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ARTICLE
Genetics and Genomics

Nongenic cancer-risk SNPs affect oncogenes, tumour-
suppressor genes, and immune function
Maud Fagny1, John Platig2,3, Marieke Lydia Kuijjer4,5,6, Xihong Lin5 and John Quackenbush 2,4,5,7

BACKGROUND: Genome-wide association studies (GWASes) have identified many noncoding germline single-nucleotide
polymorphisms (SNPs) that are associated with an increased risk of developing cancer. However, how these SNPs affect cancer risk
is still largely unknown.
METHODS:We used a systems biology approach to analyse the regulatory role of cancer-risk SNPs in thirteen tissues. By using data
from the Genotype-Tissue Expression (GTEx) project, we performed an expression quantitative trait locus (eQTL) analysis. We
represented both significant cis- and trans-eQTLs as edges in tissue-specific eQTL bipartite networks.
RESULTS: Each tissue-specific eQTL network is organised into communities that group sets of SNPs and functionally related genes.
When mapping cancer-risk SNPs to these networks, we find that in each tissue, these SNPs are significantly overrepresented in
communities enriched for immune response processes, as well as tissue-specific functions. Moreover, cancer-risk SNPs are more
likely to be ‘cores’ of their communities, influencing the expression of many genes within the same biological processes. Finally,
cancer-risk SNPs preferentially target oncogenes and tumour-suppressor genes, suggesting that they may alter the expression of
these key cancer genes.
CONCLUSIONS: This approach provides a new way of understanding genetic effects on cancer risk and provides a biological
context for interpreting the results of GWAS cancer studies.

British Journal of Cancer (2020) 122:569–577; https://doi.org/10.1038/s41416-019-0614-3

BACKGROUND
Cancers often result from somatic mutations in oncogenes and
tumour suppressors, which frequently arise due to environmental
exposures such as UV light, tobacco, smoke or carcinogenic
chemicals.1–3 Hereditary cancers represent between 5 and 10% of
all cancers and are characterised by a family history of the disease,
a younger than usual age of onset and a higher likelihood of
primary cancers in multiple organs. They are often associated with
germline alterations in oncogenes or tumour-suppressor genes.4

But beyond these obvious cancer ‘drivers,’ it is widely recognised
that other genetic factors play a role in cancer development and
progression. Genome-wide association studies (GWASes) have
identified germline single-nucleotide polymorphisms (SNPs) that
are associated with altered cancer risk (‘cancer-risk SNPs’).
However, many SNPs identified through GWASes fall into non-
genic regions, making it difficult to interpret their biological role in
disease development, progression and response to therapy.5

The population frequency of a germline cancer-risk SNP is
generally anti-correlated with its effect, calculated as the relative
risk between people who carry the mutation and those who do
not.6 Although the functions of the small number of rare variants
with strong effects are well-studied, little is known about the

functions of the more common risk variants with small effects that
are present at intermediate frequency in the general population.
Amongst the SNPs in the GWAS catalog that pass the genome-
wide significance bar for association with an elevated risk for one
or more cancers, most have an odds ratio <1.3, and most fall
outside of genes (are located in ‘non-genic’ regions), suggesting
that they may play a role in the regulation of gene expression.6,7

Expression quantitative trait locus (eQTL) analysis tests for
associations between the genotype at a SNP locus and expression
levels of a gene, and an eQTL association can provide evidence for a
SNP’s regulatory role. Several studies have shown that SNPs
associated with traits and diseases in GWAS are enriched for eQTLs,
thus reinforcing the hypothesis that they may play a regulatory
role.8,9 A number of studies have also found that cancer-risk SNPs
influence gene expression levels.10–13 However, most germline
cancer-risk SNPs have not been biologically characterised, and their
functional impact in the general population is not known.
This gap in our understanding of cancer-risk SNPs may be due

to their inherent characteristics. In addition to their small effect on
the macroscopic phenotype (developing cancer), cancer-risk SNPs
also usually have small effects on the expression of individual
genes.14 Moreover, because many genes exhibit tissue-specific
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expression, it is difficult to characterise the regulatory role of
cancer-risk SNPs that target genes not expressed in the most
frequently studied tissues, such as whole blood.14,15 Finally,
because the transformation of a healthy cell into a cancer cell is
associated with many genomic and transcriptomic changes, we
cannot use the studies of tumour cells to investigate the effect of
the regulatory cancer-risk SNPs on pre-tumour cells.
New data sets can help shed light on the role of cancer-risk SNPs.

