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ABSTRACT

The development of statistical methods aiming to 
improve the accuracy of genomic predictions is of ut-
most value for dairy goat breeding programs. In this 
context, the use of haplotypes, instead of individual 
SNP, could improve the accuracy of genomic predic-
tions by better capturing the effect of causal variants, 
instead of relying solely on linkage disequilibrium with 
individual SNP. Haplotypes can be included in genomic 
evaluation models in various ways, such as fitting them 
as pseudo-SNP (i.e., haplotypes converted into biallelic 
SNP format). This can be easily incorporated in the 
software already available for single-step genomic pre-
dictions (ssGBLUP). Therefore, the aim of this study 
was to compare the predictive performances of ssGB-
LUP and weighted ssGBLUP (WssGBLUP) based on 
individual SNP or on haplotypes fitted as pseudo-SNP. 
Performance was compared in terms of accuracy, bias, 
and weights for SNP versus pseudo-SNP. Genomic pre-
dictions were performed on 5 milk production traits, 
5 udder type traits, and somatic cell score (SCS). The 
training population was formed by 307 Alpine and 247 
Saanen progeny-tested bucks, genotyped using the Il-
lumina Goat SNP50 BeadChip (Illumina, San Diego, 
CA). The validation population included 205 Alpine 
and 146 Saanen young bucks. The accuracy of genomic 
predictions was evaluated in the validation population 
as the Pearson correlation between genomic estimated 
breeding values (GEBV), predicted based on various 
methods, and daughter deviation (DD) based on the 
official genetic evaluation of January 2016. Haplotype-
based models were shown to improve the performance 
of genomic predictions for some traits. Gains in ac-
curacy of up to +19% (0.310 to 0.368 for fat yield) in 
Alpine and up to +3% (0.361 to 0.373 for udder shape) 

in Saanen were observed with ssGBLUP. The ssGB-
LUP accuracies averaged across all traits and methods 
were equal to 0.467 (SNP) versus 0.471 (pseudo-SNP) 
in Alpine and 0.528 (SNP) versus 0.523 (pseudo-SNP) 
in Saanen. With WssGBLUP, gains in accuracy of up 
to 24% (0.298 to 0.370 for fat yield) in Alpine and 
14% (0.431 to 0.490 for SCS) in Saanen were observed 
with WssGBLUP. Accuracies of WssGBLUP averaged 
across all traits and methods were equal to 0.455 (SNP 
and pseudo-SNP) in Alpine and 0.542 (SNP) versus 
0.528 (pseudo-SNP) in Saanen. The average (±SD) 
slope of the regression of DD on GEBV for the vali-
dation animals, across all breeds, traits and scenarios, 
were equal to 0.82 ± 0.20 (SNP) and 0.83 ± 0.18 
(pseudo-SNP) for ssGBLUP and 0.67 ± 0.16 (SNP) 
and 0.65 ± 0.16 (pseudo-SNP) for WssGBLUP, which 
suggest that haplotype-based models and ssGBLUPSNP 
were similarly biased. However, WssGBLUP was more 
biased than ssGBLUP, and its gains in accuracies were 
limited to milk production traits. Despite the fact that 
genomic predictions based on haplotypes require ad-
ditional steps and time, the observed gains in GEBV 
predictive performance indicate that haplotype-based 
methods could be recommended for some traits.
Key words: genomic selection, haplotype-based 
models, individual SNP-based models, ssGBLUP, 
weighted ssGBLUP

INTRODUCTION

The recent adoption of genomic selection in dairy 
goats (Rupp et al., 2016) has nurtured the development 
of sophisticated genomic evaluation methods. Genomic 
evaluation aims to accurately identify the breeding can-
didates with highest genetic merit at an earlier age and 
therefore increase genetic progress for economically im-
portant traits. A class of genomic evaluation methods 
that uses large-scale genomic information to estimate 
genetic relationships between pairs of animals includes 
the genomic best linear unbiased prediction (GBLUP; 
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VanRaden, 2008) as well as its application in a 2-step 
GBLUP (e.g., Ricard et al., 2013; Edel et al., 2017) and 
single-step GBLUP (ssGBLUP; Legarra et al., 2009; 
Misztal et al., 2009; Aguilar et al., 2010; Christensen 
and Lund, 2010). These methods are at least as ac-
curate as the pedigree-based BLUP (Calus et al., 2014; 
Piccoli et al., 2020). However, a limitation of these 
GBLUP methods is that they assume that all SNP 
effects come from the same distribution, making no dis-
tinction between polygenic traits and traits under the 
influence of major genes (Legarra et al., 2009), which 
might not be true for complex traits with important 
QTL. To overcome this limitation, the weighted ssGB-
LUP (WssGBLUP) method was proposed to perform 
genome-wide association studies and genomic evalua-
tions more accurately when the assumption of a single 
distribution is not met (Wang et al., 2012; Zhang et al., 
2016). In brief, WssGBLUP allocates greater weights 
to SNP that are in high linkage disequilibrium (LD) 
with a causal mutation or associated with QTL with 
relatively large effect (Wang et al., 2012). Zhang et al. 
(2016) proposed alternative WssGBLUP approaches to 
use common weights for consecutive SNP and create 
the weighted genomic relationship matrix. The com-
mon weight for a defined genomic window is calculated 
as the sum of all SNP weights in the window (WssG-
BLUPSum) or as the maximum weight in the window 
(WssGBLUPMax; Teissier et al., 2018, 2019).

Teissier et al. (2019) evaluated the accuracy of ge-
nomic predictions from ssGBLUP and WssGBLUP and 
its alternatives (WssGBLUPSum and WssGBLUPMax) 
on all traits under artificial selection in French dairy 
goats (Alpine and Saanen breeds). These studies 
showed that accuracies were up to 14% greater when 
using WssGBLUP and its alternatives compared with 
ssGBLUP for traits with a known major gene or QTL. 
For instance, this improvement was observed for pro-
tein content, which is affected by the αS1-casein gene, 
located on Capra hircus chromosome 6 (CHI 6), which 
is segregating in both Alpine and Saanen goats. Milk, 
fat, and protein yields, udder floor position, and rear 
udder attachment were also improved for the Saanen 
breed, possibly due to a large QTL positioned on CHI 
19. For the other traits, with a more polygenic genetic 
background, the accuracies with WssGBLUP and its 
alternatives were similar or slightly lower (i.e., from 5 
to 0% lower) compared with ssGBLUP. These findings 
indicate that WssGBLUP and its alternatives are suit-
able methods to consider the presence of major genes 
or QTL in genomic evaluations.

