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Abstract

Crops are often subject to intense attacks by pests and diseases. Among them, Maize Lethal Necrosis
(MLN) is a serious disease that impact maize crops in many Southern countries. It results from the
synergistic interaction of two plant viruses, transmitted by two vectors. In this paper, we develop a
general crop-vector-borne disease deterministic model for synergistic co-infection, with a particular focus
on MLN disease. A theoretical analysis shows that different thresholds exists that drive the dynamics of
the system: the well known basic reproduction numbers and also invasion reproduction numbers. The
latter are essential for the emergence or not of the MLN disease. After a global sensitivity analysis, we
illustrate our results through numerical simulations and discuss potential control methods such as vector
control and roguing.

Keywords: vector-borne plant disease, co-infection, synergistic interaction, invasion reproduction
number, sensitivity analysis, numerical simulations

1. Introduction

Plants, wild and domestic, are subject to diseases. Understanding and controlling of plant diseases
is of critical importance for reliable food production. There are wide ranging examples of devastating
plant diseases preceding the earliest writings (see [1] and references there in). For example, the Bible and
other early writings mention diseases such as rusts, mildews and blights. More recent disease outbreaks
with far-reaching consequences include the late blight of potato in Ireland (1845 -1860), powdery mildew
of grapes in France (1851), Southern corn leaf blight in Africa (1990 - present), and many others. In
addition to climate change and lack of investment in farming, plant diseases cause major food insecurity
throughout the world. The Food and Agriculture Organisation estimates that pests and diseases are
responsible for about 25% of crop loss. These loses may result in hunger and starvation, especially in
less-developed countries. However, disease control in crops is generally successful. Among other methods,
disease control can be achieved by using disease resistant or non-susceptible plants, crop rotation, use of
pathogen free seeds, control of moisture levels, pesticides, etc.

Plant diseases generally involve interaction between multiple pathogens and the complexities are not
captured in single host-single disease systems. In particular, co-infection is the infection of a multiple
pathogen species to a single host that may be the causative of distinct diseases or variants of the same
parasite [2]. In humans/animal hosts, mixed virus infections are relatively infrequent and are generally
associated with depression of the immune system. In plant hosts, interactions between viruses can result
in synergism, antagonism, coexistence, mutualism, cooperation or a neutral interaction, see for example
[3, 4]. In plant diseases, the level of damage on the plant will depend on the outcome of the interactions
and the host response. Advances in the study of host-pathogen dynamics suggests co-infection can lead
to several outcomes. These include, competitive exclusion where over time one pathogen outcompetes
the other, mutualistic coexistence where both pathogens benefit from the interaction, or emergence of
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new recombined, and more damaging epidemic. Several examples of synergistic interaction are given in
[3], but here we focus on the Maize Lethal Necrosis case.

Maize, rice and wheat are the three most widely grown crops around the world, in particular, in
developing countries. Maize alone contributes to at least 30% of the food calories to more than 4.5 billion
people in 94 developing countries and it plays a crucial role in the livelihoods of millions of small scale
farmers [5]. For instance, in 2017, the area harvested in Africa was around 40 million hectare (ha) and
produced around 8.04 million tons. In Southern Africa alone, the area harvested was around 2.9 million ha
and produced around 1.07 million tons [6]. Although maize is the basis for food security in the majority of
countries in Africa, the yield has drastically decreased over the years due to several factors, including high
incidence of diseases, pests and weeds. Diseases that have threatened corn production in Sub-Saharan
Africa include Maize Streak Virus (MSV), and Parasitic Weed Striga [5]. In 2011, a devastating disease of
maize, the Maize Lethal Necrosis Disease (MLND), also called Corn Lethal Necrosis Disease (CLND), see
for instance, [7, 8], was first reported on the African continent in Kenya. The disease affected almost all
commercial varieties causing a loss ranging between 30-100% depending on the severity of the disease and
the time of infection [9]. In 2012, just in Kenya alone, the MLND affected around 77 000 ha, translating
into an estimated loss of US$52 million [10, 7].

MLND is caused by a synergistic interaction between Maize Chlorotic Mottle Virus (MCMV) and
one of several viruses from the Potyviridae family [11]. MLND was first reported in Kansas (USA), as a
synergism interaction of MCMV and either Maize Dwarf Mosaic Virus (MDMV) or Wheat Streak Mosaic
Virus (WSMV), and later in Nebraska [12, 13]. In 2011, MLND was reported in China as a synergism
interaction between MCMV and Sugarcane Mozaic Virus (SCMV) [14]. In Africa, the first outbreak of
MLND was reported in Kenya [10], and was associated with potyvirus SCMV and later in Rwanda [15],
Uganda, Tanzania [9] and Ethiopia [9]. There are other viruses in the family Potyviridae that cause
MLND in co-infection with MCMV, including, MDMV and Johnsongrass Mosaic Virus (JGMV) [16].
Among these Potyvirus, SCMV is the most predominant [9]. MCMV is the primary virus that drives
MLND, [7]. The natural host of MCMV is maize, however there is a broad range of plants serving as
reservoir of MCMV including sugarcane and finger millet [9]. The above clearly shows the complex nature
of MLND.

MCMV outbreak was reported from the Southern Rift Valley of Kenya in 2011 [10]. Maize infected
with MCMV show an array of symptoms ranging from mild chlorosis mottling to severe mosaic and
stunting, yellowing necrosis and premature plant death [7]. However, as reported in [11], it is not clear
whether this symptoms are due to MCMV infection alone, or in co-infection with another virus, or stress.
MCMV co-infection with potyvirus is a synergism, that is, the disease progression and symptoms are
greater in maize infected with MCMV and potyvirus. For instance, in [17] it was reported that the
concentration of MCMV were 1.9 – 11 fold higher in maize infected with MCMV and potyvirus than in
singly infected maize. Maize infected with SCMV shows symptoms similar to those by MCMV: mosaic,
chlorosis and stunting in maize. Symptoms can be bright or muted depending on environment and time
of infection [11, 7]. There are a number of vectors transmitting MCMV. For instance, beetles [18], flower
thrips [19], and maize thrips [19, 7]. In this work, for the sake of simplicity, we focus on maize thrips
(Frankliniella Williamsi) that transmit MCMV in a semi-persistent manner [19]. In Eastern Africa,
thrips have been observed in high densities in fields affected by MLND and MCMV, even several years
prior to the first report of MLN, [7, 10]. Although the range of vectors transmitting MCMV in Africa is
not known, thrips have been observed in all fields where maize has been grown, including in MLND- and
SCMV-affected regions [9], which suggest that they play a major role on MCMV transmission in Africa.
MCMV can also be transmitted via seed from MCMV-infected maize [20] or soil from MCMV-affected
fields [7]. In this work, we will not consider these transmission routes. However, seed transmission can be
considered implicitly through the initial conditions, thus assuming that maize crop is initially infected by
MCMV. Taking into account soil transmission would require additional compartments, see for example
the work [21]

Aphids species are the vectors for maize-infecting members of the genus potyvirus. For instance,
MDMV and SCMV are transmitted by a number of hosts including Rhopalosiphum maidis, Rhopalosi-
phum padi, Myzus persicae, Schizaphis graminum, in a non persistent manner, which means that the
vectors acquires the virus within seconds of feeding on maize and not retained for more than a few hours
with no report of latent period [22]. Aphids are widely distributed and seem to be abundant in regions
where maize is grown, including East Africa. Apart from other potyvirus, WSMV is transmitted by the
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virus Wheat Curl Mite in a semi persistent manner [23]. However, WSMV has not been reported in East
Africa. SCMV can also be transmitted via seed [24] and soil [7].

Mathematical models of plant-virus and plant-vectors-virus have played an important role on guiding
research direction and improving understanding across the characteristic spatio-temporal scales of plants
virus epidemic and, in some cases, led to the direct application in disease control [25, 26, 1]. There are
several mathematical models formulated to study co-infection in humans/animals, particularly, HIV/TB
[27, 28], HIV/Malaria [29], and many others [30]. However, very few models have been proposed to
study co-infection in plants/crops. For co-infection in plants/crops, we highlight the work [2], where the
authors proposed a deterministic model to investigate some of the general principles of epidemiological
plant diseases caused by helper dependent virus complex. In [3], the authors proposed a model in which
transmission loss rates are due to the different viruses - including possibilities of co-infection. Also, in a
very recent work, the authors in [31] studied a crop co-infection model with one vector.

The only MLND co-infection mathematical models we are familiar with were proposed in [32], where
the spread of MLND within and between growing seasons of maize was modeled. The authors considered
the local transmission through vectors, seed and infested sources of inoculum in the soil. However, in
their model, the vectors dynamics is implicitly modeled, such that the vector borne transmissions within
a field depends on the densities of infected and uninfected plants. In their work, control strategies such
as clean seeds, insecticides, crop rotation and roguing were proposed. More recently, the authors in [33]
proposed a general epidemiological model for one vector specie and one plant specie with co-infection in
the host. Contrary to the models proposed in [32, 33], in this work we formulate a two vector species
(aphids transmitting SCMV and thrips transmitting MCMV) and one host plant specie (maize) model
that allows co-infection of the host.

The rest of the paper is organized as follows. In the following section we will formulate a generic
synergistic co-infection vector-borne model, applied to the MLN system. The mathematical analysis of
the model is given in Section 3. The Type/Invasion Reproduction numbers are derived in this section
and we show permanence of the model. Parameter estimation, global sensitivity analysis and numerical
simulations that support the theory are given in Section 4, where also we discuss the usefulness of different
control strategies. The last section gives some concluding remarks.

2. Model formulation

Our model is intended to be as generic as possible so that it can be applied to different co-infection
systems, like co-infections with MCMV and any other potyvirus [3]. However, for sake of clarity and
taking into account the predominance of potyvirus, e.g., SCMV implicated in MLND in Africa, we
consider the SCMV as one example of potyvirus. Therefore, motivated by the work [32], we model the
dynamics of MCMV and SCMV within a single growing season and we focus only on the transmission
through vectors. Potyvirus, and so is SCMV, are transmitted by aphids in a non-persistent manner
and there are approximately 25 aphids species that vector SCMV [34, 9, 35]. There are several insects
that vector MCMV and these include several species of beetles [18] and thrips [9] in a semi-persistent
manner. However, according to [9], thrips have been observed in all fields where maize has grown
including MCMV-affected field. A thrip (aphid) is infected by the MCMV (SCMV) virus after feeding on
an infected maize plant. Therefore, we assume, for simplicity that the thrips are the vectors transmitting
MCMV. For convenience, we refer to MCMV as virus a and SCMV as virus b. To make the model more
comprehensible, the following assumptions are made:

1. All viruses are not vertically transmitted in both the vector and in plants. However, as alluded
above, this assumption can be relaxed through initial conditions by assuming an initially infected
maize crop.

2. Maize is planted and grows almost in the same way.

3. Each vector specie can only be inoculated by only a single virus.

4. The vector population (both thrips and aphids) is not impacted by the presents of the virus.

The maize plats are divided into four epidemiological states: the number of healthy plants Hp, the
number of plants infected by MCMV Ipa, the number plants infected by SCMV Ipb, and the number
of plants infected by both viruses Ipm. The total population of maize in the field is given by N =
Hp+Ipa+Ipb+Ipm. For vector population, we consider two epidemiological states for each vector specie:
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the susceptible Sa and Sb, and the infective, Ia and Ib, such that the total population of thrips (aphids)
is given by Va = Ia + Sa (Vb = Sb + Ia). Since our study takes place in East and Central Africa with
appropriate environmental conditions, such that maize is produced along the year, we also assume vital
dynamics for both the maize crops and the pests.

We assume a net planting rate, Λp, in the healthy host compartment only, and, for sake of genericity,
we consider a recovery rate, ωpi of plants infected by virus i = a, b. Since the synergistic interaction
leads to high MCMV concentrations in mix-infected plants compared with single-infected plants [36], and
because MLND can cause total yield loss, we assume that MLN-infected maize cannot recover. Healthy
crops are assumed to have a mortality rate µph and plants infected with virus i = a, b,m have mortality
µpi. Unlike the work of [32], where the co-infection does not induce mortality, here these rates includes
the natural mortality and the virus induced mortality. Thus, according to our literature review, we
consider, in the rest of the paper, that µpm ≥ µpi ≥ µph, i = a, b. The net vector birth rate is given by
Λi, δ is the recovery rate of thrips from the MCMV virus, γ is the recovery rate of aphids affected by the
SCMV virus, µa is the death rate of the thrips and µb is the death rate of aphids.