Large-scale studies, such as the Genotype-Tissue Expression (GTEx)
project, provide genomic and transcriptomic data from hundreds of
individuals and dozens of non-diseased tissues,16 thus allowing the
effects of cancer-risk SNPs to be assessed in multiple tissues,
including those in which their effects are most relevant.
In this study, we used a system biology approach to characterise

the regulatory role of germline cancer-risk SNPs in 13 different
tissues (Supplementary Table S1) by using data from the GTEx
project v6.0 . In each tissue, we performed an eQTL analysis and
represented both cis- and trans-eQTLs by using a bipartite
network. We then mapped both germline cancer-risk SNPs and
the oncogenes and tumour-suppressor genes to these networks
and used the properties of the networks to identify the biological
functions and pathways that cancer-risk SNPs affect.
We find that although cancer-risk SNPs are distributed across

the network, they are enriched in a small number of communities
associated with immune response and recognition of pathogens,
underscoring the importance of immune processes in cancer. In
particular, cancer-risk SNPs preferentially map to communities
enriched for genes belonging to the major histocompatibility
complex (MHC), indicating a potentially greater role for immune
processes in cancer risk than might have been expected. We also
find that cancer-risk SNPs are overrepresented among local
community hubs ('core SNPs'), by regulating multiple genes
involved in the same biological function both in cis and in trans.
Finally, we find that cancer-risk SNPs are preferentially located in
the promoters of oncogenes and tumour-suppressor genes, and
are more likely than expected by chance to influence the
expression level of these cancer-related genes. This analysis
demonstrates the power of using tissue-specific bipartite eQTL
networks as a framework to investigate how germline SNPs can
act coordinately to deregulate the expression of biological
functions and can lead to an increased risk of developing cancer.

METHODS
GTEx data preprocessing, filtering and merging
We downloaded NHGRI GTEx v6.0 imputed genotyping data and
RNA-seq data (phs000424.v6.p1, 2015-10-05 release) from dbGaP
(approved protocol #9112). The RNA-Seq data were preprocessed
by using Bioconductor R YARN package17 and normalised in a
tissue-aware manner by using smooth quantile normalisation
Bioconductor R qsmooth package.18 We identified and removed
GTEx-11ILO due to potential sex misannotation. We also filtered
out sex chromosomes and mitochondrial genes, retaining 29,242
genes. We excluded five sex-specific tissues (prostate, testis,
uterus, vagina and ovary) and grouped skin samples from the
lower leg (sun exposed) and from the suprapubic region (sun
unexposed) based on overall gene expression similarity between
these sites. For our analysis, we only considered tissues for which
we had both RNA-seq and imputed genotyping data for at least
200 individuals. Thirteen tissues met all criteria in preprocessing
and were used in subsequent analyses (Supplementary Table S1).
The RNA-seq and genotyping data were mapped by the GTEx

Consortium to GENCODE version 19, which was based on human
genome build GRCh37.p13 (Sept 2015). We performed principal
component analysis on the RNA-Seq data in each tissue, and
searched for potentially confounding metadata elements by
searching for those correlated with the first ten RNA-Seq principal
components. For all tissues, we accounted for the site where the

donor was recruited, the RNA extraction kit effects, the quality of
extracted RNA, the death place, the time interval between death
and start of the tissue sampling and whether or not the donor was
on a ventilator immediately prior to death by using the R limma
package.19

eQTL mapping and bipartite network construction
For eQTL analysis, we excluded SNPs from all analyses if they had
a call rate under 0.9 or a minor allele frequency <5% in any tissue.
A gene was considered expressed in a sample if its read count was
greater than or equal to 6. Genes that were expressed in fewer
than ten of the samples in a tissue were removed for the eQTL
analysis in that tissue. To correct for varying degrees of admixture
in the African-American subjects, we used the first three principal
components of the genotyping data provided by the GTEx
consortium and included these in our eQTL model.
We used the R MatrixEQTL package20 to calculate eQTLs with an

additive linear model that included age, sex and ethnic back-
ground, as well as the first three genotype PCs as covariates:

Expression � Genotypeþ Ageþ Sexþ Ethnic Backgroundþ PC1genet
þ PC2genet þ PC3genet þ ϵ

We tested for association between gene expression levels and
SNPs both in cis and trans, where we defined cis-SNPs as those
within 1 MB of the transcription start site of the gene based on
mapping by using Bioconductor R biomaRt package.21 P-values
were adjusted for multiple testing by using Benjamini–Hochberg
correction for cis- and trans-eQTLs separately and only those with
adjusted P-values < 0.2 were used in subsequent analyses.