Another promising strategy to improve the accuracy 
of genomic predictions is the use of haplotypes (Calus et 

al., 2008; Cuyabano et al., 2014; Feitosa et al., 2020). A 
haplotype can be defined as a group of nearby SNP on 
the same homologous chromosome, which are frequently 
inherited together (International HapMap Consortium, 
2005). The use of haplotypes in genomic evaluations 
has some advantages compared with fitting individual 
SNP. Haplotypes are more informative than SNP to 
describe recent identical-by-descendent relationships, 
and they may also capture LD with multiallelic QTL 
better than individual SNP, which are often biallelic 
(Meuwissen et al., 2014). Additionally, long haplotypes 
might be better to differentiate identical-by-descendent 
and identical-by-state, as long shared haplotypes are 
likely to be inherited from more recent common ances-
tors (Broman and Weber, 1999). The SNP present on 
a SNP chip panel are often chosen to have moderate to 
high minor allele frequency. Therefore, these SNP are 
usually old mutations, as new ones have low frequency 
when they first emerge (Meuwissen et al., 2014), and, 
consequently, individual SNP tend to be less efficient 
than haplotypes to trace new mutations (Meuwissen et 
al., 2014).

In practice, the performance of genomic predictions 
based on haplotypes vary across traits and species. For 
instance, some studies reported no improvement in 
accuracy of genomic predictions based on haplotypes 
(Hickey et al., 2013; Meuwissen et al., 2014; Uemoto et 
al., 2017), whereas others showed improved accuracies 
when fitting haplotypes (Jónás et al., 2016; Hess et al., 
2017; Karimi et al., 2018). Haplotypes can be defined 
by grouping together consecutive SNP (Hickey et al., 
2013; Ferdosi et al., 2016), or using LD information to 
construct haploblocks (Cuyabano et al., 2014). Jónás et 
al. (2016) proposed another approach, using preselec-
tion of SNP and optimization of allele frequencies to 
construct haplotypes. They compared the accuracy of 
genomic evaluation with haplotypes constructed around 
QTL (selected based on the BayesCpi method) and ob-
served an increase in genomic EBV (GEBV) accuracy 
by 0.7 to 0.9 percentage points for 5 milk production 
traits. A promising alternative to integrate haplotypes 
into genomic prediction models is to convert them into 
pseudo-SNP (Karimi et al., 2018; Feitosa et al., 2020), 
which can be easily implemented in commercial ssGB-
LUP software when constructing the genomic relation-
ship matrix (G). In this context, the aim of the present 
study was to investigate alternative single-step genomic 
prediction methods using haplotypes fitted as pseudo-
SNP compared with individual SNP markers. Accuracy 
and bias (slope of regression) of genomic evaluations 
from ssGBLUP and WssGBLUP, when fitting SNP or 
pseudo-SNP, were used as comparison criteria.
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MATERIALS AND METHODS

Data Sets and Data Quality Control

The data sets used were provided by the French Na-
tional Milk Recording System (Jouy-en-Josas, France) 
and were from the official genetic evaluation (Larroque 
et al., 2011) of January 2016. They contained phe-
notypes, pedigrees, genotypes (Illumina Goat SNP50 
BeadChip; Illumina, San Diego, CA), and environmen-
tal effects for the Alpine and Saanen breeds. No animal 
handling and ethical committee approval was needed, 
as all the data sets were obtained from pre-existing 
databases.

Five milk production traits, 5 udder type traits, and 
SCS were considered in this study. The milk produc-
tion traits were milk, fat, and protein yields (MY, 
FY and PY, respectively; in kg) and fat and protein 
content (FC and PC, in g/kg of milk). The numbers 
of phenotypes were approximately 3 and 4 million for 
the Saanen and Alpine breed, respectively (Table 1). 
The udder type traits, scored from 1 to 9, were udder 
floor position (UFP), rear udder attachment (RUA), 
udder shape (US), teat angle (TA), and fore udder 
(FU). For udder type traits, there were approximately 
150,000 and 100,000 records for the Alpine and Saanen 
breeds, respectively (Table 1). The smaller number of 
records for the udder type traits is due to a single mea-
surement being performed in each animal’s lifetime and 
a shorter period of recording. This study also included 
1.3 and 1.0 million records for SCS (calculated as log-
transformed SCC) for Alpine and Saanen, respectively.

The pedigree file contained animals born between 
1936 and 2012. It included 1,446,296 Alpine and 
1,097,384 Saanen animals for the milk production traits. 
For udder type traits, the pedigree file included 290,656 
Alpine and 206,154 Saanen. For SCS, the pedigree con-
tained 788,576 Alpine and 648,461 Saanen individuals. 

Unknown parent groups were also defined, in which one 
group included all animals born before 1975 and then 
pooled groups (sires and dams) were defined every 2 yr. 
Sires and dams were pooled together, as few animals 
had only unknown dams.

A total of 2,056 Alpine and 1,349 Saanen animals 
born between 1980 and 2012 were genotyped with the 
Illumina Goat SNP50 BeadChip (50K; Tosser-Klopp et 
al., 2014), which contained 53,347 SNP. Quality control 
was applied within breed, and details of the quality 
control procedure can be found in Teissier et al. (2018). 
A total of 46,849 SNP and 1,749 Alpine (512 males and 
1,237 females) and 1,206 Saanen (393 males and 813 
females) remained in the genomic data set for further 
analyses.

Genomic Predictions Fitting Individual SNP

ssGBLUP Method. The ssGBLUP method uses 
simultaneously all phenotypes, pedigree records, and 
genotypes to estimate GEBV for all animals included 
in the analyses (Legarra et al., 2009). Genomic evalu-
ations in this study were based on 2 different models: 
one for milk production traits and SCS and another 
for udder type traits. Analyses were performed within 
breed. For milk production traits and SCS, the model 
used was as follows:

	 y = Xβ + Zu + Wp + e,	 [Model 1]

where y is a vector of phenotypes (MY, FY, PY, FC, 
PC, or SCS), and β is the vector of fixed effects, which 
included herd by year of the phenotypic measurement 
by parity, birth year by year of the phenotypic mea-
surement by region, birth month by year of the pheno-
typic measurement by region, and length of dry period 
(assigned to 10 classes within each parity) by year of 
the phenotypic measurement by region. There were 
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Table 1. Descriptive statistics and heritability estimates (h2) for the 11 traits of Alpine and Saanen goat breeds included in this study1

Trait

Alpine

 

Saanen

Number of records Mean (±SD) h2 Number of records Mean (±SD) h2

Milk yield 3,844,314 802.12 ± 247.37 0.31 2,923,531 823.08 ± 259.40 0.26
Fat yield 3,742,129 28.4 ± 9.69 0.28 2,887,051 27.44 ± 9.51 0.25
Protein yield 3,844,071 24.36 ± 7.87 0.31 2,923,419 24.32 ± 7.74 0.25
Fat content 3,742,129 35.33 ± 5.18 0.48 2,887,051 33.39 ± 4.96 0.51
Protein content 3,844,071 30.42 ± 3.29 0.60 2,923,419 29.68 ± 2.83 0.56
Teat angle 150,676 3.63 ± 0.90 0.42 102,967 4.05 ± 0.85 0.45
Udder floor position 150,676 6.37 ± 1.05 0.51 102,967 6.16 ± 1.15 0.57
Rear udder attachment 150,676 4.57 ± 1.45 0.47 102,967 4.96 ± 1.62 0.52
Fore udder 150,676 3.19 ± 1.00 0.44 102,967 3.38 ± 1.16 0.42
Udder shape 150,676 5.76 ± 1.39 0.40 102,967 6.22 ± 1.33 0.47
SCS 1,262,187 8.52 ± 1.38 0.20 1,031,450 8.71 ± 1.31 0.16
1Heritability estimated in Carillier et al., 2014.
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8,250 herds, 32 birth years (from 1980 to 2012), and 3 
parities (1, 2, or ≥3). France is divided into 4 geo-
graphical regions by the goat breeding management 
program, and these regions were also fitted in the 
model. The same fixed effects were used for milk pro-
duction traits and SCS. u is a vector of GEBV assumed 
to be normally distributed N u0 2, ,Hσ( )  where H repre-

sent the hybrid relationship matrix (Legarra et al., 
2009), p is a vector of random permanent environmen-
tal effects assumed to be normally distributed N p0 2, ,Iσ( )  

