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Abstract: Single nucleotide variants (SNVs) occurring in a protein coding gene may disrupt its
function in multiple ways. Predicting this disruption has been recognized as an important problem
in bioinformatics research. Many tools, hereafter p-tools, have been designed to perform these
predictions and many of them are now of common use in scientific research, even in clinical
applications. This highlights the importance of understanding the semantics of their outputs.
To shed light on this issue, two questions are formulated, (i) do p-tools provide similar predictions?
(inner consistency), and (ii) are these predictions consistent with the literature? (outer consistency).
To answer these, six p-tools are evaluated with exhaustive SNV datasets from the BRCA1 gene.
Two indices, called Kall and Kstrong , are proposed to quantify the inner consistency of pairs of p-tools
while the outer consistency is quantified by standard information retrieval metrics. While the inner
consistency analysis reveals that most of the p-tools are not consistent with each other, the outer
consistency analysis reveals they are characterized by a low prediction performance. Although this
result highlights the need of improving the prediction performance of individual p-tools, the inner
consistency results pave the way to the systematic design of truly diverse ensembles of p-tools that
can overcome the limitations of individual members.

Keywords: SNV; prediction tools; BRCA1 gene; consistency of tools; preference relations

1. Introduction

To fulfill its biological function under specific environmental conditions, such as the cellular
milieu, each protein must be folded into a defined three-dimensional structure, known as its native
structure. Structural modifications of proteins may result in partial or total loss of function, as in the
case of cystic fibrosis disease [1,2]. These modifications can also be harmful to the cell for reasons
not directly related to protein function, as in the case of Alzheimer’s, Parkinson’s, and Huntington’s
disease [3,4], where misfolded proteins bind together into aggregates that accumulate and are toxic for
the cell. One of the main factors underlying the conformation of a protein is the amino acid sequence.
A change in an individual nucleotide (also known as a single nucleotide variant or SNV) in a protein
coding gene may lead to an amino acid change. In this case, the SNV involves a non-synonymous
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substitution, called a missense mutation. In other cases, a SNV may produce a premature stop codon
leading to protein truncation, in what is known as a nonsense mutation.

Predicting the degree to which an SNV impacts protein function is an important and challenging
problem in bioinformatics research. The development of next generation sequencing technologies
has made it possible to detect thousands of missense SNVs in protein-coding genes [5]. Although the
wet-lab testing of these SNVs to determine their functional and physiological effects remains
unaffordable, it has been recognized [6] that the ability to discriminate between harmful and benign
mutations in silico could significantly reduce the set of SNVs warranting deeper studies.

Thus far, many bioinformatics tools, hereafter referred to as p-tools, have been developed to
predict the effect of SNVs in protein function as reviewed in [7]. In this regard, sequence conservation
analysis is one of the most commonly used strategies. Multiple sequence alignments allow the
identification of amino acids conserved through evolution. These amino acids are likely to be important
for protein function, so substitutions on these positions are expected to have severe impacts on protein
function, especially if the substitutions involve amino acids with different physico-chemical properties.
In addition, structural information is also used to infer the sites where amino acid substitutions are
more likely to have a negative impact on the protein function. Similarly, changes in amino acids
characterizing secondary structures are expected to severely impact protein function. It follows from
the foregoing that the degree to which SNVs impact protein function depends on the specific amino
acid change, its relative position within the protein, and the protein context.

We note, however, that the way p-tools perform and communicate predictions is highly variable,
even for those relying on conceptually similar third-party methods. So, even if p-tools prove to be
useful, which one should we use? One of the main problems that researchers bump into when trying
to compare p-tools is the interpretation of their outputs. Let us consider three well known instances:
Panther [8], Strum [9], and Polyphen2 [10]. Panther provides only a categorical output indicating the
possibility of a SNV being damaging, Strum provides only a numerical value indicating the change in
protein fold stability, and Polyphen2 provides a categorical output together with a probability value.

The variety of outputs make the task of comparing p-tools (i.e., for determining inner consistency)
tricky. To overcome this problem, a straightforward approach would be to transform all p-tool
outputs to a predefined common set of categories. For p-tools already including categorical outputs,
this means defining a convenient mapping between set of categories. On the other hand, for p-tools
involving just numerical outputs, convenient thresholds are required. This is the approach taken
in [11], where SNVs predictions from different p-tools are reclassified into three categories, namely,
unknown effect, neutral and possibly pathogenic, with the aim of evaluating their inner consistency.
However, these transformation-based approaches may not only reduce the information content of
p-tool outputs but may bias inner consistency results due to mapping and threshold dependencies.

