N. D. Alekina, E. V. Kharitonashvili, G. Y. Riznichenko, T. Y. Plusnina, S. V. Sidorov et al., A multi compartments model of nitrate metabolism regulation in plants roots, J. Biol. Syst, vol.8, issue.3, pp.219-235, 2000.

A. Barbacci, V. Magnenet, and M. Lahaye, Thermodynamical journey in plant biology, Front. Plant Sci, vol.6, p.481, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02640766

E. Bouguyon, A. Gojon, and P. Nacry, Nitrate sensing and signalling in plants, Semin. Cell Dev. Biol, vol.23, pp.648-654, 2012.

J. S. Boyer, Water transport, Ann. Rev. Plant Physiol, vol.36, pp.473-516, 1985.
URL : https://hal.archives-ouvertes.fr/hal-01787317

D. Britto and H. J. Kronzucker, Can unidirectional influx be measured in higher plants? A mathematical approach using parameters from efflux analysis, New Phytol, vol.50, pp.37-47, 2001.

D. T. Britto and H. J. Kronzucker, Constancy of nitrogen turnover kinetics in the plant cell: insights into the integration of subcellular N fluxes, Planta, vol.213, issue.2, pp.175-181, 2001.

D. T. Britto and H. J. Kronzucker, Ion fluxes and cytosolic pool sizes: examining fundamental relationships in transmembrane flux regulation, Planta, vol.217, pp.490-497, 2003.

J. Brumos, L. M. Robles, J. Yun, T. C. Vu, S. Jackson et al., , 2018.

, Local Auxin biosynthesis is a key regulator of plant development, Dev. Cell, vol.47, pp.306-318

M. Christian, B. Steffens, D. Schenk, S. Burmester, M. Böttger et al., How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control, Plant Biol, vol.8, pp.346-352, 2006.

M. Claussen, H. Lüthen, M. Blatt, and M. Böttger, Auxin-induced growth and its linkage to potassium channels, Planta, vol.201, pp.227-234, 1997.

A. Cornish-bawden, M. Jamin, and V. Saks, La thermodynamique et la theórie des vitesses absolues, 2005.

D. Coskun, D. T. Britto, and H. J. Kronzucker, The nitrogen-potassium intersection: membranes, metabolism, and mechanism, Plant Cell Environ, vol.40, pp.2029-2041, 2017.

P. Delhon, A. Gojon, P. Tillard, and L. Passama, Diurnal regulation of NO 3 -uptake in soybean plants I. Changes in NO 3 -influx, efflux, and N utilization in the plant during the day/night cycle, J. Exp. Bot, vol.46, issue.291, pp.1585-1594, 1995.

I. Dreyer and E. Michard, High-and Low-affinity transport in plants from a thermodynamic point of view, Front. Plant Sci, vol.10, p.1797, 2020.

E. Epstein, D. W. Rains, and O. E. Elzam, Resolution of dual mechanisms of potassium absorption by barley roots, Proc. Natl. Acad. Sci. U.S.A, vol.49, pp.684-692, 1963.

Z. F. Fang, X. X. Liu, Y. X. Zhu, J. Y. Ye, J. et al., , 2019.

K. ,

R. Gallagher and T. Appenzeller, Beyond reductionism, Science, vol.284, issue.5411, p.79, 1999.

T. Garnett, V. Conn, and B. N. Kaiser, Root base approaches to improving nitrogen use efficiency in plants, Plant Cell Environ, vol.32, pp.1272-1283, 2009.

M. Gilliham and M. Tester, The regulation of anion loading to the maize root xylem, Plant Physiol, vol.137, issue.3, pp.819-828, 2005.

T. Girin, L. Lejay, J. Wirth, T. Widiez, P. M. Palenchar et al., Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant, Plant Cell Environ, vol.30, pp.1366-1380, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00191105

A. D. Glass and Z. Kotur, A reevaluation of the role of Arabidopsis NRT1.1 in high-affinity nitrate transport, Plant Physiol, vol.163, pp.1103-1106, 2013.

P. Goel, N. K. Sharma, M. Bhuria, V. Sharma, R. Chaudan et al., Transcriptomic and co-expression network analyses identify key genes regulating nitrogen use efficiency in Brassica juncea, L. Sci. Rep, vol.8, p.7451, 2018.

A. G. Good, A. K. Shrawat, and D. G. Muench, Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?, Trends Plant Sci, vol.9, issue.12, pp.597-605, 2004.