I is the identity matrix, and e is a vector of random 
residuals normally distributed N e0 2, .Iσ( )  X is the inci-

dence matrix relating phenotypes to the fixed effects 
(β); Z is the incidence matrix relating phenotypes to 
the GEBV (u); and W is the incidence matrix relating 
the phenotypes to the permanent environmental effects 
(p). For udder type traits, the following model was 
used:

	 y = Xβ + Zu + e,	 [Model 2]

where y, u, and e were the same vectors as described 
for [Model 1], and β is the vector of fixed effects, which 
included herd by year by parity, age at scoring by year, 
and lactation stage at scoring by year. The year effect 
had 32 levels (from 1980 to 2012), and parity had 2 
levels (1 and 2).

The inverse of the H matrix can be obtained thus:

	 H A
G A

− −
− −= +
−















1 1
1

22
1

0 0

0
, 	

where A is the numerator relationship matrix esti-
mated based on the pedigree information, A22 is the A 
matrix for genotyped animals, and G is the genomic re-
lationship matrix constructed as in the first VanRaden 
(2008) method:

	 G
M M

=
−( )

′

=∑2 1
1i

m
i ip p

, 	

where m is the total number of SNP, pi is the observed 
allele frequency at locus i, and M is a centered matrix 
of SNP genotypes with elements Mij = Pij − 2(pj − 0.5), 
where P is a matrix of genotypes (coded −1, 0, 1). In 
this study, results from ssGBLUP based on individual 
SNP (using G) will be termed as ssGBLUPSNP. The 
analyses were performed using blup90iod2 software 
(Misztal et al., 2016).

Weighted ssGBLUP Method. The WssGBLUP 
method allocates SNP weights according to their ef-
fect on the trait to estimate the genetic relationship 
between each pair of animals. This method, proposed 
by Wang et al. (2012) and based on a model similar 
to ssGBLUP, gives different weights for each SNP and 
enables better fitting of major genes or QTL with a 
relatively large effect using a weighted G matrix (G*). 
G* can be defined as follows:

	 G
M DM* =

−( )

′

=∑2 1
1i

m
i ip p

, 	

where A22, M, pi, and m are the same as in G, and D 
is a diagonal matrix of size m × m, where each element 
of the diagonal corresponds to a SNP weight. Weights 
of SNP were calculated based on the GEBV estimated 
using ssGBLUP. The WssGBLUP approach is based 
on an iterative algorithm with different steps: (1) run 
ssGBLUP with the G* matrix (at iteration 1, the SNP 
weights in the D matrix are equal to 1 and equivalent 
to ssGBLUP); (2) estimate SNP effects from solutions 
of GEBV in the previous step; (3) estimate variances 
of the effect of each SNP; (4) normalize the vector of 
variances of SNP effects to get the SNP weights (this 
normalization process ensures that the sum of the 
variances remain constant and equal to the number of 
SNP); (5) use SNP weights to construct the D matrix; 
(6) loop to step 1. Previous studies have shown that the 
second iteration of the WssGBLUP yields the most ac-
curate GEBV (Wang et al., 2012; Teissier et al., 2018), 
and therefore results will be presented only for this 
scenario. Results from WssGBLUP based on individual 
SNP will be termed WssGBLUPSNP. SNP effects, 
weights, and GEBV were estimated using blup90iod2 
software (Misztal et al., 2016).

Haplotypic Genomic Predictions

In this study, haplotypes were constructed based on 
2 different methods: either by considering a fixed num-
ber of adjacent SNP along the chromosome, called the 
distinct windows (DW) method (Ferdosi et al., 2016), 
or by using a fixed LD threshold between each pair 
of SNP, defined here as the LDhap method (Cuyabano 
et al., 2014). The construction of haplotypes requires 
phased genotypes; thus, parental haplotypes were re-
constructed using the FImpute software (Sargolzaei 
et al., 2014). The phasing step was performed within 
breed using all available genotypes. Figure 1 illustrates 
the haplotype construction based on the DW and LDhap 
methods (Cuyabano et al., 2014; Ferdosi et al., 2016), 
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using an example of 2 animals genotyped for 5 SNP and 
having known parental haplotypes.

Haplotype Construction

Distinct Windows Method (DW). The haplo-
types from the DW method were defined by considering 
a fixed number of adjacent SNP along the chromosome 
(Hickey et al., 2013; Ferdosi et al., 2016), as shown in 
Figure 1B. For the last haplotype of the chromosome, 
if the number of adjacent SNP was shorter than those 
predefined, SNP from the previous fragment were used 
to ensure that all haplotypes were of equal size. For 
instance, in the example illustrated in Figure 1B, SNP 
4 was present in haplotypes 2 and 3. The haplotype 
lengths investigated in this study were 2, 5, 10, 15, 20, 
25, 30, 35, 40, 45, and 50 SNP.

Linkage Disequilibrium Method (LDhap). The 
haplotypes based on the LDhap method were constructed 
as suggested by Cuyabano et al. (2014) and are called 
haploblocks. First, LD was computed between all pairs 

of SNP using PLINK software (Purcell et al., 2007) and 
the r2 metric (Rogers and Huff, 2009). This measure 
ranges from 0 (no LD) to 1 (complete LD between 2 
SNP):

	 r2
2

=
( )





( )× ( )
cov ,

var var
,

g g

g g
i j

i j

	

where gi and gj are the genotypes (coded as 0, 1, or 2) 
for SNP i and j. A haploblock was defined as a group 
of SNP in which the LD between each pair of SNP 
was equal to or higher than a fixed threshold. In the 
example shown in Figure 1C, the LD between 2 SNP 
higher than the threshold is represented in black; oth-
erwise it is shown in gray. In the figure, haploblocks are 
presented as a square where all cells are shown in black; 
this includes SNP 1, 2, and 3, which are grouped in the 
same haploblock. The LD between SNP 4 and 5 was 
not high enough to be considered a haploblock with 2 
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Figure 1. Construction of haplotypes using the distinct windows (DW) or linkage disequilibrium (LD) methods. Initially, genotypes are 
phased (A). In DW (B), the size of the window required to create the haplotypes needs to be defined (here, 2 SNP). In LD (C), LD between 
SNP needs to be estimated before construction of the haplotypes.
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SNP, so 2 “haploblocks” with only one SNP were cre-
ated. Thresholds LD of 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 were evaluated.