Ideally, comparisons between p-tools should be performed without intermediary transformations,
despite differences in the output scales and in the ranges of their native categories. In this line of
research, we introduce two novel indices, called Kall and Kstrong, to assess the inner consistency of
p-tools. None of these requires the transformation of the p-tool outputs. They only require that the
p-tools assess the relative impact of SNV pairs, i.e., is mutation m less damaging than m′? The fraction
of SNV pairs receiving contradictory orderings is used to quantify the degree of disagreement between
pairs of p-tools and thus, their inner consistency. Briefly, the Kall index counts all type of disagreements
between p-tools while the Kstrong index only counts disagreements involving opposite predictions.
As a result, the Kall and Kstrong indices enable the systematic and intuitive comparison of p-tools.
Beyond inner consistency, it is desirable for predictions by p-tools to match the existing literature
results, i.e., to have good outer consistency. To assess outer consistency, p-tools were evaluated with
standard information retrieval metrics [12,13] including accuracy, precision, recall, the F1-score, and
the Matthews correlation coefficient (MCC).

Six p-tools using different information sources and prediction logic were selected based on their
popularity in the scientific community and the possibility of being executed online. The inner and outer
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consistency of the selected p-tools were evaluated against two particular datasets involving the breast cancer
type one susceptibility protein encoded by the BRCA1 gene. Both datasets comprise in vitro experiments
allowing the exhaustive screening of BRCA1 mutation effects [14]. The first dataset comprises roughly
4000 SNVs on 1792 nucleotide positions generated by means of the saturation genome editing (SGE)
technique [15] relying on the CRISPR-Cas9 technology.

The second dataset comprises 1056 amino acid mutations in the first 191 residues of the BRCA1
protein generated by means of site-saturation mutagenesis were the authors [16] perform a multiplex
homology-directed DNA repair assay designed to test whether homology-directed repair (HDR) [17] of
double-strand DNA breaks occurs in BRCA1 mutant cells. Due to its CRISPR-Cas9 foundation, the SGE
technique may induce multiple genetic mutations beyond the desired one. These undesired mutations
may compromise the viability of cells beyond the effect of the SNVs under study. As a result, conclusions
concerning the pathogenecity of BRCA1 SNVs drawn from SGE could, in principle, be biased. Fortunately,
this does not appear to be the case and the results reported in [15] are in good agreement with those reported
in [16], confirming the value of the SGE technique for performing high throughput studies into the effect
of SNVs.

From a computational point of view, the SGE technique provides exhaustive and unbiased SNV datasets
as every gene position can be tested for all possible mutations. In addition, site-saturation mutagenesis
allows the generation of exhaustive and unbiased single-amino acid mutagenesis datasets for the BRCA1
protein. Although only a fraction of these mutations are accessible by SNVs relevant to human disease,
the information content of the whole dataset is definitively higher and thus better for evaluation studies of
p-tools. On the whole, the availability of exhaustive and unbiased datasets of SNVs or mutated amino acids
remarkably simplifies and normalizes the evaluation of p-tools. To the best of our knowledge, the public
availability of SGE datasets is currently limited to the BRCA1 gene. This gene belongs to the ‘first wave’ of
susceptibility genes for common types of cancer [18]. Therefore, the identification of carriers of pathogenic
mutations in this gene is expected to be more impactful for cancer control.

2. Materials and Methods

2.1. P-Tools

The effect of SNVs on the functionality of the BRCA1 gene was assessed by means of the PolyPhen2 [10],
the Provean [19], the Align GVGD [20], the Strum [9], the Cupsat [21], and the Panther [8] prediction tools.
In all cases, except for PolyPhen2, in which we used the HumVar classification model (advanced options),
which was better suited for this study, their online version configured with default parameters were used.
For Cupsat predictions, the Protein Data Bank (PDB) file of BRCA1 was provided. Further details about the
selected p-tools can be found in the Appendix A.

2.2. Datasets

BRCA1-SGE dataset. The authors [15] studied the ability to grow haploid human cells in cell
cultures. Cells were edited by means of the CRISPR-Cas9 technology with a focus on every nucleotide
(saturation genome editing) of the BRCA1 gene in a region spanning 13 different exons known to
encode critical functional domains. The original study comprises nearly 4000 mutations belonging to
exons 2–5 and 15–23, including some adjacent intron sequence. Cultured cells that managed to survive
to gene editing were considered to hold a functional BRCA1 protein. The original dataset was filtered
to remove misleading SNVs classified as “Likely Benign” missense mutations. As a result, the final
dataset comprises 387 “pathogenic” missense SNVs (positive examples) and 1405 “benign” missense
ones (negative examples).

BRCA1-HDR dataset. The authors [16] performed a Multiplex Homology-Directed Repair Assay
with the aim of quantifying the effect of 1056 amino acid substitutions in the BRCA1 N terminus
comprising residues 2–192 known to include the ring domain in residues 7–98. As proper folding
of the RING domain is required for the stability and function of the full-length protein, the authors



Biomolecules 2020, 10, 475 4 of 14

analyze whether the mutated BRCA1 protein is able to maintain its DNA repair function in the
homology-directed repair (HDR) pathway using, in tissue culture, a green fluorescent protein (GFP)
based reporter assay [17] in which the functionality of BRCA1 can be detected by identifying
green-flourescent cells. The information about the impact of amino acid mutations on the HDR
pathway was depicted graphically using a color scale.