F. Guo, R. Wang, M. Chen, C. , and N. M. , The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1(CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth, Plant Cell, vol.13, pp.1761-1777, 2001.

F. Guo, R. Wang, C. , and N. M. , The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots, J. Exp. Bot, vol.53, issue.370, pp.885-844, 2002.

Y. L. Han, Q. Liu, J. D. Gu, J. M. Gong, C. Y. Guan et al., V-ATPase and V-PPase at the tonoplast affect NO 3 -content in Brassica napus by controlling distribution of NO 3 -between the cytoplasm and vacuole, J. Plant Growth Regul, vol.34, pp.22-34, 2015.

Y. L. Han, H. X. Song, Q. Liao, Y. Yu, S. F. Jian et al., Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus, Plant Physiol, vol.170, pp.1684-1698, 2016.

K. Herdel, P. Schmidt, R. Feil, A. Mohr, and U. Schurr, Dynamics of concentrations and nutrients fluxes in the xylem of Ricinus communisdiurnal course, impact of nutrient availability and nutrient uptake, Plant Cell Environ, vol.24, pp.41-52, 2001.

C. Ho, S. Lin, H. Hu, and Y. Tsay, CHL1 functions as a nitrate sensor in plants, Cell, vol.138, pp.1184-1194, 2009.

W. Horaruang, A. Hills, and M. R. Blatt, Communication between the plasma membrane and tonoplast is an emergent property of ion transport, Plant Physiol, vol.182, issue.4, pp.1833-1835, 2020.

H. Hu, Y. Wang, and Y. Tsay, AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of primary nitrate response, Plant J, vol.57, pp.264-278, 2008.

H. Kasahara, Current aspects of auxin biosynthesis in plants, Biosci. Biotech. Biochem, vol.80, issue.1, pp.34-42, 2016.

T. Kiba, T. Kudo, M. Kojima, and H. Sakakibara, Hormonal control of nitrogen acquisition: roles of auxin abscisic acid, and cytokinin, J. Exp. Bot, vol.62, issue.4, pp.1399-1409, 2010.

B. Köhler, R. , and K. , The delivery of salts to the xylem: Three types of anion conductance in the plasmalemma of xylem parenchyma of Hordeum vulgare L, Plant Physiol, vol.122, pp.243-254, 2000.

B. Köhler, R. , and K. , Loading of ions into the xylem of the root," in The apoplast of higher plants: compartment of storage, transportand reaction, pp.181-200, 2007.

B. Köhler, L. H. Wegner, V. Osipov, R. , and K. , Loading of nitrate into the xylem: apoplastic nitrate controls the voltage dependence of X-QUAC, the main anion conductance in xylem-parenchyma cells of barley roots, Plant J, vol.30, issue.2, pp.133-142, 2002.

G. Krouk, P. Tillard, and A. Gojon, Regulation of the high-affinity NO 3 -uptake system by NRT1.1-mediated <math> NO 3 -demand signaling in, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00124930

, Arabidopsis. Plant Physiol, vol.142, issue.3, pp.1075-1086

M. Laurent, G. Charvin, and J. Guespin-michel, Bistability and hysteresis in epigenetic regulation of of the lactose operon, J. Cell. Mol. Biol, vol.51, pp.583-594, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00289726

M. Laurent, Système biologiques à dynamique non lineáire. Propriete?, analyse et mode?isation, 2013.

L. Deunff, E. Malagoli, and P. , Breaking conceptual locks in modelling root absorption of nutrients: reopening the thermodynamic viewpoint of ion transport across the root, Ann. Bot, vol.114, pp.1555-1570, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123400

L. Deunff, E. Malagoli, and P. , An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow-force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx, Ann. Bot, vol.113, issue.6, pp.991-1005, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01190037

L. Deunff, E. Tournier, P. Malagoli, and P. , The thermodynamic flowforce interpretation of root nutrient uptake kinetics: a powerful formalism for agronomic and phytoplanktonic models, Front. Physiol, vol.7, p.243, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01341816

L. Deunff, E. Lecourt, J. Malagoli, and P. , Fine-tuning of root elongation by ethylene: a tool to study dynamic structure-function relationships between root architecture and nitrate absorption, Ann. Bot, vol.118, issue.4, pp.607-620, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01417733

L. Deunff, E. Beauclair, P. Deleu, C. Lecourt, and J. , Inhibition of aminotransferases by aminoethoxyvinylglycine triggers a nitrogen limitation condition and deregulation of Histidine homeostasis that impact root and shoot development and nitrate uptake, Front. Plant Sci, vol.10, p.1387, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02620912