The infection between the vectors and the plants is modelled by the mass action principle and we
assume frequency dependent transmission. The vectors are assumed to have little to no damage on the
plants. We consider the contact rate βpa (βpb) as the number of contacts per unit time (day) between
thrips (aphids) and plants which would result in infection if the thrip (aphid) is infectious. Also, the
contact rate βap (βbp) represents the number of contacts per unit of time (day) that effectively transmit
the infection to thrips (aphids) from an infectious plant. Furthermore, we consider additional contact
rates, βam, βma, βbm and βmb, related to the MLN disease transmission. However, so far, there is no
specific knowledge (estimates) about these parameters. Details on the selection of parameters will be
given in Section 4.

Hp

Host

Ipb Ipa

Ipm

Sb

Vectors of SCMV

Sa

Vectors of MCMV

Ib Ia

βpaβpb

βam

βbm

δγ

βbp βap

βmaβmb

µph

µpaµpb

µpm

µaµb

ωpb ωpa

Λp
Λa Λb

Figure 1: MLND co-infection model flow chart

All the model parameters are non-negative and we summarise them in Table 1, page 6. According to
the compartmental diagram provided in Figure 1, page 4, the MLND mathematical model is as follows:
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

dHp

dt
= Λp − βpa

Ia
Va
Hp − βpb

Ib
Vb
Hp + ωpaIpa + ωpbIpb − µphHp

dIpa
dt

= βpa
Ia
Va
Hp − βam

Ib
Vb
Ipa − (ωpa + µpa) Ipa

dIpb
dt

= βpb
Ib
Vb
Hp − βbm

Ia
Va
Ipb − (ωpb + µpb) Ipb

dIpm
dt

= βbm
Ia
Va
Ipb + βam

Ib
Vb
Ipa − µpmIpm,

, (1)

with 
dSa
dt

= Λa − µaSa − βap
Ipa
N
Sa − βma

Ipm
N

Sa + δIa

dIa
dt

= βma
Ipm
N

Sa + βap
Ipa
N
Sa − δIa − µaIa

, (2)

and 
dSb
dt

= Λb − µbSb − βbp
Ipb
N
Sb − βmb

Ipm
N

Sb + γIb

dIb
dt

= βmb
Ipm
N

Sb + βbp
Ipb
N
Sb − γIb − µbIb,

, (3)

where N = Hp+Ipa+Ipb+Ipm, Va = Sa+Ia and Vb = Sb+Ib. The total populations take the following
form 

dN

dt
= Λp − µhHp − µpaIpa − µpbIpb − µpmIpm ≥ Λp − µmN

dVa
dt

= Λa − µaVa

dVb
dt

= Λb − µbVb

, (4)

withN(0) = N0 ≥ 0, Va(0) = V 0
a ≥ 0, Vb = V 0

b ≥ 0, where we have assumed µm = max {µph, µpa, µpb, µpm} >
0.

From (4)2 and (4)3, we deduce Va →
Λa
µa
, Vb →

Λb
µb
, respectively, when t → ∞. We set Ṽa =

Λa
µa

,

Ṽb =
Λb
µb

and Ñp =
Λp
µph

. Note also that since Va(0), Vb(0), N(0) ≥ 0, then, from (4), Va(t) > 0, Vb(t) > 0,

and N(t) > 0, for all t > 0. Thus, the solution of (4), for any initial condition in ΩN,Va,Vb , remains in
ΩN,Va,Vb , where

ΩN,Va,Vb =
[
0, Ñp

]
×
[
0, Ṽa

[
×
]
0, Ṽb

]
.

3. The mathematical analysis

First, through the next result, we show that the model (1)-(2)-(3) is mathematically and biologically
well posed in

Ω =
{

(Hp, Ipa, Ipb, Ipm, Sa, Ia, Sb, Ib) ∈ [0, Ñp]
4 × [0, Ṽa]2 × [0, Ṽb]

2
}
.

Theorem 3.1. Assuming that all initial conditions lie in Ω, then system (1)-(2)-(3) has a unique solution
that remains in Ω for all positive time t.

Proof : The right hand sides of (1)-(2)-(3) are continuously differentiable map (C1). Then, by the
Cauchy-Lipschitz theorem [47], system (1)-(2)-(3) has a unique maximal solution. Rewriting the system
(1)-(2)-(3) in the form

dx

dt
= A(x)x+ b,
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Parameters Description Unit Range Baseline
for

Reference

simulations

βpa Rate of transmission of MCMV
from Infected thrips to Suscepti-
ble plant

day−1 [0.04; 0.25] 0.073 [19, 37]

βpb Rate of transmission of SCMV
from Infected aphids to Suscep-
tible plant

day−1 [0.04; 0.25] 0.07 [38, 39,
40, 41]

βam Rate of transmission of MLND
from SCMV Infected thrips to
MCMV Infected plant

day−1 [0.08; 0.90] 0.1

βbm Rate of transmission of MLND
from MCMV Infected aphids to
SCMV Infected plant

day−1 [0.08; 0.90] 0.2

βap day−1 [0.04; 0.25] 0.073
βbp day−1 [0.02; 0.72] 0.07
βma day−1 [0.08; 0.90] 0.1
βmb day−1 [0.08; 0.90] 0.2
µa Natural death rate for thrips. day−1 [0.07; 0.14] 0.092 [37, 42]
µb Natural death rate for aphids. day−1 [0.07; 0.1] 0.079 [40, 41,

43]
µph Death/harvest rate for suscepti-

ble plant
day−1 [1/100, 1/40] 1/60

µpa Death/harvest rate for plant in-
fected with MCMV.

day−1 [1/100, 1/40] 1/60

µpb Death/harvest rate for plant in-
fected with SCMV.

day−1 [1/100, 1/40] 1/60

µpm Death/harvest rate for MLND
infected plant.

day−1 [1/100, 1/20] 1/30

ωpa Recovery rate for plant infected
with MCMV.

day−1 [0, 1/30] 0

ωpb Recovery rate for plant infected
with SCMV.

day−1 [0, 1/20] 0

Λp Recruitment rate for plant. Ind ×
day−1

[378, 890] 600 [44]

Λa Recruitment rate for thrips. Ind ×
day−1

[32338; 88749] 50535 [45]

Λb Recruitment rate for aphids Ind ×
day−1

[20132; 33238] 25638 [45, 41]

δ Recovery rate for thrips infected
by MCMV

day−1 [0.13; 0.17] 0.15 [19]

γ Recovery rate for aphids infected
by SCMV

day−1 [2, 12] 3 [46]

Table 1: The parameters for the MLND model (1), (2) and (3). The parameters estimates are explained in section 4.

where x = (Hp, Ipa, Ipb, Ipm, Sa, Ia, Sb, Ib)
T , b = (Λp, 0, 0, 0,Λa, 0,Λb, 0)T ≥ 0 and

A =



−A11 ωpa ωpb 0 0 0 0 0

βpa
Ia
Va

−A22 0 0 0 0 0 0

βpb
Ib
Vb

0 −A33 0 0 0 0 0

0 βam
Ib
Vb

βbm
Ia
Va

−µpm 0 0 0 0

0 0 0 0 −A55 δ 0 0

0 0 0 0 βap
Ipa
N

+ βma
Ipm
N

−A66 0 0

0 0 0 0 0 0 −A77 γ

0 0 0 0 0 0 βbp
Ipb
N

+ βmb
Ipm
N

−A88



,
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with A11 = βpa
Ia
Va

+ βpb
Ib
Vb

+ µph, A22 = βam
Ib
Vb

+ (ωpa + µpa), A33 = βbm
Ia
Va

+ (ωb + µpb), A55 =

µa + βap
Ipa
N

+ βma
Ipm
N

, A66 = µa + δ, A77 = µb + βbp
Ipb
N

+ βmb
Ipm
N

and A88 = γ + µb. We notice

that A(x) is a Metzler Matrix, i.e., all off diagonal terms are non-negative, for x ∈ Ω. Therefore, since
x(0) ≥ 0, then x(t) ≥ 0, for all time t > 0. In addition since (N,Va, Vb) ∈ ΩN,Va,Vb , we deduce that
x(t) ∈ Ω, for all t ≥ 0.

�

3.1. About the Disease Free Equilibrium

Without the disease, it is easy to see that P0 = {Ñp, 0, 0, 0, Ṽa, 0, Ṽb, 0} is the disease-free equilibrium
(DFE) of system (1)-(2)-(3). Just like in models for animal/human diseases, we derive the basic reproduc-
tion number, R0, using the Next Generation Matrix (NGM) approach, see [48]. The basic reproduction
number is defined as the average number of new cases of an infection caused by one typical infected
individual, in a population consisting of susceptible individuals only, [49]. The next generation matrix is
a matrix that relates the numbers of newly infected individuals in the various categories in consecutive
generations.

To apply the next generation approach, we notice that the variables associated with strain a and
strain b are Ipa, Ipb, Ipm, Ia and Ib. Thus, we define yI = (Ipa, Ipb, Ipm, Ia, Ib), to denote the disease
compartments, and yS = (Hp, Sa, Sb) to denote the susceptible compartments. Rewriting the system as
the difference of a new-infection terms (inflow) and outflow terms, we have

dyI
dt

= F(yS , yI)− V(yS , yI) (5)

=



βpa
Ia
Va
Hp

βpb
Ib
Vb
Hp

0(
βap

Ipa
N

+ βma
Ipm
N

)
Sa(

βbp
Ipb
N

+ βmb
Ipm
N

)
Sb


−



(
βam

Ib
Vb

+ (ωpa + µpa)

)
Ipa(

βbm
Ia
Va

+ (ωb + µpb)

)
Ipb

−βam
Ib
Vb
Ipa − βbm

Ia
Va
Ipb + µpmIpm

(δ + µa)Ia
(γ + µb)Ib


. (6)

Then, computing the Jacobians of F and V at DFE, i.e., F and V respectively, we derive

NGM = FV −1

=



0 0 0 βpa
Ñp
Ṽa

0

0 0 0 0 βpb
Ñp
Ṽb

0 0 0 0 0

βap
Ṽa

Ñp
0 βma

Ṽa

Ñp
0 0

0 βbp
Ṽb

Ñp
βmb

Ṽb

Ñp
0 0





1

ωpa + µpa
0 0 0 0

0
1

ωpb + µpb
0 0 0

0 0
1

µpm
0 0

0 0 0
1

δ + µa
0

0 0 0 0
1

γ + µb



=



0 0 0 βpa
Ñp

Ṽa (δ + µa)
0

0 0 0 0 βpb
Ñp

Ṽb (γ + µb)
0 0 0 0 0

βapṼa

Ñp (ωpa + µpa)
0 βma

Ṽa

Ñpµpm
0 0

0
βbpṼb

Ñp (ωpb + µpb)
βmb

Ṽb

Ñpµpm
0 0


.
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Then, according to Van den Driessche & Watmough, [48], the basic reproduction number, R0, is defined
as the spectral radius of NGM at DFE. After some computations, we derive that the characteristics
polynomial is defined as follows

p(λ) = −λ
(
λ2 − βpaβap

(ωpa + µpa) (δ + µa)

)(
λ2 − βpbβbp

(ωpb + µpb)(γ + µb)

)
such that

R0 = max{R0,a,R0,b},

where R0,a =

√
βpaβap

(ωpa + µpa)(δ + µa)
and R0,b =

√
βpbβbp

(ωpb + µpb)(γ + µb)
are the basic reproduction num-

bers for the MCMV and SCMV diseases, respectively. According to Van den Driessche & Watmough
[48], we deduce

Theorem 3.2. The DFE point, P0, is locally asymptotically stable when R0 < 1, and unstable when
R0 > 1.