An in house R [22] script was used to convert the graphical information to a plain text format.
Based on the depletion scores (fluorescence drops respect to a subset of cells having a functional
GFP allele encoding an active protein) observed across four replicates of the multiplex HDR reporter
assay, mutations showing a depletion in none or just one replicate were considered “benign” (negative
examples). On the other hand, mutations showing a depletion state in at least three replicates were
considered “pathogenic”; mutations showing depletion states involving two replicates were discarded.
As a result, the final dataset comprises 59 “Pathogenic” variants (positive examples) and 977 “benign”
ones (negative examples).

As expected, both datasets turned out to be highly imbalanced with most of the mutations being
of the “benign” type. To quantify the degree of data imbalance, the relative gap G = #pathogenic−#benign

#mutations
between positive and negative examples was computed for each dataset. G values of −0.56 and −0.88
were observed for the BRCA1-SGE and BRCA1-HDR datasets, respectively.

2.3. Inner Consistency Analysis

The task of assessing the inner consistency of the p-tools faces the problem of the heterogeneity of
their outputs. It is not simply a problem of outputs involving different scales but of their semantic
meaning. Usually, p-tools provide categories to classify the impact of mutations on the functionality of
a gene. However, these categories are not equally distributed through their original numerical scales,
thus conversions made by the tools are not linear. Furthermore, different numerical scales are used,
from probabilities and free-energy values, to ad-hoc scores. Hence, normalization approaches do not
make sense. We note, however, that once categories are defined for a p-tool, they naturally induce
an internal ranking for numerical predictions. Given a pair of p-tools and a dataset of mutations,
the agreement between their internal rankings can be used to assess their inner consistency.

Under this baseline, we first considered the Kendall rank correlation coefficient (τ) [23] measuring
the ordinal association between two measured quantities. Briefly, given a pair of p-tools and a set of
target mutations, high values of τ are expected whenever target mutations receive similar ranks in both
tools. Formally, let M = {m1, m2, . . . , mi, . . . , mj, . . . , mn} be a set of mutations with n being the number
of mutation sites multiplied by the number of allowed mutations per site. Also, let tS(m) : M→ XS
denote the effect of mutation m predicted by a given p-tool S with XS be the most informative scale
provided by S. In addition, let ≺S ⊆ M × M be the less-damaging-than relation induced by S on
mutations mi and mj so that mi ≺S mj if tS(mi) < tS(mj), i < j ≤ n. Finally, to simplify the notation,
for any p-tool S, three orderings are possible for any pair of mutations mi and mj, namely, mi ≺ mj,
mi � mj, and mi ∼ mj, i < j ≤ n.

A concordant pair of predictions for p-tools S and P is accounted whenever mi � mj or mi ≺ mj
occurs for both S and P, i < j ≤ n. Conversely, a discordant pair of predictions is accounted for p-tools
S and P whenever mi � mj occurs for P(S) and mi ≺ mj occurs for S(P), i < j ≤ n. Alternatively, if
mi ∼ mj occurs for either S or P, a neither concordant nor discordant pair of predictions is accounted,
i < j ≤ n. Based on these considerations, the Kendall τ coefficient can be defined as follows:

τ = 1− (# concordant pairs)− (# discordant pairs)
(n

2)

P-tools with native numerical outputs provide convenient categorical outputs by the adoption of
sharp thresholds. This common practice may induce false concordant/discordant pairs in the Kendall
τ computation which misleads the comparison of p-tools. For example, let us consider [0, 0.4] being the
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support of the category label “Benign” with predictions in the [0, 1] range. Intuitively, prediction values
of 0.39 and 0.41 are so close that we may not use them to differentiate categories of mutation effects.
Hence, although the Kendall τ coefficient can be used with p-tools numerical outputs, its value for
measuring the inner consistency of p-tools raises some concerns.

Furthermore, the numerical outputs of p-tools may differ due to computational precision issues,
additionally inducing false concordant/discordant pairs in the Kendall τ computation that further
misleads the quantification of the inner consistency of p-tools. In brief, the Kendall τ coefficient
appears too “sensitive” to assess the inner consistency of p-tools with numerical outputs. To overcome
this problem, let us first define a convenient function rS(mi, mj) characterizing the specific ordering
assigned to mutations mi and mj, i < j ≤ n, by any p-tool S:

rS(mi, mj) =


1 if mi ≺S mj
−1 if mi �S mj

0 if mi ∼S mj

. (1)

We now introduce a novel index, called Kall , able to properly account for all different prediction
pairs issued by p-tools S and P:

Kall = 1−
|(mi, mj)rS(mi ,mj) 6=rP(mi ,mj)

|
(n

2)
. (2)

For p-tools involving native categorical outputs, category labels are ordered based on their
impact on gene functionality, e.g., for category labels {benign, possibly, probably}, the preference relation
benign ≺ possibly ≺ probably is assumed. On the other hand, for p-tools involving numerical outputs,
equality δ > 0 thresholds are required to avoid the false counting of either concordant or discordant
pairs. Let S be a p-tool with a numerical output and an equality threshold δS. Hence, the preference of
S on mutations mi and mj, i < j ≤ n, is defined as follows:

mi ≺S mj ⇐⇒ tS(mj)− tS(mi) > δS, δS ≥ 0.