The Haplotypic Genomic Relationship Matrix

Haplotypes were converted to pseudo-SNP and fitted 
in the genomic prediction models through the genomic 
relationship matrix. To achieve this, each allele of 
each haplotype was considered as a pseudo-SNP, and 
its number of copies was counted for each animal and 
phase (allele count was equal to 0, 1, or 2). The total 
number of haplotypes was different depending on the 
size of haplotype used. Figure 2 shows the results of the 
transformation of haplotypes to pseudo-SNP from the 
example illustrated in Figure 1.

Pseudo-SNP with frequency lower than 1% were 
filtered out from further analyses. Because haplotypes 
are coded as SNP, the implementation of ssGBLUP 
and WssGBLUP with pseudo-SNP is straightforward. 
Thus, pseudo-SNP were used to construct the genomic 
relationship matrix Gpseudo-SNP for the ssGBLUP and 
G*pseudo-SNP for the WssGBLUP:

	 G
M M

pseudo-SNP
pseudo-SNP pseudo-SNP=
′

−( )
=∑2 1
1i

m
i ip p

	

or

	 G
M DM

*pseudo-SNP
pseudo-SNP pseudo-SNP=
′

−( )
=∑2 1
1i

m
i ip p

, 	

where Mpseudo-SNP is a centered matrix of pseudo-SNP, 
constructed based on either the DW or the LDhap method, 
and M′pseudo-SNP is the transpose of the Mpseudo-SNP ma-
trix. The methods using pseudo-SNP will be termed ss-
GBLUPpseudo-SNP(DW) or WssGBLUPpseudo-SNP(DW) 
for the DW method and ssGBLUPpseudo-SNP(LD) or 
WssGBLUPpseudo-SNP(LD) for the LDhap method.

Accuracy and Bias (Inflation or Deflation)  
of Genomic Predictions

The genotyped animals were split into 2 subsets: 
a training and a validation population. The training 
population included 307 Alpine and 247 Saanen bucks 
born between 1993 and 2007, and all information on 
these animals (genotype, ancestral pedigree informa-
tion, their progeny, and their progenies’ phenotypes) 
was kept to estimate the GEBV for each trait. The 
validation set included 205 Alpine and 146 Saanen 
bucks born between 2008 and 2012. For these animals, 
progeny phenotypes were removed from the analyses, 
and only the genotypes and ancestor pedigree infor-
mation were retained. The performance of genomic 
predictions was measured as the squared Pearson cor-
relation between GEBV and daughter deviation (DD; 
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Figure 2. Construction of pseudo-SNP from haplotypes using the distinct windows (DW; A) and linkage disequilibrium (LD; B) methods. 
Pseudo-SNP were constructed based on the number of copies of an individual haplotype (haplotype alleles). The number of pseudo-SNP for one 
individual haplotype is equal to the number of alleles for this haplotype.
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VanRaden and Wiggans, 1991) from the official genetic 
evaluation in January 2016, in the validation popula-
tion. The bias (inflation) of the GEBV was assessed 
based on the slope of the regression of DD on GEBV for 
the validation animals, for which a slope of 1 indicates 
no inflation or deflation.

RESULTS

Number of Haplotypes and Pseudo-SNP Based  
on the DW and LDhap Methods

We first investigated the number of windows and 
pseudo-SNP that were created based on the DW 
and LDhap methods. Figure 3 presents the number of 
windows according to the size of haplotypes (DW) or 
the LD threshold (LDhap). The numbers of windows 
with the DW method in both breeds were identical, 
as exactly the same SNP were retained after quality 
control (46,849 SNP). For DW, the number of windows 
decreased when size of haplotypes increased; that is, it 
ranged from 23,429 genomic windows with a size of 2 
SNP to 937 genomic windows with a size of 50 SNP, 
because rare haplotypes were removed. With LDhap, 
SNP can also be obtained, so this count includes both 
haplotypes and single SNP. For the LDhap method, the 
number of genomic windows increased with a higher 
LD threshold. The number of windows was equal to 
13,635 (+3,810 single SNP) for Alpine and 13,699 
(+3,895 single SNP) for Saanen, with an LD threshold 
equal to 0.01. The number of genomic windows reached 
482 (+45,817 single SNP) in Alpine and 481 (+45,808 
single SNP) in Saanen, for an LD threshold equal to 
0.9 for Alpine and Saanen. The numbers of windows in 
Alpine and Saanen were almost identical, with an aver-
age difference of 110 windows across the LD thresholds. 

In the LDhap method, a proportion of the windows was 
formed by individual SNP. For instance, about 10%, 
50%, and 90% of the genomic windows were individual 
SNP for a threshold of LD of 0.01, 0.1, and 0.5, respec-
tively (results not shown).

Figure 4 presents the number of pseudo-SNP accord-
ing to the DW or LDhap method. For DW, the number 
of pseudo-SNP increased with the size of haplotypes 
between 2 and 5 SNP. A maximum number of pseudo-
SNP was reached for 5 SNP, with 118,151 and 117, 
566 pseudo-SNP in Alpine and Saanen, respectively. 
Subsequently, the number of pseudo-SNP decreased to 
22,029 in Alpine and 19,674 in Saanen for haplotypes 
of size equal to 50 SNP. In Alpine and Saanen, 96% 
of pseudo-SNP remained after filtering based on their 
allele frequency for haplotypes of 2 SNP; this propor-
tion decreased with the size of haplotypes and reached 
only 6% for haplotypes containing 50 SNP. In the LDhap 
method, the highest number of pseudo-SNP was ob-
served for an LD threshold of 0.01 (95,233 pseudo-SNP 
in Alpine and 94,980 pseudo-SNP in Saanen). There-
after, the number of pseudo-SNP decreased rapidly 
and was lower than 50,000 (in both Alpine and Saanen 
breeds) for an LD threshold equal to 0.5. Finally, the 
number of pseudo-SNP reached 46,849 in both breeds, 
with an LD threshold equal to 1 (i.e., only individual 
SNP remained in the analyses).