Remark 3.1. The term Rap =
βap

δ + µa
in the square root represents the disease R0 from MCMV infected

thrips to susceptible Maize as the product between the rate of transmission βap and the thrips life span
1

δ + µa
. The remaining term in the square root Rpa =

βpa
ωpa + µpa

gives R0a from Maize to thrips, which

is the product between the rate of transmission βpa and the maize viremic period
1

ωa
. Likewise, the term

Rbp =
βbp

γ + µb
in the square root represents the disease R0b from aphid infected with SCMV to Maize as

the product between the rate of transmission βbp and the aphid life span
1

γ + µb
. The remaining term in

the square root Rpb =
βpb

ωpb + µpb
gives R0 from Maize to aphid, which is the product between the rate of

transmission βpb and the maize viremic period
1

ωpb + µpb
.

Remark 3.2. It might be surprising for the reader that parameters related to the MLN disease do not
appear in R0. In fact, this is not, as R0 is only related to new infectious individuals. To become infected
by MLN, a maize plant needs first to be infected by the MCMV or the SCMV virus. To get a better
insight into the control and transmission of MLN, in the Section 3.3, page 9 we consider the invasion
reproduction numbers.

3.2. Existence of boundary and endemic equilibria

Other than the DFE, in this subsection we investigate the existence and local stability of other
remaining boundary equilibria.

Proposition 3.1. System (1)-(2)-(3) has the following boundary equilibria.

1. When R0,a > 1, an MCMV equilibrium, E∗MCMV , exists where

E∗MCMV =
(
H∗pa, I

∗
pa, 0, 0, S

∗
a , I
∗
a , Ṽb, 0

)
with

I∗pa =

(
R2

0,a − 1
)

βap
(δ + µa)

+ 1 +
µpa
µph

(
R2

0,a − 1
)Ñp,

I∗a =

βap
I∗pa

Ñp−
µpa − µph

µph
I∗pa

βap
I∗pa

Ñp−
µpa − µph

µph
I∗pa

+ δ + µa
Ṽa,
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and H∗pa +
µpa
µph

I∗pa = Ñp and S∗a + I∗a = ṼA.

2. When R0,b > 1, an SCMV equilibrium, E∗SCMV , exists where

E∗SCMV =
(
H∗pb, 0, I

∗
pb, 0, Ṽa, 0, S

∗
b , I
∗
b

)
with

I∗pb =

(
R2

0,b − 1
)

βbp
(γ + µb)

+ 1 +
µpb
µph

(
R2

0,b − 1
)Ñp,

I∗b =

βbp
I∗pb

Ñp−
µpb − µph

µph
I∗pb

βbp
I∗pb

Ñp−
µpb − µph

µph
I∗pb

+ γ + µb
Ṽb

and H∗pb +
µpb
µph

I∗pb = Ñp and S∗b + I∗b = ṼB

Proof : See Appendix A, page 28.

�

Remark 3.3. It is impossible to find an analytical expression of the MLN equilibrium. However, we will
provide some insight into the existence of the MLN equilibrium. See Section 3.5, page 12.

Each virus, taken one by one, leads to a standard vector-borne disease model for which standard tools
can be used to study their asymptotic behavior. Here, we need to go further and consider the interaction
of both viruses and in particular, to find conditions such that both viruses can co-exist and thus induce
the MLN disease.

3.3. About the invasion of the SCMV (MCMV) virus

The MLN disease only occurs when MCMV and SCMV viruses are both circulating. In the field, in
general, one virus first invades the crops followed by others. In that case, the basic reproduction ratios
computed previously are not really useful as they are supposed to indicate if one virus can invade a fully
susceptible population. That is why it is necessary to consider specifically the case when SCMV and
MCMV viruses co-exist and lead to MLND.

Assume that the system is at the MCMV equilibrium, E∗MCMV. We would like to know if it can be
invaded by the SCMV virus. To answer this question, we can estimate the invasion reproduction number,
RSCMV

0,inv . We consider the subsystem with the variables y = (Ipb, Ipm, Ib), with Hp, Ipa, Ia at equilibrium,
such that

dy

dt
= Finv(y,E∗MCMV)− Vinv(y,E∗MCMV)

=


βpb

Ib
Vb
H∗pa

βbm
I∗a
Ṽ a

Ipb + βam
Ib

Ṽ b
I∗pa

βbp
Ipb
N
Sb + βmb

Ipm
N

Sb

−
 βbm

I∗a
Ṽ a

Ipb + (ωpb + µpb) Ipb

µpmIpm
(γ + µb) Ib

 .

We compute the Jacobian F and V of Finv and Vinv respectively, at (Ipb, Ipm, Ib) = (0, 0, 0). The Invasion
reproduction number is defined as RSCMV

inv = ρ(FV −1). Thus, we compute

F =


0 0 βpb

H∗pa

Ṽb

βbm
I∗a
Ṽa

0 βam
I∗pa

Ṽb

βbp
Ṽb
N̄p

βmb
Ṽb
N̄p

0

 and V =

 βbm
I∗a
Ṽ a

+ ωpb + µpb 0 0

0 µpm 0
0 0 γ + µb

 . (7)
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from which we deduce

INVNGM = FV −1 =


0 0 βpb

H∗pa

Ṽb

βbmd
I∗a
Ṽa

0 βam
I∗pa

Ṽb

βbp
Ṽb
N̄p

βmb
Ṽb
N̄p

0





1

βbm
I∗a
Ṽ a

+ ωpb + µpb

0 0

0
1

µpm
0

0 0
1

γ + µb


.

That is,

INV NGMSCMV =



0 0 βpb
H∗pa

(γ + µb) Ṽb
βbmI

∗
a(

βbm
I∗a
Ṽ a

+ ωpb + µpb

)
Ṽa

0 βam
I∗pa

(γ + µb) Ṽb

βbp

βbm
I∗a
Ṽ a

+ ωpb + µpb

Ṽb
N̄p

βmb
µpm

Ṽb
N̄p

0


.

Direct and straightforward computations lead to the following characteristic polynomial:

pSCMV (λ) = −λ3 + λ

βamβmbµpm

I∗pa
(γ + µb) N̄p

+
βbp

βbm
I∗a
Ṽ a

+ ωpb + µpb

βpb
(γ + µb)

H∗pa

Ñp


+

βpb
(γ + µb)

βbmI
∗
a(

βbm
I∗a
Ṽ a

+ ωpb + µpb

)
Ṽa

βmb
µpm

H∗pa

Ñp

or, equivalently,
pSCMV (λ) = λ3 − (R0,1 +R0,2)λ−R0,3,

with

R0,1 :=
βamβmb

µpm (γ + µb)

I∗pa
N̄p

,

R0,2 :=
βbp

βbm
I∗a
Ṽ a

+ ωpb + µpb

βpb
(γ + µb)

H∗pa

Ñp

and

R0,3 :=
βpb

(γ + µb)

βbmI
∗
a(

ωpb + µpb + βbm
I∗a
Ṽ a

)
Ṽa

βmb
µpm

H∗pa

Ñp
.

The roots of the reduced third order equation pSCMV can be obtained using Cardano’s formula [50].
Let A be a cubic root of

1

2
Rb3 +

√
1

4
R2

0,3 −
1

27
(R0,1 +R0,2)

3

and B the unique cubic root of

1

2
Rb3 −

√
1

4
R2

0,3 −
1

27
(R0,1 +R0,2)

3

satisfying M ·N =
1

3
R0,3. Then, the three roots of pSCMV are given by

λ1 = A+B, λ2 = ξA+ ξ2B and λ3 = ξ2A+ ξB, (8)
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where ξ = −1

2
+

√
3

2
i. Hence, the SCMV invasion reproduction number, RSCMV

0,inv is defined as the largest

root in modulus, i.e.
RSCMV

0,inv = max {|λ1| , |λ2| , |λ3|} . (9)

Remark 3.4. However, the previous formula, while being the right threshold number, does not necessarily
provide a useful analytical expression of the SCMV Invasion Reproduction number. It would be more
convenient to find an invasion threshold that would be easier to manipulate. In fact, setting R̂SCMV

0,inv =
R0,1 +R0,2 +R0,3, that is

R̂SCMV
0,inv =

βamβmb
µpm (γ + µb)

I∗pa
N̄p

+
βbp

βbm
I∗a
Ṽ a

+ ωpb + µpb

βpb
(γ + µb)

H∗pa

Ñp
+

+
βpb

(γ + µb)

βbmI
∗
a(

ωpb + µpb + βbm
I∗a
Ṽ a

)
Ṽa

βmb
µpm

H∗pa

Ñp
,

(10)

it is interesting to notice that pSCMV (1) = 1−R̂SCMV
0,inv , such pSCMV (λ) = 0 is equivalent to R̂SCMV

0,inv = 1.

Thust, we have R̂SCMV
0,inv = 1 if and only if RSCMV

0,inv = 1. Thus R̂SCMV
0,inv is equivalent to RSCMV

0,inv to know
if SCMV can invade or not. Formula (10) is much simpler to use and provides an analytical formula
related to the model’s parameters that will be useful later to discuss control methods.

We need to have in mind that RSCMV
0,inv or R̂SCMV

0,inv represents the number of new cases of Ipm, Ipb or
Ib after the introduction of one infected plant (infected by SCMV or MLN) or one infected vector by the
SCMV virus. To this end, we now have to give a “biological interpretation” of R0,1, R0,2, and R0,3.

• The term R0,3 can be decomposed as follows:
βpb

γ + µb

H∗pa

Ñp
represents the number of secondary

SCMV plant infections caused by one infectious aphid when SCMV-healthy plants are at MCMV

equilibrium;
βmb
µpm

represents the number of secondary SCMV aphid infections caused by one MLN-

infectious plant;
βbm(

ωpb + µpb + βbm
I∗a
Ṽ a

) I∗a
Ṽa

represents the number of secondary MLN infections by

one SCMV-infected plant when MCMV-infected thrips are at equilibrium. Thus R0,3 is the MLN
basic reproduction number from healthy plants to MLN-infected plant through SCMV-infected
plants and MCMV-vectors.

• Similarly for R0,1: the term
βam
µpm

represents the number of secondary MCMV thrip infections

caused by one MLN-infectious plant;
βmb

(γ + µb)

I∗pa
N̄p

represents the number of secondary MLN plant

infections caused by one SCMV infectious aphid on MCMV plants. Thus altogether, R0,1 represents
the MLN-R0 from MLN -infected plants by SCMV infectious aphids on MCMV infectious plants.

• R0,2 represents the SCMV basic reproduction number at MCMV equilibrium. When βbm = 0 (no
infection by MLN), we recover R2

0,b.

To summarize: a successful invasion of the SCMV virus occurs when RSCMV
0,inv > 1 or R̂SCMV

0,inv > 1. In

contrary, when RSCMV
0,inv < 1 or R̂SCMV

0,inv < 1, SCMV cannot invade the system. It is also important to
emphasize that even if R0,a and R0,b are both greater than 1, this does not necessarily imply the MLN
disease can exist. This is directly linked to the fact that RSCMV

0,inv > 1 (RMCMV
0,inv > 1) or not. This will

be illustrated with numerical simulations. The same reasoning holds for an MCMV invasion. We derive
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the following Invasion Matrix

INV NGMMCMV =



0 0 βpa
H∗pb

(δ + µa) Ṽa
βamI

∗
b(

ωpa + µpa + βam
I∗b
Ṽ b

)
Ṽb

0 βbm
I∗pb

(δ + µa) Ṽa

βap

ωpa + µpa + βam
I∗b
Ṽ b

Ṽb
N̄p

βma
µpm

Ṽa
N̄p

0


,

from which we deduce the following characteristic polynomial

pMCMV (λ) = −λ3 + λ

βmaβbmµpm

I∗pb
(δ + µa) N̄p

+
βpa

(δ + µa)

βap

ωpa + µpa + βam
I∗b
Ṽ b

H∗pb

Ñp


+

βpa
(δ + µa)

βamI
∗
b(

ωpa + µpa + βam
I∗b
Ṽb

)
Ṽb

βma
µpm

H∗pb

Ñp
,

andRMCMV
0,inv is the positive root of pMCMV . However, like before, we will consider the following threshold:

R̂MCMV
0,inv =

βmaβbm
µpm

I∗pb
(δ + µa) N̄p

+
βpa

(δ + µa)

βap

ωpa + µpa + βam
I∗b
Ṽb

H∗pb

Ñp

+
βpa

(δ + µa)

βamI
∗
b(

ωpa + µpa + βam
I∗b
Ṽb

)
Ṽb

βma
µpm

H∗pb

Ñp

(11)

Thus, clearly, if one of the previous sub-thresholds is greater than one, then MCMV invasion can occur
and thus MLN can appear.