Hence, mi ∼S mj ⇐⇒ |ts(mj)− ts(mi)| ≤ δS. Since p-tools generally involve different prediction
ranges, their thresholds must be set accordingly. In the absence of prior information, setting these
thresholds to some predefined percentage of their prediction ranges appears as a fair approach.
The problem becomes how to set that percentage. At first glance, the thresholds must be large enough
to avoid small prediction differences and numerical errors to induce discordant counts, but also small
enough to avoid the false counting of either concordant or discordant pairs.

To shed light on the percentage equality threshold trade-off problem, let us consider the mutations
mi and mj, i < j ≤ n, and the predictions issued by the tools S and P. Let us consider first the
case where mi ≺ mj holds for both tools. Also, let us define ∆S = |tS(mi) − tS(mj)| and ∆P =

|tP(mi)− tP(mj)|, ∆S < ∆P. If δ < ∆S, then mi ≺S mj and mi ≺P mj so that an agreement is counted
for Kall . However, if ∆S ≤ δ < ∆P, then mi ∼S mj and mi ≺P mj, so that a disagreement is counted for
Kall . However, if δ ≥ ∆P, then mi ∼S mj and mi ∼P mj, so that an agreement is counted for Kall again.

Similar counting arguments can be used to analyze the cases mj ≺S mi and mi ≺P mj. In all
cases, as the percentage equality threshold is increased from 0%. Kall first decreases and then increases
monotonically until the percentage equality threshold reaches 100%. All mutations then become
indistinguishable and Kall reaches its maximum value (1). To summarize, Kall does not show a
monotonic behavior with respect to the percentage equality threshold. Supplementary studies were
performed to asses the critical percentage equality threshold where Kall accomplishes its minimum.

Two independent datasets of mutations, namely, the DM-V dataset comprising reported mutations
of the Drosophila melanogaster vermilion (V) gene and the CHKV-E2 dataset comprising reported
mutations of the Chikongunya virus E2 gene, were used to evaluate the Kall index with respect to
increasing values of the percentage equality threshold. All p-tools were analyzed except Panther as



Biomolecules 2020, 10, 475 6 of 14

this only provides a categorical output. As a result (see Figure 1), the percentage equality threshold
was set to 5%, with an intermediate value between 0% (no threshold) and that value where (∼10%)
Kall falls to its minimum.
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Figure 1. Threshold analysis. (left) DM-V dataset and (right) CHKV-E2 dataset.

Users of p-tools might be additionally interested in the identification of pairs of p-tools showing
not only a considerable proportion of disagreements but a particular form of them, that involving
opposite predictions, i.e., mi ≺S mj and mj ≺P mi. In this case, the Kstrong index can be used:

Kstrong = 1−
|(mi, mj)rS(mi ,mj) 6=0∧ rS(mi ,mj)=−rP(mi ,mj)

|
(n

2)
. (3)

While the Kall index measures the proportion of pairs of predictions for which conflicting orderings
are observed, the Kstrong index focuses only on extreme conflicting orderings. In practice, users
might use the Kall index for the identification of similar p-tools looking for Kall values close to one.
Conversely, users might use the Kstrong index for the identification of different p-tools looking for Kstrong

values close to zero. Beyond these considerations, the ranges and the directions of Kstrong and Kall are
similar so that values closed to 1 indicate that pair of p-tools are likely to order all pairs of mutations
in a similar way, while values closed to 0 indicate they are likely to order them differently. Similar
counting arguments to those used with the Kall index, can be used to asses the effect of percentage
equality thresholds on the Kstrong index. Differently from Kall , a monotonic decreasing behaviour is
observed for Kstrong for increasing values of the percentage equality threshold. However, since we
expect that Kstrong only dissects the inner consistency information already provided by its more general
Kall counterpart, practical Kstrong evaluations were performed with the percentage equality threshold
derived from Kall independent studies (5%).

Users of Kall and Kstrong are generally interested in the evaluation of inner consistency aspects
of p-tools predictions. In this regard, both Kall and Kstrong rely on the consistency of preferences
exhibited by pairs of p-tools across pairs of mutations. However, consistent preferences might hide
quite different mutation effects. Without loss of generality, let us assume a common output scale
for the p-tools S and P, and let us consider the mutations mi and mj, i < j ≤ n. In addition, let us
assume pairs of predictions tS(mi) = 0.11 and tS(mj) = 0.12 issued by S, and tP(mi) = 0.91 and
tS(mj) = 0.92 issued by P, so that rS(mi, mj) = rP(mi, mj) = 1 holds. Although both S and P predict
that mi is less damaging than mj, the pairs of predictions are in opposite ranges of the scale and involve
quite different effects: While mi and mj might be benign according to S, they are both pathogenic
according to P. This toy example points out that inner consistency measurements between pairs of
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p-tools may require the evaluation of multiple aspects, from the consistency of pairwise preferences to
the consistency of the semantics behind individual predictions.