Community identification
For each tissue, we represented the significant eQTLs as edges of a
bipartite network linking SNPs and gene nodes. For each network,
we focused our analyses on the giant-connected component, which
contained thousands of genes and tens of thousands of SNPs. Other
connected components were excluded from the analyses due to
their small size (each of them contained <50 genes and no more
than 2 communities). To identify highly connected communities of
SNPs and genes in the eQTL networks, we used the R condor
package,22 which maximises the bipartite modularity.23 As recursive
cluster identification and optimisation can be computationally slow,
we calculated an initial community structure assignment on the
weighted, gene-space projection, by using a fast unipartite
modularity maximisation algorithm24 available in the R igraph
package,25 then iteratively converged on a community structure
corresponding to a maximum bipartite modularity.
The bipartite modularity is defined in Eq. (1), where m is the

number of links in the network, eAij is the upper right block of the
network adjacency matrix (a binary matrix where a 1 represents a
connection between a SNP and a gene and 0 otherwise), ki is the
degree of SNP i, dj is the degree of gene j and Ci , Cj the
community indices of SNP i and gene j, respectively.

Q ¼ 1
m

X

i;j

eAij � kidj
m

� �

δðCi; CjÞ (1)

Cancer-risk SNPs
We downloaded the NHGRI-EBI GWAS catalogue (accessed 24 April
2017, version v1.0) from the EBI website (https://www.ebi.ac.uk/
gwas). We filtered associations with P-values > 5 ´ 10�8 and
extracted SNPs associated with a risk to develop cancer. We
mapped the remaining SNPs to the GTEx data. Specifically, we
determined LD blocks by using the plink2--blocks option with a
5MB maximum block size26 and other options set to default values,
which meant that two SNPs were considered in LD if the bottom of
the 90% D-prime confidence interval was >0.70, and the top of the
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confidence interval was at least 0.98. We considered all SNPs in the
same LD block as genome-wide significant cancer-risk SNPs.

Cancer genes
We used information from two databases, the Network of Cancer
Genes27 and the COSMIC census,28 to create a list of genes
commonly mutated in cancers, or ‘cancer genes’ (Supplementary
Table S2), including both oncogenes and tumour-suppressor
genes. We mapped these cancer genes to the GTEx eQTL
networks.
We tested whether cancer-risk SNPs are preferentially located in

the promoters of the cancer genes. We downloaded transcription
start site (TSS) positions for all genes present in the GTEx data
from the Ensembl database29,30 and defined the promoters as the
−750/+250-bp region around each TSS. We used Fisher’s exact
test to determine whether the cancer gene promoters were
enriched in cancer-risk SNPs. We used LD blocks rather than SNPs
in this analysis to correct for linkage disequilibrium.
We also tested whether cancer-risk SNPs are more frequently

associated with cancer genes than expected. In each network, we
computed the ‘cancer degree' for each SNP by counting the
number of significant cancer genes associated with each SNP
based on our eQTL analysis. We compared the cancer degree
distribution between cancer-risk and non-cancer-risk SNPs by
taking into account the global degree distribution using 106

resamplings. We used the Mann–Whitney U test and compared U-
values between the real and resampled data.

Identifying eQTL community enriched for cancer-risk SNPs
We tested eQTL communities for enrichment of cancer-risk SNPs
by using Fisher’s exact test. We defined cancer-risk LD blocks as
those blocks containing cancer-risk SNPs. In each network, and for
every cancer, we tested whether individual communities were
enriched for risk SNPs, by using the whole network as background.
To consider a community as enriched in cancer-risk SNPs, we used
a threshold of a minimum of four LD blocks in the community.

SNP core score calculation
We defined a SNP’s eQTL network core score as the SNP’s
contribution to the modularity of its network community. For SNP
i in community h, its core score, Qih, is defined by Eq. (2). To
normalise SNPs across communities, we accounted for community
membership in our downstream testing (Eqs. (3) and (4)), which
better accounts for community variation compared with the
normalisation method used in ref. 22

Qih ¼ 1
m

X

j

eAij � kidj
m

� �

δðCi; hÞδðCj ; hÞ (2)

Gene ontology functional category enrichment
We extracted the list of genes within each community in each
tissue-specific network, and used the R GOstat package31 to
perform a tissue-by-tissue analysis of the overrepresentation of
Gene Ontology Biological Processes terms within each community
enriched for cancer-risk SNPs. Our reference set consisted of all
the genes present in the corresponding tissue-specific network.
Communities were considered significantly enriched in a given
category if the FDR-adjusted P-value was <0:05.