3.4. About the Stability of the boundary equilibria, E∗MCMV and E∗SCMV

After long and tedious computations, it is possible to show that the boundary equilibria, E∗MCMV and
E∗SCMV are locally asymptotically stable. This is summarised in the following result.

Proposition 3.2. • When R0,a > 1 and RSCMV
0,inv < 1 or R̂SCMV

0,inv < 1, then E∗MCMV is locally
asymptotically stable.

• When R0,b > 1 and RMCMV
0,inv < 1 or R̂MCMV

0,inv < 1, then E∗SCMV is locally asymptotically stable.

Proof : See Appendix B.

�

Remark 3.5. Certainly, the boundary equilibria E∗MCMV and E∗SCMV are GAS under the same previous
conditions.

3.5. Uniform persistence of system (1)-(2)-(3)

Thanks to the high non-linearities in the model, a direct study of the existence of an endemic (positive)
MLN equilibrium is not really possible. We circumvent this by studying the uniform persistence. We will
now study the cases when it occurs.

Consider the subset of Ω

Ω0 = {(Hpa, Ipa, Ipb, Ipm, Sa, Ia, Sb, Ib) ∈ Ω : (Ia > 0 or Ipa > 0) and (Ib > 0 or Ipb > 0) or Ipm > 0} ,
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such that

∂Ω0 = Ω\Ω0 = {(Hpa, Ipa, Ipb, Ipm, Sa, Ia, Sb, Ib) ∈ Ω : (Ipa = 0 and Ia = 0) or (Ipb = 0 and Ib = 0) , Ipm = 0} .

Both Ω0 and ∂Ω0 are positively invariant, and ∂Ω0 is relatively closed in Ω. All solutions are bounded
and system (1)-(2)-(3) is a point dissipative system.

We denote φt(x0) the flow corresponding to system (), such that the solution of the system starting
at x0. Let M∂ = {x ∈ ∂Ω0/φt(x) ∈ ∂Ω0 for t ≥ 0}. Then, we have M∂ = ∂Ω0. The boundary equilibria
DFE, Ea, Eb are in M∂ . Let WS(DFE), WS(E∗MCMV ), and WS(E∗SCMV ) be the stable manifold of
DFE, E∗MCMV and E∗SCMV respectively.

We have to show that WS(DFE)∩Ω0 = ∅, WS(E∗MCMV )∩Ω0 = ∅ and WS(E∗SCMV )∩Ω0 = ∅ hold
when the previous conditions hold.

Let us first show that WS(DFE) ∩ Ω0 = ∅. Since R2
0,a > 1, and R2

0,b > 1, there is an εa,b > 0, such
that for all ε ∈ [0, εab] , we have

βapβpa(
βam

Ṽa
ε+ ωpa + µpa

)
(δ + µa)

(
1− Kaε

Ṽa

)(
1− Kε

Np

)
> 1,

and
βbpβpb(

βbm

Ṽb
ε+ ωpb + µpb

)
(γ + µb)

(
1− Kbε

Ṽb

)(
1− Kε

Np

)
> 1.

For all x0 ∈ Ω0, we claim that lim supt→+∞ ‖φt(x0)−DFE‖ > η0. Suppose that this is not true. Thus,
there exists T > 0 such that for t > T , we have

Hp ≥ Np −Kε, Sa ≥ Ṽa −Kaε, Sb ≥ Ṽb −Kbε, Ia ≤ ε, Ib ≤ ε

which implies 
dIpa
dt
≥ βpa IaṼa (Np −Kε)−

(
βam

Ṽa
ε+ ωpa + µpa

)
Ipa

dIa
dt
≥ βap IpaNp

(
Ṽa −Kaε

)
− (δ + µa) Ia

dIpb
dt
≥ βpb IbṼb (Np −Kε)−

(
βbm

Ṽb
ε+ ωpb + µpb

)
Ipb

dIb
dt
≥ βbp

Ipb
Np

(
Ṽb −Kbε

)
− (γ + µb) Ib,

leading to the following linear systems

(
u̇a
v̇a

)
=

 −
(
βam

Ṽa
ε+ ωpa + µpa

)
βpa
Ṽa

(Np −Kε)
βap
Np

(
Ṽa −Kaε

)
− (δ + µa)

( ua
va

)
= A

(
ua
va

)
,

and (
u̇b
v̇b

)
=

 −
(
βbm

Ṽb
ε+ ωpb + µpb

)
βpb
Ṽb

(Np −Kε)
βbp
Np

(
Ṽb −Kbε

)
− (γ + µb)

( ub
vb

)
= B

(
ub
vb

)
.

computing det(A) and det(B), we derive

det (A) =

(
βam

Ṽa
ε+ ωpa + µpa

)
(δ + µa)− βapβpa

(
1− Kaε

Ṽa

)(
1− Kε

Np

)
< 0,

and

det (B) =

(
βbm

Ṽb
ε+ ωpb + µpb

)
(γ + µb)− βbpβpb

(
1− Kbε

Ṽb

)(
1− Kε

Np

)
< 0
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which implies that the characteristic equations of both linear systems have a positive real root, which
means the positive solutions of () are unbounded, which implies the unboundedness of Ipa, Ia., Ipb, Ib .
A contradiction. Thus WS(DFE) ∩ Ω0 = ∅.

Assume R0,a > 1 and RSCMV
0,inv > 1. Now we show that WS(E∗MCMV ) ∩ Ω0 = ∅. For all x0 ∈ Ω0, we

claim that lim supt→+∞ ‖φt(x0)−EMCMV ‖ > ε. Suppose that this is not true. Thus, there exists T > 0
such that for t > T , we have

H∗pa − ε ≤ Hp ≤ H∗pa + ε, I∗pa − ε ≤ Ipa ≤ I∗pa + ε, I∗a − ε ≤ Ia ≤ I∗a + ε,

Sb ≥ Ṽb −Kbε, Ipb ≤ ε, Ib ≤ ε,
such that at the limit, we derive

dIpb
dt

≥ βpb IbVb
(
H∗pa − ε

)
−βbm

I∗a + ε

Va
Ipb − (ωpb + µpb) Ipb

dIpm
dt

≥ βbm I∗a−ε
Va

Ipb+βam
Ib
Vb

(
I∗pa − ε

)
−µpmIpm,

dIb
dt

≥ βmb IpmNp
(
Ṽb −Kbε

)
+βbp

Ipb
Np

(
Ṽb −Kbε

)
− (γ + µb) Ib,

from which we derive the following linear system u̇
v̇
ẇ

 = Cε

 u
v
w

 ,

with

Cε =


−
(
βbm

I∗a + ε

Va
+ ωpb + µpb

)
0

βpb
Vb

(
H∗pa − ε

)
βbm

I∗a−ε
Va

−µpm βam
Vb

(
I∗pa − ε

)
βbp
Np

(
Ṽb −Kbε

)
βmb
Np

(
Ṽb −Kbε

)
− (γ + µb)



Cε = F − V − ε


βbm
Va

0
βpb
Vb

βbm
Va

0 βam
Vb

Kbβbp
Np

Kbβbp
Np

0

 = F − V − εM,

where F and V are defined in 7, page 9. Since σ(F − V ) > 0 iff Rinv0,SCMV > 1, there exists εa > 0,
such that σ(Cε) = σ (F − V − εM) > 0 for ε ∈ [0, εa]. This implies that Cε has a real positive eigenvalue
with a positive eigenvector, meaning that the solutions are unbounded and so are Ipb, Ib, and Ipm. A
contradiction.
Using a similar reasoning, we show that when R0,b > 1 and RMCMV

0,inv > 1, then WS(E∗SCMV ) ∩ Ω0 = ∅.
Altogether, we haveWS(DFE) = {DFE}, WS(E∗MCMV ) = {(Hpa, Ipa, Ipb, Ipm, Sa, Ia, Sb, Ib) ∈ Ω : Ia > 0,
, Ipa > 0, Ib = 0, Ipb = 0 and Ipm = 0}, WS(E∗SCMV ) = {(Hpa, Ipa, Ipb, Ipm, Sa, Ia, Sb, Ib) ∈ Ω : Ib > 0,
Ipb > 0, Ia = 0, Ipa = 0 and Ipm = 0} such that M∂ = WS(DFE) ∪ WS(E1) ∪ WS(E2). In addition
each equilibrium is isolated and acyclic in M∂ . We can now apply Theorem 4.6 in [51] and deduce that
system (1)-(2)-(3) is uniformly persistent with respect to (Ω0, ∂Ω0), under suitable conditions on the
reproduction numbers. Last, using the invariance of Ω, the dissipativity of system (1)-(2)-(3), and its
uniform persistence, Theorem 2.6 in [52] or Theorem D.3 in [53], we can deduce the existence of a MLN
equilibrium.

We summarize as follows:

Theorem 3.3. Under appropriate initial conditions, assuming that one of the following conditions hold
true

• R0,a > 1, R0,b > 1, RMCMV
0,inv > 1, and RSCMV

0,inv > 1,

• R0,a > 1, and R0,b < 1, and RSCMV
0,inv > 1,

• R0,b > 1, and R0,a < 1, and RMCMV
0,inv > 1,

then system (1)-(2)-(3) is uniformly persistent. Moreover, a MLN equilibrium exists.
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3.6. Global stability of the disease-free equilibrium

First, we consider the following theorem that is helpful to reduce the stability analysis to a smaller
system:

Theorem 3.4 ([54], Theorem 3.1). . Consider the following C1 system :{
ẋ = f(x)
ẏ = g(x, y)

∀x ∈ Rm,∀y ∈ Rn (12)

with an equilibrium point, (x∗, y∗), i.e.,f(x∗) = 0 and g(x∗, y∗) = 0. If x∗ is globally asymptotically stable
(GAS) in Rm for the system ẋ = f(x), and if y∗ is GAS in Rn, for the system ẏ = g(x∗, y), then (x∗, y∗)
is (locally) asymptotically stable for (12). Moreover, if all the trajectories of (12) are forward bounded,
then (x∗, y∗) is GAS for (12).

Using (4)2 and (4)3, applying Theorem 3.4, we see that the stability analysis of system (1)-(2)-(3) is
equivalent to the stability analysis of the following system:

dHp

dt
= Λp − βpa

Ia

Ṽa
Hp − βpb

Ib

Ṽb
Hp + ωpaIpa + ωpbIpb − µphHp

dIpa
dt

= βpa
Ia

Ṽa
Hp − βam

Ib

Ṽb
Ipa − (ωpa + µpa) Ipa

dIpb
dt

= βpb
Ib

Ṽb
Hp − βbm

Ia

Ṽa
Ipb − (ωpb + µpb) Ipb

dIpm
dt

= βbm
Ia

Ṽa
Ipb + βam

Ib

Ṽb
Ipa − µpmIpm,

dIa
dt

=

(
βma

Ipm
N̄

+ βap
Ipa
N̄

)(
Ṽa − Ia

)
− (δ − µa) Ia,

dIb
dt

=

(
βmb

Ipm
N̄

+ βbp
Ipb
N̄

)(
Ṽb − Ib

)
− (γ − µb) Ib.

(13)

Last, but not least, from (4)1, asymptotically, we have N̄ ≥ Λ

µm
=
µph
µm

Ñp, where µm = max {µph, µpa, µpb, µpm}.