Aiming to shed light on the semantic aspect of p-tools inner consistency measurements, the
Spearman’s rank correlation coefficient was considered. Briefly, the Spearman’s correlation [24]
between two variables equals the Pearson’s correlation between the rank values of the two variables.
However, while the Pearson’s correlation assesses only linear relationships, the Spearman’s correlation
assesses general monotonic relationships, whether linear or not. For n distinct mutations, Spearman’s
rank (ρs) correlation coefficient is associated to predictions issued by p-tools S and P can be computed
using the following popular formula:

ρs = 1−
6 ∗∑ d2

i
n ∗ (n2 − 1)

(4)

where di is the difference between the ranks assigned to the i-th mutation by S and P, i ≤ n. In the
case of identical predictions, the average value of their ascending ranking positions is used. Although
correlation coefficients are intended to measure the “strength of pairwise relationships”, they might be
confused by unclear rankings like those induced by p-tools with numerical outputs. On the other hand,
although neither the Kall nor the Kstrong indices consider the absolute position of p-tool predictions,
i.e., their semantic aspect, they are not confused by small differences in numerical prediction values
due to the introduction of the equality threshold for preference relationships. As a result, both Kall and
Kstrong are good candidates for making productive evaluations of p-tools inner consistency aspects.

2.4. Outer Consistency Analysis

Standard information retrieval metrics including the accuracy, the precision, the recall, the F1-score, and
the Matthews correlation coefficient (MCC) were considered to evaluate the outer consistency of p-tools:

accuracy =
TP + TN

TP + TN + FP + FN
(5)

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F1-score =
2TP

2TP + FP + FN
(8)

MCC =
TP ∗ TN − FN ∗ FP√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)
(9)

where TP, TN, FP, and FN stand for the number of true positive, true negative, false positive, and
false negative predictions respectively. It is worth noting that special care should be taken with the
above metrics when analyzing highly imbalanced datasets like those induced in experiments involving
the high throughput screening of genetic mutations. Fortunately, the human being is a highly robust
system, thus we expect most of the SNVs to be negative examples (benign mutations). Therefore,
the accuracy is not a good metric for measuring the outer consistency of p-tools as a naive predictor
set to predict only TN mutations would achieve a very high accuracy. On the other hand, the precision
metric is useful to measure the proportion of mutations predicted as positive examples that were
indeed TP predictions (pathogenic mutations).

Similarly, the recall metric is useful to measure the proportion of positive examples that were
indeed TP predictions, with respect to the ground truth for positive examples. Both the precision
and recall metrics disregard TN predictions. There is also often an inverse relationship between the
precision and recall metrics so that it is possible to increase one of them at the expense of reducing
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the other; the F1-score, originally defined for document classification problems where TN predictions
also do not matter, is defined as the harmonic mean of the precision and recall metrics. Finally, the
MCC is a statistic robust to differences in the proportion of negative and positive examples that can be
more appropriate than the F1-score when negative examples matter is some way. The MCC is called
a correlation coefficient because it is −1 when predictions are completely wrong, 1 when they are
completely correct, and 0 when they are not better than random predictions.

In order to analyze the outer consistency of p-tools, their outputs were binarized. Align GVGD
predictions in “C0” and “C15” classes were considered negative examples (benign) and predictions in
the “C45”, “C55”, “C65” classes were considered positive ones (pathogenic). Similarly, Provean
predictions in the “Neutral” class were considered negative examples and predictions in the
“Deleterious” class were considered positive ones. On the other hand, Panther predictions in the
“Benign” class were considered negative examples and predictions in the “Damaging” class were
considered positive ones. For Strum and Cupsat, predictions with ∆∆G >= 0 were considered
negatives examples, while predictions with ∆∆G < 0 were considered positive ones. Finally, Polyphen2
predictions in the “Benign” class were considered negative examples and predictions in the “Probably”
class were considered positive ones. In all the cases, p-tool predictions involving intermediate
categories were disregarded for the outer consistency analysis.

3. Results and Discussion

3.1. Inner Consistency Results

Inner consistency measurements accomplished by means of the Kall and Kstrong indices are shown
in Tables 1 and 2, respectively. The most “similar” and the most “different” p-tools identified by
the Kall and the Kstrong indices respectively, are highlighted in bold. Based on Kall , the Provean and
Align GVGD are the most similar p-tools. Based on Kstrong, the Polyphen2 and Align GVGD are
the most different p-tools. As expected, Kstrong achieve larger values than Kall ; this is reasonable as
Kstrong only considers opposite preference relationships. The P-tools abbreviations are: Provean (Prov),
Align GVGD (Gvgd), Cupsatd (Cupd) , Cupsatt (Cupt), Panther (Pthr), and Strum (Strm).

Table 1. The inner consistency between pairs of p-tools measured by the Kall index, set to
work with a 5% percentage equality threshold. The elements above the diagonal correspond to
the BRCA1-SGE dataset while the elements below it correspond to the BRCA1-HDR dataset.
The P-tools abbreviations are: Polyphen(Pph2), Provean (Prov), Align GVGD (Gvgd), Cupsatd
(Cupd) , Cupsatt (Cupt), Panther (Pthr), and Strum (Strm).