Pseudo-SNP Weights

We investigated weights for pseudo-SNP in Alpine 
and Saanen for all traits. A well-known gene (αS1-casein) 
is associated with PC in Alpine and Saanen goats on 
CHI 6. Therefore, we used PC to observe the effects of 
DW and LDhap on pseudo-SNP weights for SNP close 
to the αS1-casein gene. Figure 5 presents weights for 
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Figure 3. Number of windows according to the size of haplotype from the distinct windows (DW) method or according the threshold of 
linkage disequilibrium (LD) in the LD method in Alpine and Saanen goat breeds.
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pseudo-SNP located on CHI 6 for PC in the Alpine 
and Saanen breeds according to the different sizes of 
haplotypes (DW) used in this study. Large weights for 
pseudo-SNP were located at the extremities of CHI 6 
for both breeds. In Alpine, the maximum weight for 
pseudo-SNP ranged from 54 (2-SNP haplotypes) to 
454 (50-SNP haplotypes). For 2-SNP haplotypes, the 
sum of weights of the 1% pseudo-SNP with the high-
est weights explained 15% of the sum of weights of all 
CHI 6. It reached 64% for haplotypes with 50 SNP. In 
Saanen, the maximum weights were equal to 92, 410, 
964, 661, 909, and 728 for haplotypes with 2, 5, 10, 15, 
20, and 25 SNP, respectively. The maximum pseudo-
SNP weights for longer haplotypes were equal to 191 in 

Saanen, averaged across all traits. For haplotypes with 
5, 10, 15, 20, and 25 SNP, the sum of weights of the 
1% largest pseudo-SNP explained approximately 40% 
of the sum of weights of all CHI 6 haplotypes; for the 
other chromosomes, it reached 35% on average.

Figure 6 presents the pseudo-SNP weights on CHI 6 
for PC according to the LD threshold in the Alpine and 
Saanen breeds. For the DW method, important weights 
were observed at the extremities of CHI 6. When 
the LD threshold increased, the maximum weight of 
pseudo-SNP decreased in both breeds. In Alpine, the 
maximum weights were equal to 82 for an LD threshold 
equal to 0.01 and 35 for an LD threshold equal to 1. 
In the Saanen breed, the maximum weight was equal 
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Figure 4. Number of pseudo-SNP used in genomic predictions, after filtering out alleles with a frequency lower than 0.01 for the distinct 
windows (DW) and linkage disequilibrium (LD) methods in Alpine and Saanen goat breeds.

Figure 5. Pseudo-SNP weights estimation for protein content in Alpine and Saanen goat breeds for chromosome 6 (CHI 6) using the distinct 
windows (DW) method according to the size of haplotypes.
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to 125 for an LD threshold of 0.01 and equal to 67 for 
an LD threshold equal to 1. In Alpine, and with an LD 
threshold equal to 0.01, the sum of weights of the 1% 
pseudo-SNP with the highest weights explained 24% 
of the sum of weights of all CHI 6 haplotypes. With 
an LD threshold of 1, this proportion decreased to ap-
proximately 13%. The same trend was observed for the 
Saanen breed, in which 23% of all pseudo-SNP weights 
of CHI 6 was explained by the 1% pseudo-SNP with 
the highest weights for an LD threshold equal to 0.01. 
This proportion was approximately constant according 
to the LD threshold and was equal to 21% for an LD 
threshold equal to 1.

The same trend observed for PC in the Saanen 
breed was also observed for MY, FY, PY, FU, RUA, 
UFP, and SCS on CHI 19. The SNP weights on CHI 
19 decreased with increasing LD threshold. A smaller 
peak was observed on CHI 13 for FU based on the DW 
method. For the other traits, no peaks (i.e., pseudo-
SNP with high weights) were observed. For the Alpine 
breed, no peaks were detected for any trait, except for 
PC (results not shown).

Accuracy and Bias of Genomic Prediction

Table 2 presents the accuracies of genomic predictions 
with individual SNP (ssGBLUPSNP) and haplotypes 
[ssGBLUPpseudo-SNP(DW) and ssGBLUPpseudo-SNP(LDhap)] 
for each trait in the Alpine breed. Only the best and 
lowest accuracy estimates according to the haplotype 
size (DW) or threshold of LD (LDhap) are presented. 

The accuracies for each individual trait are presented 
in Supplemental Tables S1 and S2 (https:​/​/​doi​.org/​10​
.3168/​jds​.2020​-18662). In general, we observed slightly 
higher accuracies for ssGBLUPpseudo-SNP(DW) or ssGB-
LUP pseudo-SNP(LDhap) compared with ssGBLUPSNP for 
MY, FY, PY, FC, FU, UFP, US, TA, and SCS, with 
accuracies improving by +1 to +6 percentage points 
for the best scenario. For other traits, slight decreases 
in GEBV accuracies were observed compared with ss-
GBLUPSNP (from −1 to −3 points). Accuracies were 
identical between ssGBLUPSNP, ssGBLUPpseudo-SNP(DW), 
and ssGBLUPpseudo-SNP(LDhap) for PC (0.76) and RUA 
(0.40). Accuracies between ssGBLUPpseudo-SNP(DW) and 
ssGBLUPpseudo-SNP(LDhap) were generally equal between 
traits, but slight (nonsignificant, P > 0.05) differences 
were observed for MY (0.47 and 0.46, respectively), PY 
(0.32 and 0.30, respectively), and US (0.49 and 0.50, 
respectively). Significant (P < 0.05) differences were 
observed for FY (0.37 and 0.33, respectively). For ssG-
BLUPpseudo-SNP(DW), the highest accuracies were mainly 
obtained when fitting long haplotypes (25 to 50 SNP) 
for MY, FY, PY, FC, US, and RUA. For other traits 
(PC, TA, UFP, and FU), the haplotype length that 
yielded the highest accuracies was short and contained 
only 2 SNP. For LDhap, the best accuracies were obtained 
with the threshold of 0.01 for MY, FC, UFP, US, and 
SCS; with a threshold of 0.02 for FY, TA, and RUA; 
with a threshold of 0.05 for PC; with a threshold of 0.1 
for FU; and with a threshold of 0.3 for PY. For the sce-
nario with the lowest accuracy, equal or slightly higher 
accuracies (0 to +1 percentage points) were observed 
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Figure 6. Pseudo-SNP weights estimation for chromosome 6 (CHI 6) for protein content in Alpine and Saanen using the linkage disequilib-
rium (LD) method.

https://doi.org/10.3168/jds.2020-18662
https://doi.org/10.3168/jds.2020-18662
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for 6 out of 11 traits with ssGBLUPpseudo-SNP compared 
with ssGBLUPSNP (MY, FY, PY, FC, US, SCS). For 
PC, TA, UFP, RUA, and FU, a decrease in accuracy 
of up to 3 points was observed with ssGBLUPpseudo-SNP 
compared with ssGBLUPSNP.

Table 3 presents the accuracies of the ssGBLUPSNP, 
ssGBLUPpseudo-SNP(DW), and ssGBLUPpseudo-SNP(LDhap) 
methods for each trait in the Saanen breed. Ac-
curacies were similar between ssGBLUPSNP, ssGB-
LUPpseudo-SNP(DW), and ssGBLUPpseudo-SNP(LDhap) for MY 
(0.49), FC (0.59), PC (0.73), FU (0.62), UFP (0.59), 
and RUA (0.60). Genomic prediction accuracies with 
ssGBLUPpseudo-SNP(DW) were +1 percentage point greater 
than ssGBLUPSNP for FY, PY, US, and TA. Similar 
results were observed with ssGBLUPpseudo-SNP(LDhap). 
The highest improvement of accuracy was observed 
for SCS, with a gain of +3 percentage points with 
ssGBLUPpseudo-SNP(DW) compared with ssGBLUPSNP. 
In contrast with the Alpine breed, the highest GEBV 
accuracies with the ssGBLUPpseudo-SNP(DW) method for 
Saanen goats were obtained when fitting short haplo-
types (containing 10 SNP or less) for all traits, except 
PY (20 SNP), TA (15 SNP), and SCS (15 SNP). For 
ssGBLUPpseudo-SNP(LDhap), the highest accuracies were 
observed with an LD threshold equal to 1 for MY, FY, 
PC, UFP, and RUA, where haplotypes were formed by 
individual SNP.