This will be useful in the sequel. Of course, it is clear that all solutions of (13) are forward bounded.
To show GAS, we consider the following Lyapunov functional

L(Ipa, Ipb, Ipm, Ia, Ib) = c1aIpa + c1bIpb +KIpm + c2aIa + c3bIb,

where L(0, 0, 0, 0, 0) = 0 and L > 0 otherwise. We compute

dL

dt
= c1a

(
βpa

Ia

Ṽa
Hp − βam

Ib

Ṽb
Ipa − (ωpa + µpa) Ipa

)
+ c1b

(
βpb

Ib

Ṽb
Hp − βbm

Ia

Ṽa
Ipb − (ωpb + µpb) Ipb

)
+

+c2a

(
βma

Ipm
N̄

(
Ṽa − Ia

)
+ βap

Ipa
N̄
Sa − (δ + µa) Ia

)
+c3b

(
βmb

Ipm
N̄

(
Ṽb − Ib

)
+ βbp

Ipb
N̄
Sb − (γ + µb) Ib

)
+

+K

(
βbm

Ia
Va
Ipb + βam

Ib
Vb
Ipa − µpmIpm

)
≤ (K − cia)βam

Ib
Vb
Ipa + (K − c1b)βbm

Ia

Ṽa
Ipb +

(
c1aβpa

Hp

Ṽa
− (δ + µa)

)
Ia+(

c2aβap
Sa
N
− c1a (ωpa + µpa)

)
Ipa +

(
c2bβbp

Sb
N
− c1b (ωpb + µpb)

)
Ipb+

+

(
c2aβma

Ṽa
N̄

+ c3bβmb
Ṽb
N̄
−Kµpm

)
Im

≤ (K − cia)βam
Ib

Ṽb
Ipa + (K − c1b)βbm

Ia

Ṽa
Ipb +

(
c1aβpa

Nh

Ṽa
− c2a (δ + µa)

)
Ia+

15



+

(
c1bβpb

Nh

Ṽb
− c3b (γ + µb)

)
Ib(

c2aβap
Ṽa
N̄
− c1a (ωpa + µpa)

)
Ipa +

(
c3bβbp

Ṽb
N̄
− c1b (ωpb + µpb)

)
Ipb+

+

(
c2aβma

Ṽa
N̄

+ c3bβmb
Ṽb
N̄
−Kµpm

)
Ipm.

choosing K = c1a = c1b =
1

Ñp
leads to

dL

dt
≤
(
βpa

1

Ṽa
− c2a (δ + µa)

)
Ia +

(
c1bβpb

1

Ṽb
− c3b (γ + µb)

)
Ib+

(
c2aβap

Ṽa
N̄
− 1

Nh
(ωpa + µpa)

)
Ipa +

(
c3bβbp

Ṽb
N̄
− 1

Nh
(ωpb + µpb)

)
Ipb+

+

(
c2aβma

Ṽa
N̄

+ c3bβmb
Ṽb
N̄
− 1

Nh
µpm

)
Ipm.

Then c2a =
βpa

(δ + µa) Ṽa
and c3b =

βpb

Ṽb (γ + µb)
lead to

dL

dt
≤ 1

Ñp
(ωpa + µpa)

(
Ñp
N̄
R2

0,a − 1

)
Ipa +

1

Ñp
(ωpb + µpb)

(
Ñp
N̄
R2

0,b − 1

)
Ipb

+

+
1

Ñp
µpm

((
βmaβpa

µpm (δ + µa) Ṽa
+

βpbβmb
µpm (γ + µb)

)
µm
µph
− 1

)
Ipm,

or equivalently

dL

dt
≤ 1

Ñp
(ωpa + µpa)

(
µm
µph
R2

0,a − 1

)
Ipa +

1

Ñp
(ωpb + µpb)

(
µm
µph
R2

0,b − 1

)
Ipb

+

+
1

Ñp
µpm

((
βmaβpa

µpm (δ + µa) Ṽa
+

βpbβmb
µpm (γ + µb)

)
µm
µph
− 1

)
Ipm.

Thus assuming
µm
µph
R2

0,a < 1,
µm
µph
R2

0,b < 1,

and (
βmaβpa

µpm (δ + µa)
+

βpbβmb
µpm (γ + µb)

)
µm
µph

< 1

leads to
dL

dt
≤ 0. , for all (Iap, Ibp, Ipm, Ia, Ib) ∈ ×[0, Ñp]

3 × [0, Ṽa] × [0, Ṽb]. The largest invariant set

Ωs is

{
(Ipa, Ipb, Ipm,Ia, Ib)/

dL

dt
= 0

}
is reduced to (0, 0, 0, 0, 0). Thus according to Krasovskii-LaSalle

Theorem and Theorem 3.4, the DFE is GAS.
Of course, when no additional mortality exists, i.e. µm = µph, then the previous conditions relax and

we recover R2
0 < 1 with

R2
0,m =

βmaβpa
µpm (δ + µa)

+
βpbβmb

µpm (γ + µb)
< 1. (14)

Thus, we can conclude
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Theorem 3.5. When
µm
µph
R2

0 < 1 and
µm
µph
R2

0,m < 1 then DFE is globally asymptotically stable in Ω.

Remark 3.6. Condition (14) is not a surprise since MLN-infectious plants can infect healthy plants
through infectious thrips and aphids, such that we have additional basic reproduction numbers related to

MLN-infectious plants. Indeed,
βma
µpm

represents the number of secondary MCMV thrip infections caused

by one infectious MLN crop host;
βpa

δ + µa
represents the number of secondary MCMV crop infectious cause

by one infectious thrip. Thus, altogether,
βma
µpm

βpa
δ + µa

represents the MCMV-R0 from an MLN infectious

plant to a Healthy plant. Similarly
βmb
µpm

βpb
γ + µb

represents the SCMV-R0 from a MLN infectious plant to

an Healthy plant.

Remark 3.7. In terms of control strategy, Theorem 3.5 shows that, at anytime, whatever the epidemio-
logical state, it is possible to reduce the epidemiological risk of MCMV and SCMV diseases (and thus MLN

disease) if, by suitable control strategies, we are able to reduce
µm
µph
R2

0 and
µm
µph
R2

0,m below 1. However,

as showed earlier other control strategies can be used to reduce the risk of MLN disease by decaying one
(or both) invasion reproduction number(s) below 1.

Thanks to all previous results, we now summarize all possible dynamics in Table 2, page 17.

Table 2: Dynamics of the equilibrium

Case R0 RSCMV
0,inv / RMCMV

0,inv Long term Dynamics

1
µm
µph
R2

0 < 1,
µm
µph
R2

0,m < 1 – E∗DFE is a global attractor

2 R0,a > 1, R0,b < 1 RSCMV
0,inv < 1 E∗MCMV is a global attractor

3 R0,a < 1, R0,b > 1 RMCMV
0,inv < 1 E∗SCMV is a global attractor

4 R0,a > 1, R0,b > 1 RMCMV
0,inv < 1, RSCMV

0,inv > 1 E∗SCMV is a global attractor
5 R0,a > 1, R0,b > 1 RMCMV

0,inv > 1, RSCMV
0,inv < 1 E∗MCMV is a global attractor

6 R0,b > 1, R0,a > 1 RMCMV
0,inv < 1, RSCMV

0,inv < 1 either E∗MCMV or E∗SCMV

7 R0,a > 1, R0,b < 1 RMCMV
0,inv < 1 RSCMV

0,inv > 1 E∗MLN is a global attractor
8 R0,a < 1, R0,b > 1 RMCMV

0,inv > 1 RSCMV
0,inv < 1 E∗MLN is a global attractor

9 R0,a > 1, R0,b > 1 RMCMV
0,inv > 1, RSCMV

0,inv > 1 E∗MLN is a global attractor

More than the basic reproduction numbers, the previous table shows the importance of the invasion
reproduction numbers, in particular for MLN control. Indeed, when R0 > 1, we have to deal with
different subcases related to the invasion reproduction numbers: from case 4 to case 9. Indeed four long
term dynamics can occur: either the system converges to one of the boundary equilibria, E∗MCMV or
E∗SCMV, or to the full equilibrium, E∗MLN. However, when both invasion reproduction numbers are less
than 1, then the system converges either to E∗MCMV or to E∗SCMV, depending on the initial conditions.
We will illustrate some of these cases in the section devoted to numerical simulations. However, we first
derive a global sensitivity analysis in order to discuss the usefulness of some feasible control strategies.

4. Parameter estimate and sensitivity analysis

Before starting the global sensitivity analysis, we detail the parameters values given in Table 1, page
6. Most often, parameters estimation is always a critical issue: despite a deep review of the literature,
some important parameters were difficult to find or to estimate.
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4.1. SCMV-Aphids

For the estimates for parameters of aphids we mainly focus on Rhopalosiphum maids as the main
vectors for SCMV. The authors in [40], studied the life history of Rhopalosiphum Maids under different
temperature condition on corn leaves, Zea mays; they obtained longevity of adults Rhopalosiphum Maids
under 25oc of 12.0 ± 0.9days. In [41], Rhopalosiphum Maids were reared on six grown maize hybrids
(K3640/3 × MO17, Simon, SC704, EXP1, VRE26×K18 and VRE27×K18) carried under 25 ± 1oC
condition; they estimated a longevity of adult Rhopalosiphum maids of 11.85 ± 2.35 days depending on
the maize hybrids. Therefore, we consider the maximum interval [9.5, 14.2], meaning that the interval
for the death rate is [0.07, 0.1] under 24 ± 1oC (mean temperature of Kenya from 1901 to 2016 [43]).
The highest titre from Rhopalosiphum maids in maize at 38%; was reported by [39]. Here we assume
the range from 14% to 38%. It is known that aphids have alternative host [9], such that, they may feed
on alternative plants along its life. It is also well know that they can bite several times on the same
plant. Therefore, we assume from 1 to 4 visits along its life, and also between 1 and 3 bites per visit, so

that we obtain the range values of

[
1

14.2
× 0.14,

6× 3

9.5
× 0.38

]
= [0.01, 0.72] for βpb. We also assume that

the presence of MCMV in maize does not interfere in the transmission of SCMV, therefore, we take the
same range of values from infectious aphids to plant already infected with MCMV. The authors in [25],
reported the mean infectious period of 6 hours in nonpersistently transmitted mode. Here, we assume
an infectious period with range, [2, 8] hours such that we obtain the recovery rate in the range [2, ]. The
recommended spacing and planting maize population vary depending on the weather conditions and the
moisture status of the soil, for instance, in the highland and medium areas where the soils are well-drained
sandy-loam soils, the densities of maize per hectare recommended vary between 37.850 to 53.333 which
corresponds to spacing of 90×30cm and 75×25cm, respectively; while in dry and coastal low land areas
where the soil is dry and/or sandy the density of maize plant recommended per hectare is 44.444, [44].
We assume the range of the density of maize per hectare of [37.850, 53.333].

4.2. MCMV-Thrips

Althought the thrips Frankliniella Occidentalis is not implicated in the MCMV transmission in Kenya,
[9], it has been widely studied in the literature. Thus, like many other works, we assume that most of
the parameters fit for both species. The authors in [37] investigated the longevity of F. Occidentalis on
Cabbage, Cucumber, Bean and Tomato. They estimated the range of female longevity at 13.32±5.02 days
and the range of male longevity at 7.32 ± 1.05 days. Considering that we have male-female sex-ratio of
0.4 (see for instance [37]), we derive a mean life span of the population to be 10.72± 3.43 days. Thus, we
estimate the death rate of [0.07, 0.14]. In [19] the authors reported transmission of MCMV by the thrips,
Frankliniella Williams, ranging from 30% to 45% with a mean of 37%. Similar to aphids, we assume from 1

to 4 visits along thrips life, so that we obtain the range values of

[
1

14.15
× 0.3,

4

7.29
× 0.45

]
= [0.02, 0.25]

for βpa. We also assume that the presence of SCMV in maize does not interfere in the transmission of
MCMV, therefore, we also take the same range values of [0.04, 0.12] from infectious thrips to plant already
infected with SCMV. In [19], it was reported that the thrips, Frankliniella williams, loose the ability to
transmit the virus 6 days post acquisition. We assume that the necessary period to recover from disease
range from 6 to 8 days. Thus, we estimate that the recovery rate, δ, lies in the range [0.13, 0.17].