Pph2 Prov Gvgd Cupd Cupt Pthr Strm

Pph2 0.46 0.45 0.23 0.33 0.40 0.42
Prov 0.47 0.62 0.29 0.36 0.39 0.47
Gvgd 0.42 0.52 0.24 0.33 0.30 0.45
Cupd 0.28 0.36 0.28 0.39 0.40 0.32
Cupt 0.28 0.34 0.28 0.42 0.41 0.41
Pthr 0.37 0.46 0.29 0.39 0.43 0.41
Strm 0.39 0.44 0.41 0.31 0.38 0.47

In addition, Table 3 shows the inner consistency measurements accomplished by the Spearman’s
correlation coefficient. These results show that many of the p-tools are poorly correlated. In principle,
this may be attributed to differences in the semantic of predictions in each p-tool scale and/or the
sensitivity of the Spearman’s correlation coefficient to p-tools with numerical outputs. For both the
BRCA1-SGE and BRCA1-HDR datasets, the most correlated p-tools are Provean and Align GVGD,
whose correlation coefficients are highlighted in bold. This is reasonable as both p-tools use sequence
alignments to predict the effect of mutations.
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Table 2. The inner consistency between pairs of p-tools measured by the Kstrong index set to
work with a 5% percentage equality threshold. The elements above the diagonal correspond to
the BRCA1-SGE dataset while the elements below it correspond to the BRCA1-HDR dataset.

Pph2 Prov Gvgd Cupd Cupt Pthr Strm

Pph2 0.77 0.70 0.82 0.79 0.88 0.72
Prov 0.81 0.89 0.85 0.82 0.89 0.82
Gvgd 0.67 0.85 0.83 0.79 0.80 0.74
Cupd 0.81 0.84 0.80 0.86 0.89 0.83
Ccupt 0.78 0.85 0.79 0.89 0.90 0.86
Pthr 0.90 0.95 0.84 0.90 0.92 0.93
Strm 0.76 0.85 0.79 0.77 0.85 0.94

Table 3. The inner consistency results for Spearman’s correlation coefficient. The elements
above the diagonal correspond to the BRCA1-SGE dataset while the elements below it
correspond to the BRCA1-HDR dataset.

Pph2 Prov Gvgd Cupd Cupt Pthr Strm

Pph2 0.31 0.20 0.03 0.00 0.34 0.18
Prov 0.41 0.68 0.07 0.07 0.28 0.34
Gvgd 0.12 0.50 0.01 0.00 0.07 0.25
Cupd −0.03 0.01 −0.03 −0.19 −0.02 −0.10
Cupt −0.02 −0.04 −0.07 −0.07 0.09 0.27
Pthr 0.35 0.45 0.09 0.08 −0.03 0.41
Strm 0.19 0.32 0.24 −0.08 0.07 0.38

To shed light on the type of inner consistency information that Kall and Kstrong are able to provide,
we analyzed them against the Spearman’s correlation coefficient. In Figure 2, Kall and Spearman
appear related to each other in some degree. We note, however, that while both Cupsatt and Cupsatd
are poorly correlated with almost all the other p-tools according to Spearman, they are close to many
other p-tools according to Kall . On the other hand, both Kall and Spearman show that Provean and
Align GVGD are highly correlated. Finally, Figure 3 shows that Kstrong and Spearman are clearly
uncorrelated. Remarkably, while Kstrong identifies Polyphen2 and Align GVGD as the most different
p-tools, Spearman identifies Cupsatd and Cupsatt as the most negatively correlated ones. Although
the Kstrong result makes sense since Polyphen2 and Align GVGD use different learning strategies
and information sources, the Spearman result does not make sense since Cupsatd and Cupsatt are
variations of the same algorithm (Cupsat) on the same information source.

Spearman

−0.2 0.0 0.2 0.4 0.6

0
.2

0
.3

0
.4

0
.5

0
.6

Figure 2. Kall vs. Spearman for the BRCA1-SGE (left) and BRCA1-HDR (right) datasets. The
top-right rectangles point out the most correlated p-toleftols. The bottom-left rectangles point out
the Cupsatt/d correlations.
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Figure 3. Kstrong vs. Spearman for the BRCA1-SGE (left) and BRCA1-HDR (right) datasets. The bottom
rectangles point out the less correlated p-tools according to Kstrong.

3.2. Outer Consistency

The measurement of p-tools outer consistency is shown in Table 4. Only the information about
TP and TN predictions is shown together with the MCC and F1-score statistics. Accuracy, precision,
and recall metrics are shown in Appendix A.

Table 4. The outer consistency of p-tools.