In contrast with the results for the Alpine breed, 
ssGBLUPpseudo-SNP(DW) and ssGBLUPpseudo-SNP(LDhap) had 
accuracies lower than ssGBLUPSNP for all the traits for 
Saanen. The decreases of accuracies ranged between 1 
and 4 points compared with ssGBLUPSNP. The greatest 
loss was for UFP between ssGBLUPpseudo-SNP(DW) (0.55) 
and ssGBLUPSNP (0.59).

Table 4 shows the GEBV accuracies from Wss-
GBLUPSNP, WssGBLUPpseudo-SNP(DW), and WssG-
BLUPpseudo-SNP(LDhap) for each trait and breed. To 
facilitate comparison with the ssGBLUP results, 
results of Table 4 use the same window (DW) and 
LD (LDhap) as presented in Table 3. For the Alpine 
breed, genomic predictions were on average as ac-
curate with WssGBLUPpseudo-SNP(DW) (0.47 ± 0.12) or 
WssGBLUPpseudo-SNP (LDhap) (0.47 ± 0.13) and WssG-
BLUPSNP (0.46 ± 0.14). The WssGBLUPpseudo-SNP(DW) 
and WssGBLUPpseudo-SNP(LDhap) were both more ac-
curate than WssGBLUPSNP for FY, TA, UFP, FU, 
and SCS (+1 to +7 percentage points). The WssG-
BLUPpseudo-SNP(DW) were slightly more accurate than 
WssGBLUPSNP for MY and RUA (+3 to +4 percent-
age points), and WssGBLUPpseudo-SNP(LDhap) were more 
accurate than WssGBLUPSNP for PY (+1 percentage 
point). For the other traits, the GEBV accuracies for 
WssGBLUPpseudo-SNP(DW) and WssGBLUPpseudo-SNP(LDhap) 
were equal to or lower than the accuracies obtained 

Teissier et al.: GENOMIC PREDICTION IN DAIRY GOATS

Table 2. Accuracy of genomic predictions for single-step genomic BLUP (ssGBLUP) based on individual SNP and pseudo-SNP with distinct 
windows (DW) and linkage disequilibrium (LD) methods for the Alpine breed

Trait   Scenario SNP1 DW2 LD3
Window (no. of SNP) 

with DW Threshold with LD

Milk yield Best 0.45 0.47 0.46 40 0.01
Lowest 0.46 0.45 10 [0.6, 1]

Fat yield Best 0.31 0.37 0.33 40 0.02
Lowest 0.32 0.31 2 [0.7, 1]

Protein yield Best 0.30 0.32 0.30 40 0.30
Lowest 0.30 0.30 10 (0.7, 1)

Fat content Best 0.66 0.67 0.67 50 0.01
Lowest 0.66 0.66 35 [0.5, 1]

Protein content Best 0.76 0.76 0.76 2 0.05
Lowest 0.73 0.75 50 [0.02, 0.03]

Teat angle Best 0.42 0.43 0.43 2 0.02
Lowest 0.40 0.42 45–50 [0.8, 0.9]

Udder floor position Best 0.43 0.44 0.44 2 0.01
Lowest 0.42 0.43 50 [0.4, 1]

Rear udder attachment Best 0.40 0.40 0.40 35 0.02
Lowest 0.39 0.40 40–45 (0.01, 0.1, 0.4, 0.8–0.9)

Fore udder Best 0.49 0.50 0.50 2 0.10
Lowest 0.48 0.49 50 0.03

Udder shape Best 0.48 0.49 0.50 25 0.01
Lowest 0.48 0.48 35 0.3

SCS Best 0.45 0.46 0.46 5 0.01
Lowest 0.45 0.45 40 0.8–1

1Genomic predictions with ssGBLUP based on individual SNP (ssGBLUPSNP).
2Genomic predictions with ssGBLUP based on pseudo-SNP constructed using the DW method [ssGBLUPpseudo-SNP(DW)].
3Genomic predictions with ssGBLUP based on pseudo-SNP constructed using the LD method [ssGBLUPpseudo-SNP(LD)].
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with WssGBLUPSNP. For Saanen, the results are 
more method-dependent. The WssGBLUPpseudo-SNP(DW) 
slightly outperformed WssGBLUPSNP, especially for 
SCS (+6 percentage points). On the other hand, the 
GEBV accuracies from WssGBLUPpseudo-SNP(LDhap) were 
as accurate as or less accurate than WssGBLUPSNP for 

all the traits (−1 to +1 percentage point) except for 
SCS (+4 percentage points).

The average slope of the regression of DD on GEBV 
was calculated as an indicator of GEBV bias (inflation 
or deflation). The slope values were averaged across all 
11 traits included in this study. The regression slopes 
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Table 3. Accuracies of genomic predictions for single-step genomic BLUP (ssGBLUP) based on individual SNP and pseudo-SNP with distinct 
windows (DW) and linkage disequilibrium (LD) methods for the Saanen breed

Trait   Scenario SNP1 DW2 LD3
Window (no. of SNP) 

with DW Threshold with LD

Milk yield Best 0.49 0.49 0.49 5 1
Lowest 0.47 0.47 40 0.01

Fat yield Best 0.43 0.44 0.43 5 1
Lowest 0.42 0.41 50 0.01

Protein yield Best 0.45 0.46 0.45 20 0.10
Lowest 0.44 0.44 40 0.01

Fat content Best 0.59 0.59 0.59 5 0.02
Lowest 0.56 0.58 50 0.01

Protein content Best 0.73 0.73 0.73 5 1
Lowest 0.72 0.71 45 0.01

Teat angle Best 0.48 0.49 0.49 15 0.01
Lowest 0.47 0.48 50 0.2

Udder floor position Best 0.59 0.59 0.59 10 1
Lowest 0.55 0.58 45 0.01

Rear udder attachment Best 0.60 0.60 0.60 10 1
Lowest 0.57 0.59 50 0.01

Fore udder Best 0.62 0.62 0.62 2 0.10
Lowest 0.60 0.61 50 0.02

Udder shape Best 0.36 0.37 0.36 5 0.02
Lowest 0.34 0.36 50 [0.04, 0.05]

SCS Best 0.46 0.49 0.46 15 0.02
Lowest 0.46 0.45 2 [0.02, 0.04]

1Genomic predictions with ssGBLUP based on individual SNP (ssGBLUPSNP).
2Genomic predictions with ssGBLUP based on pseudo-SNP constructed using the DW method [ssGBLUPpseudo-SNP(DW)].
3Genomic predictions with ssGBLUP based on pseudo-SNP constructed using the LD method [ssGBLUPpseudo-SNP(LD)].