4.3. MLN-parameters

Unfortunately, parameters values related to MLND are not really available in the literature. Since, it
is well known that plant viruses are able to manipulate their hosts or their vectors in order to enhance
the transmission of viruses, it seems obvious to consider that the transmission rates are larger than the
values estimated for MCMV- or SCMV-transmission rates. Thus for βm∗ and β∗m, where ∗ stands for a
or b, we will consider a range of values of [0.08, 0.9]. Within this range, we will be able to illustrate all
cases given in Table 2, page 17.
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4.4. Global Sensitivity Analysis

It is also important to check the impact of parameters changes on the dynamics of the system, and,
in particular, what are the most sensitive parameters, for which the system may drastically change its
behavior. That is why we derive a LHS-PRCC sensitivity analysis, where LHS stands for Latin Hypercube
Sampling and PRCC for Partial rank correlation coefficient. The LHS-PRCC method provides mainly
information about how the outputs are impacted if we increase (or decrease) the inputs of a specific
parameter. The analysis is done on the time interval [100, 500]. The results are ordered from the most
negative to the most positive ones.

In Figs. 2 and 3, we show the results for the crop’s variables. No surprises, for the healthy plant, the
dominant parameters are Λp and µph. For crops infected by the viruses, the most sensitive parameters
are those related either to the vectors or to the host transmission, and the mortality rates. The MLN
variable, Ipm is sensitive to γ that is the parameter related to the non permanent transmission process. In
Fig 4, γ and δ, the vectors recovery rates, are sensitive parameters: this makes sense since they are related
to the duration vectors are infectious or not. The recovery rates ωpa and ωpb are sensitive parameters
too. Only the death rate µa seems to play a role in the dynamics as well as the transmission parameters.
Clearly, all of these parameters need to be estimated efficiently in order to capture the right dynamics of
the system.

Next, we derive the LHS-PRCC sensitivity analysis for both invasion reproduction numbers: see Fig.
5, page 23. It is interesting to notice that both numbers are not sensitive to the same parameters, except
µpb, γ, and µph but with different impact. It seems also that R̂SCMV

0,inv is sensitive to most of the contact

rates. Last R̂SCMV
0,inv is sensitive to infectious plants death rates, such that increasing these death rates

using roguing seems to be a good control strategy to lower this invasion reproduction number. However,
and surprisingly, increasing µpb can also increase the R̂MCMV

0,inv and, thus, eventually, favor the invasion
of MCMV disease.

In terms of control, based on Table 2, page 17, and the previous sensitivity analysis, several control
strategies seem feasible. Indeed, MLN control is possible through a combination of cultural practices,
pesticides, and host tolerance. However, there is a gap in terms of pest management between export-
oriented farmers and smallholders. The first ones can develop all these practices, while the second cannot
and thus rely on conventional control methods. Theoretically, combination of control methods from vector
control to host control are feasible: see for instance Fig. 3 in [7], showing the time evolution of MLN
incidence when roguing and a combination of pesticides are used. This example occured in a experimental
station. Practically, this is another story. In our model, some parameters, like the recovering parameters
δ and γ cannot be modified. Like for vector-borne diseases, vector-control could be interesting and they
are vector control methods in the field. However, standard vector control against aphids, i.e., increase
µa with insecticide, is not efficient because they are infectious during a very short time. A possible
(biological) control would be to use this non-persistent transmission property to attract the infected
aphids to non-susceptible hosts. This require to mix maize crop with other non-susceptible crops. This
would be possible for smallholders, but only if these other crops are also cash-crops. For thrips, it seems
that insecticide is still the main control tool: see the recent study [55], which, according to our sensitivity
analysis (see Fig 2b, page 20), seems meaningful. However, our global sensitivity analysis shows that
the main effective controls should be on infected maize, either by reducing the contact rates and/or by
removing the infected plants. Practically, reducing the contact rates is not so easy: using nets, like it is
done in East-Africa to protect vegetable crops, seems feasible but not for maize. To the contrary, roguing,
which consists of removing infected plants and thus in increasing the infected plants mortality rates, µpa,
µpb, and µpm, seems to be the most effective control, impacting all infected compartments and also the
invasion reproduction numbers. Note also that roguing is a standard control practice against diseases
affecting crops in Africa, like cassava [1]. It is particularly useful for smallholders that cannot consider
other control strategies against MLND, like crop rotation.

5. Numerical Simulation

In this section, we start providing some numerical simulations to illustrate the previous theoretical
results and also discuss the results. We use the initial values for the parameters as listed in Table 3
and modify them to derive the different cases highlighted above in Table 2, page 17. For each case, we
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LHS−PRCC Sensitivity Analysis − MLN Model − Healthy Maize
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LHS−PRCC Sensitivity Analysis − MLN Model − MCMV Infected Maize

Figure 2: LHS-PRCC Sensitivity analysis - Maize crop

estimate the basic reproduction numbers and also the invasion reproduction numbers, R∗0,inv and R̂∗0,inv
(see formulae (10), page 11, and (11), page 12).

Case 2 Assuming γ = 4.0, then R2
0,a > 1, R2

0,b < 1 , and R̂SCMV
0,inv < 1 or RSCMV

0,inv < 1. Thus, the
system converges to E∗SCMV. Here, this case shows that with vector control on thrips it might be
possible to avoid MLN disease using only the basic reproduction numbers. In fact this is due to the
fact that MCMV is transmitted in a semi-permanent way by thrips. Since SCMV is transmitted in
a non-persistent manner, it might be more difficult to control SCMV by aphids control, using for
instance insecticide. See Fig. 6, page 24.

Case 5 Considering the previous table, we derive the following values for the Reproduction numbers

In this case, we have R2
0,a > 1 and R2

0,b > 1, but RSCMV
0,inv < 1. Thus the system converges to

E∗MCMV . This case illustrates that controlling aphids might be useful. Indeed, we don’t need to
lower R2

0,b below 1. What is important is to lower RSCMV
0,inv < 1. See Fig 7, page 25: we have

chosen random initial points to show that whatever the initial conditions, the system converges to
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Figure 3: LHS-PRCC Sensitivity analysis - Maize crop

E∗MCMV .

Case 6 We now consider the case: R2
0,a > 1 and R2

0,b > 1, with RSCMV
0,inv < 1 and RMCMV

0,inv < 1. In that
case, the system converges to either E∗MCMV or E∗SCMV depending on the initial conditions. We
choose µa = 0.125, βma = βmb = 0.02 in Table 3. See Fig. 8, page 25. This case is very interesting as
it shows that even if both basic reproduction numbers are greater than one, if, through appropriate
control strategies, we are able to set the invasion reproduction numbers less than one, then MLN
Disease cannot occur.

Case 7 We consider γ = 4, βmb = 0.6, βam = 0.5, βma = 0.5 in Table 3. The values obtained for the
reproduction numbers are summarized in Table 7, page 26. The system reaches the MLN equilibrium

E∗MLN =
(
H∗
p

Ñp
,
I∗pa
Ñp
,
I∗pb
Ñp
,
I∗pm
Ñp

,
S∗
a

Ṽa
,
I∗a
Ṽa
,
S∗
b

Ṽb
,
I∗b
Ṽb

)
= (0.3178, 0.2355, 0.0715, 0.1876, 0.6392, 0.3608, 0.9622,

0.0378): see Fig. 9a, page 26.

Case 8 Compared to case 7, we consider γ = 3, µa = 0.14 and δ = 0.2 in Table 3. The values obtained for
the reproduction numbers are summarized in Table 8, page 26. The system reaches the MLN equi-
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Figure 4: LHS-PRCC Sensitivity analysis - Vectors

librium E∗MLN =
(
H∗
p

Ñp
,
I∗pa
Ñp
,
I∗pb
Ñp
,
I∗pm
Ñp

,
S∗
a

Ṽa
,
I∗a
Ṽa
,
S∗
b

Ṽb
,
I∗b
Ṽb

)
= (0.3136, 0.1485, 0.1226, 0.2077, 0.7014, 0.2986,

0.9413, 0.0587): see Fig. 9b, page 26.

Case 9 Compared to case 7, we just change the parameter γ, i.e. γ = 3.0. The values obtained for the
reproduction numbers are summarized in Table 9, page 26. The system reaches the MLN equilibrium

E∗MLN =
(
H∗
p

Ñp
,
I∗pa
Ñp
,
I∗pb
Ñp
,
I∗pm
Ñp

,
S∗
a

Ṽa
,
I∗a
Ṽa
,
S∗
b

Ṽb
,
I∗b
Ṽb

)
= (0.2581, 0.1571, 0.0950, 0.2449, 0.5771, 0.4229, 0.9319, 0.0681):

: see Fig. 10b, page 27.

Case 10 A last case, where we consider roguing which consists of removing infected plants. Here, since
the symptoms of MCMV, SCMV or MLN are easy to check it is straightforward to select the
infected plants. In Fig. 11, page 27, we show that depending on the roguing rate, the system can
recover, i.e., converges to DFE. In particular, it is obvious to emphasize that the roguing effort is
much more important when all Reproduction numbers are greater than 1 (case 9). Thus, clearly,
when the risk of MLN in the area is high, it is better to react immediately once the symptoms of
MCMV or SCMV are found.
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Figure 5: LHS-PRCC Sensitivity analysis - Invasive Reproduction Numbers

The previous simulations highlight the different dynamics of the MLND system. Clearly, more than the
standard basic reproduction numbers R0,a and R0,b, the invasion reproduction numbers RMCMV

0,inv and

RSCMV
0,inv are important to estimate as they will drive the emergence of the MLN disease or not, even

when one basic reproduction number is less than one. However, even when both numbers are less than
1, case 6 shows that E∗MCMV and E∗SCMV can be simultaneously locally asymptotically stable, such that
the convergence of the system to one of the boundary equilibria may depend on the initial conditions.

In the field, MLN disease is difficult to control, especially because the SCMV virus is transmitted in
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Table 3: Base parameters and numerical values

βap βpa βam βma δ ωpa µa µph µpa µpb µpm

0.073 0.073 0.075 0.1 0.15 0 0.092 1/60 1/60 1/60 1/30

Λp Λa Λb βbp βpb βbm βmb γ µb ωpb

40000µph 50535 25638 0.25 0.25 0.07 0.1 3 0.079 0
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0
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Figure 6: Case 2: R0,a > 1, R0,b < 1, convergence to E∗
MCMV.

Table 4: Case 2 Reproduction numbers

R2
0,a=MCMV RMCMV

0,inv R̂MCMV
0,inv R2

0,b=SCMV RSCMV
0,inv R̂SCMV

0,inv

1.321 1.188 1.369 0.9193 0.8015 0.801

Table 5: Case 5 Reproduction numbers

R2
0,a=MCMV RMCMV

0,inv R̂MCMV
0,inv R2

0,b=SCMV RSCMV
0,inv R̂SCMV

0,inv

1.321 1.105 1.225 1.218 0.919 0.842

Table 6: Case 6 - Reproduction numbers

R2
0,a=MCMV RMCMV

0,inv R̂MCMV
0,inv R2

0,b=SCMV RSCMV
0,inv R̂SCMV

0,inv

1.163 0.973 0.946 1.218 0.983 0.967

a non-permanent way such that aphids control can be difficult. However, thrips control seems feasible,
such that the MCMV disease can be controlled. In addition, roguing, i.e., removal of infected plants, can
be an additional way to reduce the impact of the diseases and eventually to remove the disease (see Fig.
11, page 27). The figure shows the effect of roguing on the number of healthy plants. Here we assume
roguing is introduced in the host compartments affected by MCMV, SCMV and MLN diseases since the
infected plants are easy to identify.
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Figure 7: Case 5: R2
0,a > 1, RMCMV

0,inv > 1, R2
0,b > 1, and RSCMV

0,inv < 1 - Convergence to E∗
MCMV
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Figure 8: Case 6: R0,b > R0,a > 1, and RMCMV
0,inv < 1, RSCMV

0,inv < 1: bi-stable case. Convergence towards one boundary
equilibrium depends on the initial conditions: the red-dotted trajectories converge to ESCMV while the blue ones converge
to EMCMV .

