosion. Our results show that the LandSoil model performed well for runoff

and SY compared to the observed data of 2010–2014 and that rainfall volumes (>40 mm) during and
48 h before fire occurrence are the main climate drivers of soil erosion before rainfall duration and
maximum intensity. With LandSoil we could test contrasted land use scenarios including Eucalyptus
intensification to show their potential risk of implementation under global change (up to +98% in SY in
the market-oriented (S2) scenario) while a conservation scenario including environmental protection
and afforestation of local species can decrease soil erosion by half. The application of mulching was
an effective tool against erosion (up to 28% with two fires in 20 years). Finally, preventing fire is also
a potential erosion mitigation tool with a decrease of 33% of soil erosion. Valuating hydrological
services of post-fire erosion measures would clarify the feasibility of implementation of these latter by
communicating the results within a science-policy interface in a context of the latest Intergovernmental
Panel on Climate Change (IPCC) recommendations on achieving climate change mitigation and land
degradation neutrality (LDN).
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