Cancer-risk SNP core score analysis
We compared the distribution of SNP core scores between cancer-
associated SNPs fr and those not associated with traits or diseases
for each tissue-specific network by using a likelihood ratio test
(LRT). In our setting, the LRT assess whether a linear model that
includes cancer-risk status (Eq. (4)) fits the observed data better
than a linear model that does not include this variable (Eq. (3)). As
the distribution of SNP core scores (Qih) is not uniform across

communities, we added community identity as a covariate in the
linear regression. In Eqs. (3) and (4), Qih is the core score of SNP i in
community h, n the number of communities in the tissue.
IðGWAS ¼ 1Þ is an indicator function equal to 1 if the SNP is
associated with a higher risk to develop cancer in GWAS and equal
to 0 if it is not associated with any trait or diseases. SNPs
associated with traits or diseases other than risk to develop cancer
were filtered out. IðCk ¼ 1Þ is an indicator function equal to 1 if the
SNP belongs to community k and equal to 0 otherwise.

Qih �
X

n�1

k¼1

IðCk ¼ 1Þ þ ϵ (3)

Qih � IðGWAS ¼ 1Þ þ
X

n�1

k¼1

IðCk ¼ 1Þ þ ϵ (4)

To control for linkage disequilibrium between SNPs, we
extracted the median of Qih for cancer-risk SNPs and non-GWAS
SNPs for each LD block, and used these values as input in the
linear regressions.

RESULTS
Cancer-risk SNPs are located in noncoding regions
We defined a set of cancer-risk SNPs based on the NHGRI-EBI GWAS
catalogue (accession date: 2017-04-24); we extracted a set of 872
SNPs from 565 independent linkage disequilibrium (LD) blocks
associated (at genome-wide significance p � 5 ´ 10�8) with 135
unique traits and disease terms related to cancers, representing 41
cancer types (see Supplementary Table S3). Most of the cancer-risk
SNPs were associated with only one cancer type; only 6% were
associated with two or more cancers, and only 2% with more than
three cancers. In contrast, most cancer types (82%) were associated
with multiple independent SNPs, with the number of associated
independent SNPs ranging between 1 (B-cell non-Hodgkin lym-
phoma, cardiac gastric cancer, chronic myeloid leukaemia, menin-
gioma, non-melanoma skin cancer, small intestine neuroendocrine
tumour and sporadic pituitary adenoma) and 95 (prostate cancer).
When examining the genomic location of cancer-risk SNPs, we

found that their individual effect on the risk of developing cancer
was also generally small with over 99% of cancer-risk SNPs having
an odds ratio under 3. As observed for other traits and diseases,32

we found that only 9.7% of cancer-risk SNPs were exonic or splice
variant SNPs, 40% were intronic and the rest was annotated as
‘regulatory variant’ or ‘intergenic.’ The lack of a clear known
biological function based on SNP location suggests that many of
the remaining 91.3% may play a regulatory role. To support this
potential regulatory role, we found that 3.3% of cancer-risk SNPs
are falling within a gene promoter defined as −750/+250 bp
around a transcription start site (TSS), while only 0.9% of the non-
cancer-risk SNPs are located in promoters (resampling P-value
p � 10�6). Moreover, cancer-risk SNPs are generally located
nearby gene TSSs with 17.0% of them falling within 5 kb of a
TSS and 84.0% within 100 kb, while only 8.0% and 25.4% of non-
cancer-risk SNPs are located in these regions, respectively
(resampling P-values p � 10�6).

Cancer-risk SNPs regulate cancer-related biological functions
To characterise the biological functions of this large number of
small-effect, regulatory, cancer-risk SNPs, we performed a system-
based eQTL analysis by using genotyping and RNA-Seq data from
GTEx v6.0. After filtering and normalising the GTEx data, and
eliminating tissues for which there were fewer than 200 samples,
we were left with gene expression and genotype data for 13 tissues
(12 primary tissues and 1 cell line, see Supplementary Table S1). We
used MatrixeQTL,20 correcting for reported sex, age, ethnic back-
ground and the top three genotype principal components, to
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compute eQTLs in cis and trans, within a ±1- Mb window around
the genes (see the ‘Methods' section). We used the same GTEx gene
expression data and filtering steps as in our previous study,33 but
added correction for four potentially confounding factors that have
been shown to slightly impact the transcriptomic profile: the quality
of extracted RNA, the place of death (at the accident site, during
ambulance transfer, at hospital, etc.), the time interval between
death and start of the tissue sampling and whether or not the
donor was on a ventilator immediately prior to death. Despite these
differences, the eQTL results largely correlated to those obtained
previously (Spearman’s ρ ranging from 0.99 to 1 when calculated by
using β-values from the eQTL analysis, and from 0.89 to 0.94 when
calculated by using P-values), and all conclusions from the previous
papers were replicated.
For each of the thirteen tissues, we represented the significant