6. Conclusion

For centuries, and with the expansion of mankind around the world, many crops have been transferred
from their original area to new areas. Maize is one of the best example: it was imported back into Europe
in 1493 by Christopher Colombus, and then spread throughout the world. Simultaneously, due to these
movements, diseases and pests traveled too and also new diseases appeared. Since then, these dynamics
have accelerated such that the impact of diseases has become even worse, thanks to local environmental
changes and also by improving communication channels between countries and continents. Crops are
simultaneously and strongly impacted by various diseases and also pests. While co-infection is relatively
common in crops, synergistic interactions are not so common: since all mechanisms that drive synergism
are not well known, it is very difficult to study in the field and also to consider control strategies. Modeling
can be a way to help field researchers to test hypothesis before field experiments or/and to focus on specific
experiments and in protocol building. Last, but not least, mathematical modeling and analysis can help
to design control strategies or combination of strategies. In this work, we highlight the importance of
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Table 7: Case 7 Reproduction numbers.

R2
0,a=MCMV R2

0,b=SCMV RSCMV
0,inv R̂SCMV

0,inv

1.3212 0.9193 1.0901 1.2023

Table 8: Case 8 Reproduction numbers.

R2
0,b=SCMV R2

0,a=MCMV RMCMV
0,inv R̂MCMV

0,inv

1.2179 0.9404 1.2929 1.8459
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Figure 9: Case 7 & 8: Convergence to the MLN equilibrium, E∗
MLN, when one basic reproduction number is less than one

while the related invasive reproduction number is greater than one.

Table 9: Case 9 Reproduction numbers.

R2
0,a=MCMV RMCMV

0,inv R̂MCMV
0,inv R2

0,b=SCMV RSCMV
0,inv R̂SCMV

0,inv

1.3212 1.4951 2.5934 1.2179 1.2445 1.5928

estimating the basic and invasion reproduction numbers because they summarized the whole dynamics
of the system. We also highlight that even if a basic reproduction number is less than one, MLN disease
can occur. So far roguing, i.e., removal of infected plants, seem to be the best strategy but it needs to
be set-up immediately as soon as the MCMV- or SCMV-symptoms are detected.

Like the works done in [33, 32], we do hope that our theoretical work can provide new insights in
the MLND control, and also other (synergistic) co-infection issues. In particular, our study also reveals
a certain lack in the knowledge related to the interactions between the virus, the vectors, and the host,
and, thus, in the parameter estimates.

Further improvements in the models can be made, like taking into account plant growth in the different
epidemiological states. In general this is never studied as observed in [1] because this would require new
and difficult field observations. However, this would help to consider the impact of the MLN disease at
different stages of the growth process taking into account the role of managing factors (cultivar choice,
irrigation, etc). Last, since MLN-resistant Maize varieties exist, it would be interesting to estimate the
optimal ratio of resistant plant to mix with standard healthy plants within a crop, like in [56, 46], to
dilute the MLN-risk. Another option, more interesting for smallholder farmers, would be to consider
Maize intercropping with non-susceptible host plants.
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0,inv > 1 - Convergence to a MLN equilibrium, E∗
MLN .
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Figure 11: Impact of the roguing rate on the dynamics of the disease.
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Appendix A The boundary equilibria: EMCMV and ESCMV

We detail the calculations for the MCMV infection only. We have to solve the following system

Λp − βpa
I∗a
Va
H∗p + ωpaI

∗
pa − µphH∗p = 0

βpa
I∗a
Va
H∗p − (ωpa + µpa) I∗pa = 0

Λa − µaS∗a − βap
I∗pa
N∗

S∗a + δI∗a = 0

βap
I∗pa
N∗

S∗a − δI∗a − µaI∗a = 0

. (15)

Summing the first two equations, leads to the relationship

µphH
∗
p + µpaI

∗
pa = Λp.

That is
H∗p = Ñp −

µpa
µph

I∗pa,

with µpa ≥ µph. Then

H∗p + I∗ap = N∗ = Ñp −
µpa − µph

µph
I∗pa.

From equation (15)2, we have

βpa
I∗a
Ṽa

(
Ñp −

µpa
µph

I∗pa

)
= (ωpa + µpa) I∗pa. (16)

Summing the last two equations leads to S∗a + I∗a = Ṽa and from the last equation we derive

βap
I∗pa
N∗

S∗a = βap
I∗pa

Ñp −
µpa − µph

µph
I∗pa

(
Ṽa − I∗a

)
= (δ + µa) I∗a ,

that is

I∗a
Ṽa

=

βap
I∗pa

Ñp−
µpa − µph

µph
I∗pa

βap
I∗pa

Ñp−
µpa − µph

µph
I∗pa

+ δ + µa
=

βapI
∗
pa

βapI∗pa + (δ + µa)

(
Ñp −

µpa − µph
µph

I∗pa

) .

Replacing
I∗a
Ṽa

in (16) with the above expression, with Ipa 6= 0, we obtain

βpaβap

(
Ñp −

µpa
µph

I∗pa

)
= (ωpa + µpa)

(
βapI

∗
pa + (δ + µa)

(
Ñp −

µpa − µph
µph

I∗pa

))

(βpaβap − (ωpa + µpa) (δ + µa)) Ñp = (ωpa + µpa)

(
βpaβap

ωpa + µpa

µpa
µph

+ βap − (δ + µa)
µpa − µph

µph

)
I∗pa

(δ + µa)
(
R2

0,a − 1
)
Ñp =

(
βap + (δ + µa)

(
1 +

µpa
µph

(
R2

0,a − 1
)))

I∗pa

that is

I∗pa =

(
R2

0,a − 1
)

1 +
βap

δ + µa
+
µpa
µph

(
R2

0,a − 1
)Ñp

Thus, when µpa ≥ µph, I∗pa exists iff R0,a > 1. We also deduce that E∗MCMV exists iff R0,a > 1.
We obtain the same result for the SCMV virus: E∗SCMV exists iff R0,b > 1.
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Appendix B Local Asymptotic Stability of the boundary equilibria

Let us first assume that µph = µpa = µpb = µpm. Then Hp = Ñ − Ipa − Ipb − Ipm, Sa = Ṽa − Ia, and

Sb = Ṽb − Ib. Thus, system (1)-(2)-(3) becomes

dy

dt
=



βpa
Ia

Ṽa

(
Ñ − Ipa − Ipb − Ipm

)
− βam

IpaIb

Ṽb
− (ωpa + µpa)Ipa(

βap
Ipa

Ñp
+ βma

Ipm

Ñp

)(
Ṽa − Ia

)
− (δ + µa)Ia

βpb
Ib
Ṽb

(
Ñ − Ipa − Ipb − Ipm

)
−
(
βbm

Ia
Va

+ (ωpb + µpb)

)
Ipb

βam
Ib
Vb
Ipa + βbm

Ia
Va
Ipb − µpmIpm(

βbp
Ipb

Ñp
+ βmb

Ipm

Ñp

)(
Ṽb − Ib

)
− (γ + µb)Ib


with y = (Ipa, Ia, Ipb, Ipm, Ib). Then, we compute the Jacobian J(X) is given by

J1,1 J1,2 −βpa
Ia

Ṽa

−βpa
Ia

Ṽa

−βam
Ipa
Vb

βap

(
Ṽa − Ia

)
Ñp

J2,2 0 βma
Ṽa − Ia

Ñp

0

−βpb Ib
Ṽb

−βpb Ib
Ṽb

− βbm
Ipb
Va

J3,3 −βpb Ib
Ṽb

βpb
Ñp − Ipa − Ipb − Ipm

Ṽb

βam
Ib
Vb

βbm
Ipb
Va

βbm
Ia
Va

−µpm βam
Ipa
Vb

βbp
Ṽb

Ñp

− βmb
Ib

Ñp

βmb
Ṽb

Ñp

− βmb
Ib

Ñp

J5,5


,

with

J1,1 = −
(
βpa

Ia

Ṽa
+ βam

Ib

Ṽb
+ (ωpa + µpa)

)
,

J1,2 = βpa

(
Ñp − Ipa − Ipb − Ipm

)
Va

,

J2,2 = −

(
βap

Ipa

Ñp
+ βma

Ipm

Ñp

)
− (δ + µa)

J3,3 = βbm
Ia
Va

+ (ωpb + µpb),

J5,5 = −

(
βbp

Ipb

Ñp
+ βmb

Ipm

Ñp

)
− (γ + µb).

We deduce J(E∗MCMV) as follows

−
(
ωpa + µpa + βpa

I∗a

Ṽa

)
βpa

Ñp − I∗pa

Ṽa

−βpa
I∗a

Ṽa

0 βam
I∗pa
Vb

βap
S∗
a

Ñp

−
(
βap

I∗pa

Ñp

)
− (δ + µa) 0 βma

S∗
a

Ñp

0

0 0 −
(
βbm

I∗a
Va

+ (ωpb + µpb)

)
0 βpb

H∗
p

Ṽb

0 0 βbm
I∗a

Ṽa

−µpm βam
I∗pa

Ṽb

0 0 βbp
Ṽb

Ñp

βmb
Ṽb

Ñp

−(γ + µb)


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The Jacobian J(E∗MCMV) can be written as a triangular upper-block matrix

(
M11 M12

0 M22

)
, such that

it suffices to study Mii, for i = 1, 2. We easily check that tr(M11) < 0 and

det(M11) =

(
βpa

I∗a
Va

+ ωpa + µpa

)(
βap

I∗pa
N

+ δ + µa

)
− βap

(
1− I∗a

Ṽa

)
βpa

(
1−

I∗pa

Ñp

)

det(M11) =

(
βpa

I∗a
Ṽa

+ (ωpa + µpa)

)(
βap

I∗pa

Ñp
+ (δ + µa)

)
− βapβpa

(
1− I∗a

Ṽa

)(
1−

I∗pa

Ñp

)
=

= (ωpa + µpa) (δ + µa)− βapβpa + βpa
I∗a
Ṽa

((δ + µa) + βap) + βap
I∗pa

Ñp
((ωpa + µpa) + βpa)

= (ωpa + µpa) (δ + µa)

(
1−R2

0,a +
I∗a
Ṽa

(
βpa

ωpa + µpa
+R2

0,a

)
+
I∗pa

Ñp

(
βap

δ + µa
+R2

0,a

))
Since

I∗pa =

(
R2

0,a − 1
)

βap
(δ + µa)

+R2
0,a

Ñp,

we deduce

det(M11) = (ωpa + µpa) (δ + µa)

1−R2
0,a +

I∗a
Ṽa

(
βpa

ωpa + µpa
+R2

0,a

)
+

(
R2

0,a − 1
)

βap
(δ + µa)

+R2
0,a

(
βap

δ + µa
+R2

0,a

)
= (ωpa + µpa) (δ + µa)

(
βpa

ωpa + µpa
+R2

0,a

)
I∗a
Ṽa

> 0.

Thus M11 is a stable Matrix. Then, we consider

M22 =


−
(
βbm

I∗a
Va

+ (ωpb + µpb)

)
0 βpb

H∗p

Ṽb

βbm
I∗a
Ṽa

−µpm βam
I∗pa

Ṽb

βbp
Ṽb

Ñp
βmb

Ṽb

Ñp
−(γ + µb)

 .

In fact matrix M22 is a Metzler matrix with the following regular splitting

M +N =


0 0 βpb

H∗p

Ṽb

βbm
I∗a
Ṽa

0 βam
I∗pa

Ṽb

βbp
Ṽb

Ñp
βmb

Ṽb

Ñp
0

+

 −
(
βbm

I∗a
Va

+ (ωpb + µpb)

)
0 0

0 −µpm 0
0 0 − (γ + µb)

 ,

where M is a non negative matrix, and N is a stable Metzler matrix. It is well known that M + N
is stable if and only if ρ(−N−1M) < 1. However, we have M = F and N = −V where F and V are
the matrices defined in subsection 3.3. We infer that the stability of M22 is thus related to the invasion
reproduction number, RSCMV

inv . Thus it is easy to conclude that if RSCMV
inv < 1 and R2

0,a > 1, then
E∗MCMV is asymptotically stable.