BRCA1-SGE BRCA1-HDR

Tools TP (#387) TN (#1405) MCC F1-score TP (#59) TN (#977) MCC F1-score

Pph2 115 871 0.25 0.41 12 555 0.17 0.20
Prov 3 1404 0.06 0.02 0 977 0.00 0.00
Gvgd 343 198 0.16 0.42 55 21 0.01 0.11
Cupd 111 1031 0.07 0.28 25 195 0.19 0.37
Cupt 305 393 0.08 0.38 50 71 0.12 0.35
Pthr 319 803 0.33 0.49 51 723 0.31 0.28
Strm 114 111 0.19 0.41 56 244 0.11 0.13

The BRCA1-SGE dataset has a rather imbalanced distribution of positive and negative samples
(G = −0.56). Three of the p-tools, Align GVGD, Cupsatt, and Panther, correctly predict more than
78% of the positive examples (TP). However, only Panther reasonably predicts negative ones (57%).
We note, however, that the three p-tools also introduce many false positive predictions (see Appendix B).
Based on the MCC and the F1-score, we can say that the best compromise in the prediction performance is
achieved by Panther. The BRCA1-HDR dataset is highly imbalanced (G = −0.88). For this dataset, four
of the p-tools, Align GVGD, Cupsatt, Panther, and Strum, correctly predict most of the positive examples
(TP). However, only Panther reasonably predicts negative ones (74%). Based on the MCC and the F1-score,
none of the p-tools achieved an acceptable prediction performance. This may be due to many false positive
predictions (300 on average) with only 59 TP (see Appendix A). Provean does not predict any mutations as
positive, making the F1-score and MCC equal to 0. On the whole, Panther achieves the best compromise
in prediction performance for the considered p-tools on average. However, its prediction performance
remains poor. Finally, our results show that although most of the mutations reported for the BRCA1 gene
are of the benign type, p-tools tend to classify them as pathogenic from the observed high rates of false
positive predictions.
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4. Conclusions

A number of bioinformatics tools have been developed to predict the impact of SNVs on the
functionality of protein coding genes. The stronger the agreement between tools that use different
prediction approaches and independent sources of information, the greater the confidence we can
have in their predictions. Evaluating the level of confidence is particularly important when predictions
are used to guide experimental research studies or clinical decisions. In this paper, a computational
framework for evaluating the confidence of six tools that predict the impact of SNVs on protein
coding genes has been presented. With this aim, two indices called Kall and Kstrong have been
introduced. The proposed indices can evaluate the consistency of predictions issued by different
tools (inner consistency) without requiring the specific understanding of their outputs. Using these
indices, the most similar and most different prediction tools can be identified. As a result, these indices
can help to accelerate the understanding of new prediction tools. Last, these indices can help to design
truly diverse ensembles of prediction tools, a fundamental requirement for improving the confidence
of individual members of the ensemble.

Inner consistency studies were complemented with outer consistency studies focusing on the
extent to which predictions matched the experimental results reported in literature. Without loss of
generality, experimental data involving the high throughput screening of genetic mutations on the
BRCA1 gene were considered. The outer consistency studies confirmed the importance of selecting
suitable information retrieval metrics since reference datasets are expected to be highly imbalanced.
In general, the prediction performance of the tools was rather low with a clear trend towards the
introduction of false positive predictions. On the whole, our results highlight the importance of
understanding the intrinsic limitations of tools dealing with the prediction of SNV effects on protein
coding genes.
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Appendix A. P-Tools Main Features

PolyPhen-2 http://genetics.bwh.harvard.edu/pph2/-(Polymorphism Phenotyping v2) is a
software tool for predicting the possible impact of an amino acid substitution on the structure and
function of a human protein. It is based on a number of sequence, phylogenetic, and structural
features characterizing the substitution. Predictions are performed by a naïve Bayesian classifier.
The sequence-based features include position-specific independent Count (PSIC) scores, multiple
sequence alignment (MSA) properties, and the position of mutations with respect to domain boundaries
as defined by Pfam [25]. The structure-based features include solvent accessibility, changes in
solvent accessibility for buried residues, and crystallographic B-factor. Two pair of datasets, namely
HumDiv and HumVar, can be used for the generation of the corresponding classification models.
The default classification model uses HumDiv data and is preferred for evaluating rare alleles,
dense mapping of regions identified by genome-wide association studies, and analysis of natural
selection. The HumVar classification model is better suited for the diagnostics of Mendelian diseases
which require distinguishing mutations with drastic effects from all the remaining human variations,
including abundant mildly deleterious alleles.

http://genetics.bwh.harvard.edu/pph2/
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The PolyPhen-2 output is a table with a classifier label of the type benign/possible damaging/
probably damaging, a classifier probability of the mutations being damaging, a classifier model
False Positive Rate (1-specificity) at the above probability, and a classifier model True Positive Rate
(sensitivity) at the above probability. In this work, the probabilities of the mutations being damaging
were considered for the inner consistency analysis and a binarization of categorical outputs was used
for the outer consistency analysis. In both studies, the HumVar classification model was selected.