cis- and trans-eQTLs as a bipartite network, where nodes are either
SNPs or genes and edges are significant associations between
SNPs and genes.22,33 To increase the size of the greatest
connected component and because network centrality measures
are more sensitive to false-negative than to false-positive
edges,34,35 we relaxed the FDR cut-off and included all eQTLs
with FDR q-values under 0.2. We obtained thirteen tissue-specific
networks containing between 57,641 (ATA—aorta) and 431,036
(THY—thyroid) SNPs (median across all 13 tissues= 198,226),
corresponding to between 3550 and 34,016 LD blocks (median=
15,514) and between 1090 and 10,003 genes (median= 4820).
We used the R condor package22 in each of the thirteen eQTL

networks to identify communities, defined as groups of SNPs and
genes more densely connected to each other than would be
expected by chance (see the Methods section). The bipartite
modularity measures whether the network is structured in
communities in which genes and SNPs are more likely to be
linked to other members of their community than to the rest of
the network, ranging from 0.83 to 0.97 (median= 0.95). It
indicates that these networks are highly modular, with SNPs and
genes grouped in well-defined communities. In each of the
thirteen tissues, we found between 29 and 177 (median= 124)
communities. We then functionally annotated those communities
by testing for overrepresentation of genes annotated to Gene
Ontology (GO) biological processes36 (Supplementary Table S4).
We found that some communities were enriched for genes
involved in biological functions shared across the thirteen tissues
(immunity, gene expression regulation and rna metabolism), while

others were tissue-specific (such as heart muscle contraction in
heart left ventricle and smooth muscle contraction in oesophagus
muscularis, which is a smooth muscle). Gene Ontology enrichment
and network modularity are similar to those found in Fagny et al.33

We mapped the cancer-risk SNPs to the eQTL network for each of
the 13 tissues. Of the 872 cancer-risk SNPs, 582 were either an eQTL
or in strong linkage disequilibrium (r2 > 0:8, see Methods) with an
eQTL to at least one gene in at least 1 of the 13 tissues, confirming
the regulatory role of these SNPs. In 9 out of 13 tissues, these cancer-
risk eQTLs were slightly enriched for trans-eQTLs compared with the
non-cancer-risk eQTLs, with odds ratios ranging from 0.91 in the
heart left ventricle (Fisher test p ¼ 1:00) to 7.84 in thyroid (P=
9.51 × 10−49, Supplementary Table S5). Among these 582 cancer-risk
SNPs, 512 mapped to the network giant-connected component
(either directly or through membership in a strong LD block) in at
least one tissue. These SNPs map to communities that are associated
with a wide range of biological processes. Depending on the tissue,
between 21% (heart left ventricle) and 49% (lung) of communities
contain at least one cancer-risk SNP. However, most communities
contain only one or two cancer-risk SNPs (Table 1 and Fig. 1a). A
complete list of the cancer-risk SNPs mapping to the communities in
each of the 13 tissues and their corresponding Gene Ontology
Biological processes is provided in Supplementary Table S6. A
searchable version of these results is provided at http://
networkmedicine.org:3838/cancer_eqtl/.
We then tested each community in each tissue for enrichment

of cancer-risk SNPs. Because studies have shown that GWAS top
hits are not always causal SNPs, and that they often do not
correspond to the strongest eQTL hit, we included all SNPs in LD
with a cancer-risk SNP in our enrichment analyses. We pooled
SNPs from the same LD block and annotated them as cancer-risk
LD blocks or not cancer-risk LD blocks. We used these LD blocks
for all enrichment tests. By using Fisher’s exact test, we identified
2–8 (median= 4) communities in each tissue that were enriched
for cancer-risk SNPs (all cancers pooled together), and only a very
small number that were enriched for cancer-risk SNPs associated
with one particular type of cancer (Table 1). The details about
enrichment, odds ratios and P-values for each cancer type, each
community and each tissue are given in Supplementary Table S7.
We explored the functional consequences of cancer-risk SNPs

by testing whether communities enriched for these SNPs were
also enriched for genes annotated to GO biological process terms.
Across all tissues except tibial artery (ATA), we found that
communities with increased representation of cancer-risk SNPs