If we assume that µpm, µpb, µpa ≥ µph, then the proof is a bit more tricky because we have to consider
the system with (Hp, Ipa, Ia, Ipb, Ib, Ipm), such that the Jacobian matrix at E∗MCMV is a 6-order upper-

block triangular matrice J(E∗MCMV) =

(
J11 J12
0 M22

)
, where M22 is the same invasion matrix than in
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the previous proof, and

J11 =



−µph − βpa
I∗a
Ṽa

ωpa −βpa
H∗p

Ṽa

βpa
I∗a
Ṽa

− (ωpa + µpa) βpa
H∗p

Ṽa

−βapI∗pa

(
Ṽa − I∗a

)
(
N∗p
)2 βap

(
Ṽa − I∗a

)
(
N∗p
)2 H∗p −βap

I∗pa
N∗p
− (δ + µa)


.

To show that J11 is a stable matrix, we will use the well known-result [57]: let A be a 3× 3 real matrix.
If tr(A), det(A) and det(A[2]) are all negative, then all of the eigenvalues of A have negative real part.
Of course tr(J11) < 0. Then, we compute

det(J11) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−µp − βpa
Ia

Ṽa
ωpa −βpa

Hp

Ṽa

βpa
Ia

Ṽa
− (ωpa + µpa) βpa

Hp

Ṽa

− (βapIpa)

(
Ṽa − Ia

)
(
N∗p
)2 βap

(
Ṽa − Ia

)
(
N∗p
)2 H∗p −

(
βap

Ipa
N∗p

)
− (δ + µa)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

−
(
µph + βpa

Ia

Ṽa

) ∣∣∣∣∣∣∣∣∣
− (ωpa + µpa) βpa

Hp

Ṽa

βap

(
Ṽa − Ia

)
(
N∗p
)2 H∗p −

(
βap

I∗pa
N∗p

)
− (δ + µa)

∣∣∣∣∣∣∣∣∣
+βpa

I∗a
Ṽa

∣∣∣∣∣∣∣∣∣
βap

(
Ṽa − I∗a

)
(
N∗p
)2 H∗p −

(
βap

I∗pa
N∗p

)
− (δ + µa)

ωpa −βpa
Hp

Ṽa

∣∣∣∣∣∣∣∣∣+ µpaβpaβap
Ipa
N∗p

Hp

N∗p

(
1− Ia

Ṽa

)

=

(
µph + βpa

Ia

Ṽa

)(
βpaβap

Hp

N∗p

Hp

N∗p

(
1− Ia

Ṽa

)
− (ωpa + µpa)

((
βap

I∗pa
N∗p

)
+ (δ + µa)

))
+

+βpa
Ia

Ṽa

(
ωpa

((
βap

I∗pa
N∗p

)
+ (δ + µa)

)
− βpaβap

Hp

N∗p

Hp

N∗p

(
1− Ia

Ṽa

))
+ µpaβpaβap

Ipa
N∗p

Hp

N∗p

(
1− Ia

Ṽa

)
=

= µph

(
βpaβap

Hp

N∗p

Hp

N∗p

(
1− Ia

Ṽa

)
− (ωpa + µpa)

(
βap

I∗pa
N∗p

+ (δ + µa)

))
−βpa

Ia

Ṽa
(ωpa + µpa)

(
βap

I∗pa
N∗p

+ (δ + µa)

)
+

+βpa
Ia

Ṽa

(
ωpa

((
βap

I∗pa
N∗p

)
+ (δ + µa)

))
+ µpaβpaβap

Ipa
N∗p

Hp

N∗p

(
1− Ia

Ṽa

)
=

= µph

(
βpaβap

Hp

N∗p

(
1− Ia

Ṽa

)
− (ωpa + µpa)

((
βap

I∗pa
N∗p

)
+ (δ + µa)

))
−βpa

Ia

Ṽa
µpa

((
βap

I∗pa
N∗p

)
+ (δ + µa)

)
= µph

(
βpaβap

Hp
∗

N∗p

(
1− I∗a

Ṽa

)
−
(
ωpa + µpa + βpa

Ia

Ṽa

µpa
µph

)(
βap

I∗pa
N∗p

+ (δ + µa)

))
Using the fact that

I∗pa =

(
R2

0,a − 1
)

βap
(δ + µa)

+ 1 +
µpa
µhp

(
R2

0,a − 1
)Ñp

Ia

Ṽa
=

βapI
∗
pa

βapI∗pa + (δ + µa)

(
Ñp −

µpa − µph
µph

I∗pa

)
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1− Ia

Ṽa
=

(δ + µa)

(
Ñp −

µpa − µph
µph

I∗pa

)
βapI∗pa + (δ + µa) Ñp

=
(δ + µa)N∗p

βapI∗pa + (δ + µa) Ñp

Hp = Ñp −
µpa
µhp

Ipa = Ñp −
µpa
µhp

(
R2

0,a − 1
)

βap
(δ + µa)

+ 1 +
µpa
µhp

(
R2

0,a − 1
) =

βap
(δ + µa)

+ 1

βap
(δ + µa)

+ 1 +
µpa
µhp

(
R2

0,a − 1
)Ñp,

we deduce

βpaβap
H∗p
N∗p

(
1− I∗a

Ṽa

)
= βpaβap

βap
(δ + µa)

+ 1

βap
(δ + µa)

+ 1 +
µpa
µhp

(
R2

0,a − 1
) (δ + µa)

βapI∗pa + (δ + µa) Ñp
Ñp =

= βpaβap

 βap + (δ + µa)

βap + (δ + µa)

(
1 +

µpa
µhp

(
R2

0,a − 1
))
 (δ + µa)

βapI∗pa + (δ + µa) Ñp
Ñp.

However
(δ + µa) Ñp

βapI∗pa + (δ + µa) Ñp
=

(δ + µa)

βap

(
R2

0,a − 1
)

βap
(δ + µa)

+ 1 +
µpa
µhp

(
R2

0,a − 1
) + (δ + µa)

=
1

βap

(
R2

0,a − 1
)

βap + (δ + µa)

(
1 +

µpa
µhp

(
R2

0,a − 1
)) + 1

=

βap + (δ + µa)

(
1 +

µpa
µhp

(
R2

0,a − 1
))

βapR2
0,a + (δ + µa)

(
1 +

µpa
µhp

(
R2

0,a − 1
)) ,

such that

βpaβap
H∗p
N∗p

(
1− I∗a

Ṽa

)
= βpaβap

 βap + (δ + µa)

βapR2
0,a + (δ + µa)

(
1 +

µpa
µhp

(
R2

0,a − 1
))
 (δ + µa) Ñp

βapI∗pa + (δ + µa) Ñp

≤ βpaβap
R2

0,a

= (ωpa + µpa) (δ + µa)

Thus, immediately, we deduce
det(J) < 0.

Let’s consider the second compound matrice of J11 (see [58]) J
[2]
11 =

−µph − βpa
I∗a
Ṽa

−
(
ωpa + µpa

)
βpa

H∗
p

Ṽa
βpa

H∗
p

Ṽa

βap

(
Ṽa − I∗a

)
(
N∗
p

)2 H∗
p −µph − βpa

I∗a
Ṽa

−

βap I∗pa
N∗
p

 − (δ + µa) ωpa

(
βapIpa

) (Ṽa − I∗a
)

(
N∗
p

)2 βpa
I∗a
Ṽa

−
(
ωpa + µpa

)
−

βap I∗pa
N∗
p

 − (δ + µa)

 .

We have det
(
J [2]
)

=

−
(
µph + βpa

I∗a
Ṽa

+ (ωpa + µpa)

) ∣∣∣∣∣∣∣∣
−µph − βpa

I∗a
Ṽa
−
(
βap

I∗pa
N∗p

)
− (δ + µa) ωpa

βpa
I∗a
Ṽa

− (ωpa + µpa)−
(
βap

I∗pa
N∗p

)
− (δ + µa)

∣∣∣∣∣∣∣∣+
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+βap

(
Ṽa − I∗a

)
(
N∗p
)2 H∗p

∣∣∣∣∣∣∣∣
βpa

I∗a
Ṽa

− (ωpa + µpa)−
(
βap

I∗pa
N∗p

)
− (δ + µa)

βpa
H∗p

Ṽa
βpa

H∗p

Ṽa

∣∣∣∣∣∣∣∣+

(βapIpa)

(
Ṽa − I∗a

)
Ñ2
p

∣∣∣∣∣∣∣∣
βpa

H∗p

Ṽa
βpa

H∗p

Ṽa

−µph − βpa
I∗a
Ṽa
−
(
βap

I∗pa
N∗p

)
− (δ + µa) ωpa

∣∣∣∣∣∣∣∣
= −

(
µph + βpa

I∗a
Ṽa

+ ωpa + µpa

)((
µph + βpa

I∗a
Ṽa

+ βap
I∗pa
N∗p

+ δ + µa

)(
ωpa + µpa + βap

I∗pa
N∗p

+ δ + µa

)
− ωpaβpa

I∗a
Ṽa

)
+

+βap

(
Ṽa − I∗a

)
(
N∗p
)2 H∗p

(
βpa

H∗p

Ṽa

(
βpa

I∗a
Ṽa

+

(
(ωpa + µpa) +

(
βap

I∗pa
N∗p

)
+ (δ + µa)

)))
+

+ (βapIpa
∗)

(
Ṽa − I∗a

)
(
N∗p
)2 (

βpa
H∗p

Ṽa

(
ωpa + µph + βpa

I∗a
Ṽa

+

(
βap

I∗pa
N∗p

)
+ (δ + µa)

))

= −
(
µph + βpa

I∗a
Ṽa

+ ωpa + µpa

)(
µph + βap

I∗pa
N∗p

+ δ + µa

)(
ωpa + µpa + βap

I∗pa
N∗p

+ δ + µa

)
+

−ωpa
(
µph + βpa

I∗a
Ṽa

+ ωpa + µpa

)(
µph + βap

I∗pa

Np

+ δ + µa

)
+

+βapβpa
Hp

N∗p

(
1− I∗a

Ṽa

)(
βpa

Ia

Ṽa
+

(
(ωpa + µpa) +

(
βap

I∗pa
N∗p

)
+ (δ + µa)

))
=

=

(
βapβpa

H∗p
N∗p

(
1− I∗a

Ṽa

)
−
(
µph + βpa

I∗a
Ṽa

+ ωpa + µpa

)(
µph + βap

I∗pa
N∗p

+ δ + µa

))(
ωpa + µpa + βap

I∗pa
N∗p

+ δ + µa

)
+

−ωpa
(
µph + βpa

I∗a
Ṽa

+ ωpa + µpa

)(
µph + βap

I∗pa
N∗p

+ δ + µa

)
+ βapβpa

H∗p
N∗p

(
1− I∗a

Ṽa

)
βpa

I∗a
Ṽa
.

We showed above that

βpaβap
H∗p
N∗p

(
1− I∗a

Ṽa

)
≤ (ωpa + µpa) (δ + µa) ,

such that we have

det
(
J [2]
)
≤ ((ωpa + µpa) (δ + µa)

−
(
µph + βpa

I∗a
Ṽa

+ ωpa + µpa

)(
µph + βap

I∗pa

Np

+ δ + µa

))(
ωpa + µpa + βap

I∗pa

Np

+ δ + µa

)
−ωpa

(
µph + βpa

I∗a
Ṽa

+ ωpa + µpa

)(
µph + βap

I∗pa

Np

+ δ + µa

)
+ (ωpa + µpa) (δ + µa)βpa

I∗a
Ṽa
.

Finally, we deduce

det
(
J [2]
)
≤ −

((
µph + βpa

I∗a
Ṽa

)(
µph + βap

I∗pa

Np

+ δ + µa

+ (ωpa + µpa)

(
µph + βap

I∗pa

Np

)))(
ωpa + µpa + βap

I∗pa

Np

+ δ + µa

)
−ωpa

(
µph + βpa

I∗a
Ṽa

+ ωpa + µpa

)(
µph + βap

I∗pa

Np

+ δ + µa

)
+ (ωpa + µpa) (δ + µa)βpa

I∗a
Ṽa

< 0.

Altogether, when R2
0,a > 1 and RSCMV

0,inv < 1, then E∗MCMV exists and is LAS.

Of course, using the same reasoning, we deduce that if R0,b > 1 and RMCMV
0,inv < 1, then E∗SCMV exists

and is LAS.
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