Table 4. Accuracy of genomic evaluations based on weighted single-step genomic BLUP (WssGBLUP) with 
individual SNP and pseudo-SNP [using the distinct windows (DW) and linkage disequilibrium (LD) methods] 
in the Alpine and Saanen goat breeds1

Trait

Alpine

 

Saanen

SNP2 DW3 LD4 SNP2 DW3 LD4

Milk yield 0.43 0.46 0.43 0.56 0.57 0.56
Fat yield 0.30 0.37 0.33 0.48 0.49 0.48
Protein yield 0.28 0.28 0.29 0.50 0.50 0.49
Fat content 0.65 0.60 0.65 0.59 0.60 0.59
Protein content 0.77 0.77 0.77 0.77 0.75 0.77
Teat angle 0.41 0.43 0.42 0.47 0.45 0.47
Udder floor position 0.41 0.44 0.44 0.63 0.61 0.63
Rear udder attachment 0.38 0.42 0.38 0.61 0.62 0.61
Fore udder 0.48 0.49 0.49 0.59 0.61 0.60
Udder shape 0.48 0.44 0.48 0.34 0.35 0.32
SCS 0.42 0.45 0.46 0.43 0.49 0.47
1The highest accuracies obtained with the ssGBLUP scenario are presented (see Table 2 and Table 3 for Alpine 
and Saanen, respectively).
2Genomic predictions with WssGBLUP based on individual SNP (WssGBLUPSNP).
3Genomic predictions with WssGBLUP based on pseudo-SNP constructed using the DW method 
[WssGBLUPpseudo-SNP(DW)].
4Genomic predictions with WssGBLUP based on pseudo-SNP constructed using the LD method 
[WssGBLUPpseudo-SNP(LD)].
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for each trait are presented in Supplemental Tables 
S1 and S2 (https:​/​/​doi​.org/​10​.3168/​jds​.2020​-18662). 
The slopes ranged from 0.30 for PY in Alpine when 
using the WssGBLUPpseudo-SNP(DW) method, to 1.21 for 
FU in Saanen when using the ssGBLUPpseudo-SNP(LD) 
method. The average (±SD) slopes for the Alpine 
breed, across all traits and scenarios, were as follows: 
0.78 ± 0.16, 0.77 ± 0.17, 0.77 ± 0.18, 0.61 ± 0.16, 
0.61 ± 0.15, and 0.58 ± 0.14, for ssGBLUPpseudo-SNP(DW), 
ssGBLUPpseudo-SNP(LDhap), ssGBLUPSNP, WssGB-
LUPpseudo-SNP(LDhap), WssGBLUPSNP, and WssGB-
LUPpseudo-SNP(DW), respectively. For the Saanen breed, 
the average (±SD) slopes, across all traits and sce-
narios, were as follows: 0.88 ± 0.18, 0.88 ± 0.19, 0.88 
± 0.20, 0.72 ± 0.15, 0.72 ± 0.15, and 0.70 ± 0.15, for 
ssGBLUPpseudo-SNP(DW), ssGBLUPpseudo-SNP(LDhap), ssG-
BLUPSNP, WssGBLUPpseudo-SNP(LDhap), WssGBLUPSNP, 
and WssGBLUPpseudo-SNP(DW), respectively. In general, 
fitting haplotypes as pseudo-SNP did not reduce the 
bias (inflation) of the GEBV estimates, but the differ-
ences were small when compared with ssGBLUPSNP. 
On average, the WssGBLUP method resulted in more 
biased estimates compared with the other approaches.

DISCUSSION

The number of haplotypes defined across the genome 
with the DW method was the same between Alpine and 
Saanen goats. However, the number of pseudo-SNP was 
higher in the Alpine breed for haplotypes longer than 
10 SNP. A greater genetic variability in Alpine, with 
1.8% inbreeding against 2.8% inbreeding in Saanen 
(Carillier et al., 2014), could explain this result. No 
difference was detected in the number of pseudo-SNP 
for the LDhap method. Carillier et al. (2013) have shown 
that LD is equal to 0.17 in Alpine and Saanen breeds 
for SNP spaced 50 kb apart. The LD in French dairy 
goats is smaller than the LD levels observed in dairy 
cattle (between 0.18 and 0.23; de Roos et al., 2008) 
but similar to other dairy goat and sheep populations 
(Brito et al., 2015, 2017). The LD between SNP in Al-
pine and Saanen were not high enough to create long 
haplotypes. In general, haplotypes were mainly shorter 
than 10 SNP. As a result, the number of alleles did 
not differ so much between Alpine and Saanen for this 
method. Karimi et al. (2018) also used pseudo-SNP for 
genomic predictions in dairy cattle. They used 21,236 
Holstein phenotyped for 57 traits with a wide range 
of heritabilites (from 0.003 to 0.529). They classified 
the traits according to their heritability estimates into 
3 classes: low (0–0.15), moderate (0.15–0.30), or high 
(>0.30). The haplotypes were constructed based on the 
DW method, including 5, 10, 15, and 20 SNP. In com-
parison with our study, they observed 75,263 pseudo-

SNP for haplotypes of 5 SNP, which decreased to 37,270 
pseudo-SNP for haplotypes containing 20 SNP, roughly 
half of the number of pseudo-SNP observed in French 
dairy goats. These results show that dairy goats present 
a higher genetic diversity than dairy cattle do, which is 
supported by the effective population size reported in 
the literature for both species (Brito et al., 2015). It is 
also important to mention that the SNP included in the 
SNP panel can affect the definition of haplotypes, as 
panels could have been designed after filtering out SNP 
in high LD or those that were not segregating in some 
breeds. This ascertainment bias could affect the haplo-
type definition and, consequently, the performance of 
genomic predictions.

The haplotypes constructed using the DW method 
led to a large number of pseudo-SNP. However, many 
were removed from the analyses because they were seg-
regating at low frequency. In the LDhap method, a large 
proportion of haplotypes was formed by individual 
SNP, because the LD estimates in French dairy goats 
were not high enough to combine SNP into haplob-
locks. An alternative would be to create fixed-length 
haplotypes, as described in dairy cattle by Hess et al. 
(2017). The authors evaluated fixed-length haplotypes 
(125 kb, 250 kb, 500 kb, 1 Mb, and 2 Mb) and reported 
improvement in GEBV accuracy for MY, FY, BW, and 
SCS with 250-kb haplotypes compared with genomic 
predictions based on individual SNP. The method pro-
posed by Hess et al. (2017) could be useful to create 
haplotypes of different lengths, as in the LDhap method, 
but limiting the number of haplotypes formed by indi-
vidual SNP. If the size of the window is limited, it could 
also reduce the presence of many rare alleles, as was 
observed with the DW method.