Table 1. Communities enriched in cancer-risk SNPs

Tissue Abbrev # Communities # With cancer risk SNPs # Enriched in cancer risk SNPsa # Enriched in 1+ cancer typeb

Adipose subcutaneous ADS 82 39 4 1

Aorta ATA 29 13 2 2

Artery tibial ATT 95 40 2 0

Fibroblast FIB 156 54 2 3

Oesophagus mucosa EMC 147 45 4 2

Oesophagus muscularis EMS 143 58 2 1

Heart left ventricle HRV 124 26 2 2

Lung LNG 35 17 4 1

Skeletal muscle SMU 86 33 3 1

Tibial nerve TNV 152 64 8 1

Skin SKN 163 71 4 3

Thyroid THY 177 77 6 2

Whole blood WBL 66 32 5 2

aIn this column, all cancer risk SNPs across all cancer types were pooled together under a “cancer risk” label before the enrichement analysis was performed.
bIn this column, each cancer type was analysed separately in each community. One community can be enriched for risk SNPs for multiple cancers
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contain genes enriched in functions linked to immunity, mainly
genes belonging to the major histocompatibility complex (MHC)
class I and II families, and that the majority of these immune-
related genes were cis-eQTLs with cancer-risk SNPs. An example of
the Gene Ontology enrichment of this shared community in whole
blood is presented in Fig. 1b. Other communities were enriched in
nonspecific biological processes like RNA metabolic processes and
DNA binding. Only two of the tissue-specific networks presented a
community enriched in both cancer-risk SNPs and tissue-specific
biological pathways: epithelium development in skin and cell–cell
adhesion in fibroblasts (Supplementary Table S4).

Cancer-risk SNPs are core SNPs in their communities
As shown previously, the communities in eQTL networks have a
characteristic structure, with local hubs, or ‘core SNPs,’ central
within their communities. Disease-associated SNPs found through
GWAS have been shown to map not only to communities with
relevant biological functions, but also to the cores of those
communities.22,33 As a measure of SNP centrality, we define a ‘core
score’ equal to the relative modularity contributed by a SNP to the
overall modularity of its community (see Eq. (2) in the Methods
section). We calculated core scores for all SNPs in the network and
compared the core score distribution of cancer-risk SNPs and SNPs
not associated with any trait or disease in GWAS. We found that
cancer-risk SNPs were enriched for higher core scores (Fig. 2a for
skin and Supplementary Fig. S1 for other tissues). This result is
consistent across tissues, indicating that germline cancer-risk
SNPs, being central to their communities, affect the expression of
many genes involved in coherent biological processes related to
cancer development and progression.
For example, SNP rs72699833 is a core SNP in skin community

147. This SNP is in LD with rs11249433, which has been associated
with an increased risk of breast cancer (Fig. 2b). By examining skin
community 147, we find enrichment for SNPs associated with
breast cancer (Supplementary Table S7) and for genes involved in
epithelium development (Supplementary Table S4 and Fig. 2c); as
breast cancer is an epithelial cancer, the association with skin is
not surprising. SNP rs72699833 is located on chromosome 1 and is
associated in cis with PHGDH, a gene involved in the metabolism
of serine that is overexpressed in some subtypes of breast,
cervical, colorectal and non-small-cell lung cancer, and in these
diseases generally associated with a poorer outcome.37–40

In addition, rs72699833 is associated through our eQTL analysis
in trans with five other genes: LAD1 on chromosome 1, COL17A1
on chromosome 10, KRT10 on chromosome 17, LGALS7B on
chromosome 19 and FERMT1 on chromosome 20 (Supplementary
Table S8). All of these genes are involved in epithelium
development and in particular with extracellular matrix (ECM)
secretion and cell–ECM interactions. Most of these genes have
been shown to be dysregulated in breast cancer or during
epithelial–mesenchymal transition. Indeed, LAD1 has been asso-
ciated with aggressive breast tumours,41 COL17A1 is under-
expressed in breast cancer and overexpressed in head and neck
squamous cell carcinoma, lung squamous cell carcinoma and lung
adenocarcinoma42 and FERMT1 is a known mediator of
epithelial–mesenchymal transition in colon cancer.43