Provean http://sift.jcvi.org/-(Protein Variation Effect Analyzer v1.1.3) is a software tool for
predicting whether an amino acid substitution has an impact on the biological function of a human or
mouse protein. It is based on the change, caused by a given variation, in the similarity of the query
sequence to a set of its related protein sequences. For this prediction, the algorithm is required to
compute a semi-global pairwise sequence alignment score between the query sequence and each of the
related sequences. This alignment-based score measures the change in sequence similarity of a query
sequence to a protein sequence homolog before and after the introduction of an amino acid variation
to the query sequence. The output prediction information of this tool is a table with a prediction
label column and a score column. If the score is equal to or below a predefined threshold (e.g., −2.5),
the protein variant is predicted to have a “deleterious” effect. If the score is above the threshold,
the variant is predicted to have a “neutral” effect.

Align GVGD http://agvgd.hci.utah.edu/-(Grantham Variation and Grantham Deviation) is
a software tool that combines the biophysical characteristics of amino acids and protein multiple
sequence alignments to predict where missense substitutions in genes of interest fall in a spectrum
from enriched deleterious to enriched neutral. The output prediction information of this tool is a
table with a score column that represents an extension of the Grantham difference, to score missense
substitutions against the range of variations present at their position in a multiple sequence alignment
and a categorical column with seven classes ordered from most likely to interfere with function
to least likely.

Strum https://zhanglab.ccmb.med.umich.edu/STRUM/-(Structure based Prediction of Protein
Stability Changes Upon Single-point Mutation) is a software tool for predicting the fold stability change
(∆∆G) of protein molecules upon single-point mutations. Strum adopts a gradient boosting regression
approach to train the Gibbs free-energy changes on a variety of features at different levels of sequence
and structure properties. The unique characteristic of Strum is the combination of sequence profiles
with low-resolution structure models from protein structure prediction, which helps to enhance the
robustness and accuracy of the method and make it applicable to various protein sequences, including
those without experimental structures. The output prediction information of this tool is a column with
the ∆∆G value of each mutation.

Cupsat http://cupsat.tu-bs.de-(Cologne University Protein Stability Analysis Tool) is a software
tool for predicting changes in protein stability upon point mutations. It uses structural environment
specific atom potentials and torsion angle potentials to predict ∆∆G, the difference in free energy of
unfolding between wild-type and mutant proteins. To improve accuracy and specificity of predictions,
the mutations and mean-force potentials were classified according to different structural regions.
Initially, the secondary structure specificity of mutations and mean-force potentials was implemented and
the amino acids were classified into helices, sheets, and others. Later, the amino acids belonging to each
of these secondary structure elements were further subdivided according to their solvent accessibility.

This method requires the primary and secondary structure information (PDB file) and can be run
with two different experimental methods: thermal and denaturants, referred as Cupsatt and Cupsatd
within the manuscript, respectively. The output prediction information is a table with a categorical
column indicating the overall stability of the mutation (Stabilising or Destabilising), a categorical
column with the torsion information of the mutation (Favourable or Unfavourable) and a numerical
column of the Predicted ∆∆G (kcal/mol) value. The numerical information was used in our analysis.
Some amino acids of the BRCA1 structure were not present in the PDB file used (ID: 1jm7 and 4y2g)
and therefore were not considered in the comparisons.

http://sift.jcvi.org/
http://agvgd.hci.utah.edu/
https://zhanglab.ccmb.med.umich.edu/STRUM/
http://cupsat.tu-bs.de


Biomolecules 2020, 10, 475 13 of 14

Panther http://www.pantherdb.org/-(Protein Analysis Through Evolutionary Relationships
v15.0) is a software tool that calculates substitution position-specific evolutionary conservation
(subPSEC) scores based on alignments of evolutionary related proteins to predict the pathogenicity.
The alignments are obtained from the PANTHER library of protein families based on Hidden Markov
Models (HMMs). The subPSEC score describes the amino acid probabilities, and in particular, positions
among evolutionary related sequences. The output prediction information of this tools is a categorical
column indicating whether the mutation may or may not affect the functionality of the protein.

Appendix B. Outer Consistency

Table A1. The outer consistency results for the BRCA1-SGE dataset.

Tools Acc. Prec. Recall MCC F1-Score

Pph2 0.75 0.38 0.44 0.25 0.41
Prov 0.79 0.75 0.01 0.06 0.02
Gvgd 0.36 0.27 0.96 0.16 0.42
Cupd 0.67 0.28 0.29 0.07 0.28
Cupt 0.41 0.25 0.29 0.08 0.38
Pthr 0.63 0.35 0.82 0.33 0.49
Strm 0.40 0.26 0.93 0.19 0.41

Table A2. The outer consistency results for the BRCA1-HDR dataset.

Tools Acc. Prec. Recall MCC F1-Score

Pph2 0.86 0.14 0.39 0.17 0.20
Prov 0.94 0.00 0.00 0.00 0.00
Gvgd 0.08 0.06 0.98 0.01 0.11
Cupd 0.72 0.32 0.37 0.19 0.37
Cupt 0.40 0.22 0.85 0.12 0.35
Pthr 0.75 0.17 0.85 0.31 0.28
Strm 0.07 0.07 0.95 0.11 0.13
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