In French dairy goats, previous genome-wide associa-
tion studies using linkage and LD analysis (Martin et 
al., 2017, 2018) or WssGBLUPSNP (Teissier et al., 2018) 
identified QTL for milk yield traits, UFP, RUA, and 
SCS on CHI 19 in the Saanen breed. Other chromosomal 
regions of interest were located on CHI 6 for PC harbor-
ing the αS1-casein gene (Grosclaude et al., 1987) and on 
CHI 14 for FC harboring the DGAT1 gene (Martin et 
al., 2017) in both Alpine and Saanen breeds. Through 
the use of pseudo-SNP in WssGBLUPpseudo-SNP(DW) and 
WssGBLUPpseudo-SNP(LD), some of these regions were de-
tected. Nevertheless, WssGBLUPpseudo-SNP(DW) and Wss-
GBLUPpseudo-SNP(LDhap) did not detect the DGAT1 gene 
for FY. This phenomenon was also observed in Teissier 
et al. (2018) with WssGBLUPSNP. This could be due to 
the data set available. Indeed, animals genotyped with 
the 50K chip were almost all genotyped for the DGAT1 
mutations R251L and R396W (data not used in this 
study). The frequencies of the major alleles are between 
76 and 99%, depending on the breed and mutation (re-
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sults not shown). Almost no animals are homozygous 
for the minor alleles (less than 10 animals). Thus, Wss-
GBLUP might not be able to correctly estimate SNP or 
pseudo-SNP effects associated with DGAT1. The use of 
pseudo-SNP allowed the detection of new chromosomal 
regions of interest, and, in particular, large pseudo-SNP 
weights were identified for FU in the Saanen breed on 
CHI 13 and CHI 19.

Some studies have reported improvement of accuracy 
with the use of haplotypes in genomic predictions (Calus 
et al., 2008; Cuyabano et al., 2014; Jónás et al., 2016). 
In these studies, haplotypes were not converted into 
pseudo-SNP. Karimi et al. (2018) also fitted haplotypes 
as pseudo-SNP. They compared GBLUPSNP and GB-
LUPpseudo-SNP with haplotypes constructed with the DW 
method for 5, 10, 15, and 20 SNP, and reported similar 
accuracies between GBLUPSNP and GBLUPpseudo-SNP for 
all the haplotype sizes and for the traits with low (0.20) 
and moderate heritability estimates (0.35). However, 
they observed only a slight improvement in GEBV ac-
curacies for traits with moderate to high heritability 
(h2 > 0.20) using GBLUPpseudo-SNP with 5 SNP (0.50) 
compared with GBLUPSNP (0.49). Accuracies of GB-
LUPpseudo-SNP with 10 (0.49), 15 (0.48), and 20 (0.47) 
SNP were lower than or statistically similar to those 
with GBLUPSNP. In the current study, accuracies of 
ssGBLUPpseudo-SNP were breed- and trait-specific. For 
instance, higher gains in GEBV accuracy were observed 
for yield traits and small improvement for udder type 
traits in Alpine with the use of ssGBLUPpseudo-SNP(DW) or 
ssGBLUPpseudo-SNP(LDhap) compared with ssGBLUPSNP. 
In Saanen, ssGBLUPpseudo-SNP(DW) was the best method 
for SCS.

This study is the first attempt to fit pseudo-SNP 
into the WssGBLUP method. In Saanen goats, 
WssGBLUPpseudo-SNP(DW) or WssGBLUPpseudo-SNP(LDhap) 
slightly outperformed or were as accurate as WssGB-
LUPSNP for milk yield and content traits, UFP, RUA, 
and SCS. These traits are known to have a QTL or 
major gene identified on various chromosomes (Martin 
et al., 2017, 2018). The WssGBLUPpseudo-SNP method 
was also able to outperform ssGBLUPSNP, showing 
benefits of using pseudo-SNP in genomic evaluations. 
In Alpine goats, the use of WssGBLUPpseudo-SNP(DW) or 
WssGBLUPpseudo-SNP(LDhap) was the most interesting for 
FY, for which it outperformed both ssGBLUPSNP and 
WssGBLUPSNP. Nevertheless, accuracies with pseudo-
SNP were similar with and without the use of SNP 
weights. For the other traits, haplotype methods did 
not show advantage in terms of GEBV accuracy, espe-
cially compared with ssGBLUPSNP.

The observed gains in accuracy in this study were 
higher than in other studies using haplotypes (Cuyaba-
no et al., 2014; Karimi et al., 2018). This might be re-

lated to the genetic diversity of populations, especially 
effective population sizes and inbreeding. Inbreeding in 
dairy goats is generally lower (1.6 to 1.8%; Carillier et 
al., 2013) than in other livestock species, such as dairy 
cattle (>3%; Signer-Hasler et al., 2017; Doublet et al., 
2019; Makanjuola et al., 2020). Lower inbreeding levels 
in goats also imply lower LD, and, therefore, haplotype-
based methods might better capture the QTL effect 
and thus improve accuracy of GEBV.

A higher bias was observed with WssGBLUP com-
pared with the other approaches. This may be expected 
due to the iterative nature of the WssGBLUP method, 
as variances are estimated from SNP effects from a 
previous iteration, leading to larger SNP effects in the 
next iteration and then to larger variances, and so on.

Genomic evaluations with haplotypes require several 
additional steps compared with genomic evaluations 
with individual SNP: (1) phasing the genotypes, (2) 
defining the haplotypes, (3) converting into pseudo-
SNP, and (4) filtering according to their frequency. 
These steps make genomic evaluations with pseudo-
SNP longer and more time-consuming than genomic 
evaluations based on individual SNP. With the LD 
method, it is also necessary to estimate LD between 
SNP. However, for some traits, it might be worth fitting 
haplotypes to obtain improvements in genomic predic-
tive performance.

CONCLUSIONS

Genomic evaluations with pseudo-SNP improved the 
accuracy of genomic evaluations for some traits. With 
ssGBLUP using haplotypes fitted as pseudo-SNP, im-
provements up to +19% (0.310 to 0.368 for fat yield) 
and +3% (0.361 to 0.373 for udder shape) in Alpine and 
Saanen goats were observed, compared with ssGBLUP 
fitting individual SNP. The accuracy of genomic evalu-
ations improved by a maximum of 24% (0.298 to 0.370 
for fat yield in Alpine goats) and 14% (0.431 to 0.490 
for SCS in Saanen) by using WssGBLUP with pseudo-
SNP, compared with WssGBLUP with individual SNP. 
The average GEBV accuracy across both breeds and 
for ssGBLUP was equal to 0.50 with individual SNP 
and pseudo-SNP. For WssGBLUP, these average ac-
curacies were equal to 0.50 with individual SNP and 
0.49 with pseudo-SNP. This shows that the accuracies 
of these methods are trait dependent. We found that 
WssGBLUP was more biased than the ssGBLUP ap-
proach, and its gains in accuracy were limited to milk 
production traits. In general, fitting haplotypes as 
pseudo-SNP did not increase or reduce the bias of the 
GEBV estimates compared with single-SNP approach-
es. Despite the fact that genomic predictions based on 
haplotypes require additional steps and time, observed 
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gains in GEBV accuracy and bias reduction for some 
traits may be advantageous.
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