Cancer-risk SNPs preferentially target cancer genes
We expected that cancer-risk SNPs might be preferentially
associated with genes known to be involved in cancer develop-
ment and progression. We assembled a catalogue of oncogenes
and tumour-suppressor genes ('cancer genes') by using databases
that included the Network Gene Cancer version 5.027 and the
COSMIC44 census (see Methods and Supplementary Table S2).
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We tested whether cancer-risk SNPs are more frequently
associated with cancer genes than other SNPs based on the eQTL
networks. We mapped cancer-risk SNPs to the giant-connected
component of each of the thirteen tissue-specific eQTL networks.
We then compared the number of cancer genes targeted by
cancer-risk SNPs and other SNPs, by taking into account linkage
disequilibrium and global degree distribution (the total number of
genes to which they were associated; see Methods). We showed
that cancer-risk SNPs were indeed more likely to target cancer
genes than expected by chance (p < 10�6 based on 1,000,000
resamplings) when studying all networks together (Fig. 3a); similar
results were found in each tissue-specific network (Supplementary
Fig. S2).
Finally, we tested whether the cancer-risk SNPs are located in

the promoters of genes known to be mutated in cancers. For
genes expressed in at least 1 of the 13 tissues, we mapped SNPs
with minor allele frequencies >5% to their promoters. We then
compared SNPs mapping to cancer and non-cancer genes. We
found that cancer-risk SNPs are not more likely than other SNPs to

fall in promoter regions of non-cancer genes, but cancer-risk SNPs
appear preferentially in the promoters of oncogenes and tumour-
suppressor genes (Fig. 3b, Supplementary Fig. S3).

DISCUSSION
It has long been known that both germline and somatic mutations
in oncogenes and tumour-suppressor genes drive development
and progression of cancer.45 However, we know that cancer has a
genetic component beyond these well-known ‘cancer drivers,’ and
that genetic factors can influence differences in the natural history
of cancer in individuals possessing the same somatic mutations.
Genome-wide association studies have analysed hundreds of
thousands of individuals to find genetic variants that are
associated with increased risk of developing cancer, but many
of these fall into intergenic regions and have no clear functional
association with cancer drivers. As a result, the functional link
between genetic risk and the mechanism of cancer development
has not been fully understood.
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By using the data from GTEx, we built bipartite eQTL networks
representing germline SNP–gene associations, including both cis-
and trans-acting eQTLs in 13 different tissues by using an
extension of a method we had used previously.33 When we
mapped germline cancer-risk SNPs to each of these networks, we
found that cancer-risk SNPs are associated with the expression
levels of oncogenes and tumour-suppressor genes at a far greater
rate than expected by chance. This indicates not only that
mutations in these cancer genes are important, but also that the
genetic control of these genes by regulatory variants plays an
important role. A natural assumption might be that cancer-risk
SNPs lie in the promoter regions of oncogenes and tumour-
suppressor genes, but many of the GWAS cancer-risk SNPs are
located outside of promoters, leaving the question of the
mechanism by which these variants exert their influence.
As we reported previously, SNP–gene eQTL networks are

organised into highly modular, regulatory communities that are
frequently enriched for genes carrying out distinct biological
functions. Consistent with our previous analysis of disease-
associated SNPs,22,33 we find that cancer-risk SNPs are over-
represented at the ‘cores' of individual communities, meaning that
those SNPs are at key positions in functional communities where
the cancer-risk SNPs can influence the expression of groups of
functionally related genes, thus exerting a substantial effect on
key biological processes.
Despite the observed concentration of GWAS SNPs in the core

of communities, we find that disease-associated germline SNPs in
cancer and chronic diseases are distributed differently across eQTL
network communities. In chronic obstructive pulmonary disease
(COPD), GWAS SNPs map to a small number of communities that
possess disease-relevant functions.22 In contrast, we find that
cancer-risk SNPs are distributed across a large number of
functionally diverse communities; this distribution is consistent
with our understanding that cancer is a systemic disease that
affects many different cellular processes.
When we search for communities with the greatest enrichment

of cancer-risk SNPs across all thirteen GTEx tissues, we find an
overrepresentation of these SNPs in communities enriched for
immune-related genes. In particular, cancer-risk SNPs are linked to
altered expression of MHC class I and II genes. MHC genes are
clustered on the p-arm of chromosome 6, and play a role in
recognising pathogen-infected and other types of modified cells
(including cancer cells) and in triggering the innate and adaptive
immune system. It is well known that the power of eQTL studies to
detect associations between genotype and gene expression
depends on the minor allele frequency.46,47 In this study, we used
the data from 13 tissues for which we had available matching
RNA-seq and genotyping data in 200 or more samples; the sample
sizes vary between 212 (HRV—heart left ventricle) and 378 sam-
ples (SKN—skin). Even the largest sample size does not allow us to
reach the maximum power of eQTL detection for alleles with
low–intermediate frequencies (0.1–0.2), and so our results are
likely to be enriched for high–intermediate-frequency alleles
(0.2–0.5). Because the MHC region is known to include many
SNPs with high minor allele frequencies,48 we may be over-
estimating the role of genes associated with cancer risk relative to
other loci. Further, the high recombination rate and high density
of SNPs and genes in the MHC region makes association studies
difficult. However, most of the eQTL associations in the region are
in cis, and some of these have been found in previous studies that
targeted the MHC region,49–51 lending support to our findings. By
modulating the expression of MHC genes, cancer-risk SNPs may
be modifying an individual’s immune response so as to interfere
with the elimination of mutated, pre-cancer cells. Indeed, those
eQTL-associated immune response genes belong to the MHC class
I and II regions that are known to be downregulated in most
cancer cells and affect genes that are targets for some of the
newest cancer therapies.52,53

In addition to the association with immune response observed in
all thirteen tissues, cancer-risk SNPs are overrepresented in other
functionally interesting communities. For example, SNPs have been
linked in GWASes to breast and epithelial cancer cluster in one eQTL
network community in the skin network, a community that is
enriched for genes linked to epithelium development and extra-
cellular matrix secretion. These and other examples suggest that the
distribution of these SNPs within and among communities provides
evidence for the functional significance of germline SNPs that are
associated with cancer risk and development. It is particularly notable
that while the cancer-risk SNPs that associate with gene expression
differ between tissues, those diverse SNPs are generally associated
through the eQTL network community structure with common
functions across tissues. This suggests that similar mechanisms,
moderated by tissue-specific expression, may be perturbed across
many cancers. This, in turn, may well point to common disease-
associated functions that could be targeted therapeutically.
Representing eQTLs by using a bipartite network in thirteen

tissues, we find that SNPs and genes are organised into
communities that reflect the genetic regulatory influence of SNPs
on functionally related groups of genes, as demonstrated by
GWAS annotation, gene ontology analyses and enrichment of
cancer-risk SNPs in the promoters of cancer genes. By mapping
disease-risk SNPs to these networks, we can develop hypotheses
about how these SNPs work both individually and collectively to
moderate risk and possibly enable disease development.
Our analysis identified significant regulatory roles for noncoding

SNPs acting in both cis and trans. Non-genic SNPs have long been
known to affect gene expression by altering transcription factor-
binding sites. We also know that non-genic variants outside of
promoter regions can influence gene expression by modifying long-
range chromatin interactions between distal cis-regulatory elements
known as enhancers and their target genes through modification of
3D chromatin folding.54 Our analysis suggests that the regulatory
effects of cancer-risk SNPs influence both cancer genes and other
genes that control processes associated with diverse processes,
including development and immune response. Indeed, long-range
regulatory effects altering enhancers have been shown to play a role
in obesity and Parkinson’s disease,55,56 and several examples of
altered interactions between enhancers and their target genes,
leading to oncogenesis, have been described.57

This study provides the first systematic analysis of eQTLs by using
network methods to explore the regulatory role of germline cancer-
risk SNPs. By mapping cancer-risk SNPs to bipartite networks built
from both cis- and trans-eQTLs in thirteen tissues, we show that
cancer-risk SNPs play a distinctive role in defining the structure of
such networks. Cancer-risk SNPs are associated not only with cancer
genes, but with many other genes associated with biological
functions that can be linked to cancer development and progres-
sion. The clustering of cancer-risk SNPs and relevant genes into
highly modular communities provides a framework into how these
SNPs moderate the risk of cancer development. While we tend to
think of cancer development in terms of drivers, our analysis
indicates that the effects of these drivers are likely moderated
through the interactions of those genes with regulatory variants that
can increase, or decrease, cancer risk.
It is worth noting that the approach we present here can also be

used to explore the functional roles played by other SNPs, linked
to disease or other processes through GWASes. While the analysis
of eQTL networks does not fully bridge the gap between
genotype and phenotype, it provides an explanatory framework
that can be used to further investigate the genetic risk of disease
and the synergistic effects of germline genetic variants.
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