L. Deunff, E. Malagoli, P. Decau, and M. , Modelling nitrogen uptake in plants and phytoplankton: advantages of integrating flexibility into the spatial and temporal dynamics of nitrate absorption, Agronomy, vol.9, issue.3, p.116, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02056889

L. Ny, F. Leblanc, A. Beauclair, P. Deleu, C. et al., In low transpiring conditions, nitrate and water fluxes for growth of B. napus plantlets correlate with changes in BnNrt2.1 and BnNrt1.1 nitrate transporters expression, Plant Signal. Behav, vol.8, p.22902, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01220065

A. Leblanc, H. Renault, J. Lecourt, P. Etienne, C. Deleu et al., Elongation changes of exploratory and root hair systems induced by ACC and AVG affect nitrate uptake and BnNRT2.1 and BnNRT1.1 transporter gene expression in oil seed rape, Plant Physiol, vol.146, 1928.

A. Leblanc, R. Segura, C. Deleu, L. Deunff, and E. , In low transpiring conditions, uncoupling the BnNRT2.1 and BnNRT1.1 NO 3 the nitrate-signaling cascade during growth, Plant Signal. Behav, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01220063

L. Lejay, P. Tillard, M. Lepetit, F. D. Olive, S. Filleur et al., Molecular and functional regulation of two NO 3 -uptake systems by N and C-status of Arabidopsis plants, Plant J, vol.18, issue.5, pp.509-519, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02694816

L. Lejay, J. Wirth, M. Pervent, J. M. Cross, .. Tillard et al., Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis, Plant Physiol, vol.146, pp.2036-2053, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00275686

S. Le?an, S. Munos, C. Brachet, A. Gojon, and B. Lacombe, Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation, Mol. Plant, vol.6, issue.6, pp.1984-1987, 2013.

L. Lezhneva, T. Kiba, A. B. Feria-bourrellier, F. Lafouge, S. Boutet-mercey et al., The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilisation in nitrogen-starved plants, Plant J, vol.80, pp.230-241, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204108

G. Li, P. Tillard, A. Gojon, and C. Maurel, Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1, Plant Cell Physiol, vol.57, issue.4, pp.732-742, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321089

H. Li, Z. F. Wang, W. H. Wu, M. Yu, X. Q. Du et al., functions as a proton-couple H(+)/K(+) antiporter for K(+) loading into the xylem in Arabidopsis, Plant Cell, vol.29, pp.2016-2026, 2017.

S. Lin, F. Kuo, G. Canivenc, C. Lin, M. Lepetit et al., Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-toshoot nitrate transport, Plant Cell, vol.20, pp.2514-2528, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356462

K. Liu and Y. Tsay, Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation, EMBO J, vol.22, issue.5, pp.1005-1013, 2003.

D. Loque, P. Tillard, A. Gojon, and M. Lepetit, Gene expression of the NO 3 -transporter NRT1.1 and the nitrate reductase NIA1 is repressed in Arabidopsis roots by NO 2 -, the product of NO 3 -reduction, Plant Physiol, vol.132, pp.958-967, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02672230

P. Malagoli, L. Deunff, and E. , An updated model for nitrate uptake modelling in plants. II. Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs, Ann. Bot, vol.113, issue.6, pp.1007-1019, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01190037

M. Migocka, A. Warzybok, A. Papierniak, and G. Klobus, , vol.3, p.73972, 2013.

P. Nazoa, J. J. Vidmar, T. J. Tranbarger, K. Mouline, I. Damiana et al., Regulation of the nitrate transporter gene AtNRT2.1in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage, vol.52, issue.3, pp.689-703, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02681512

M. Noguero, S. Léran, E. Bouguyon, C. Brachet, P. Tillard et al., Revisiting the functional properties of NPF6.3/NRT1.1/CHL1 in xenopus oocytes, BioRxiv, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01777543

A. Nune-nesi, A. R. Fernie, and M. Stitt, Metabolic and signaling aspect underpinning the regulation of plant carbon nitrogen interactions, Mol. Plant, vol.3, issue.6, pp.973-996, 2010.

C. Orieux, G. Demarest, M. C. Decau, P. Beauclair, M. Bataille et al., Changes in 15 NO 3 -availability and transpiration rate are associated with a rapid diurnal adjustment of anion contents as well as 15 N and water fluxes between the roots and shoots, Front. Plant Sci, vol.9, p.1751, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02621719

Y. Osakabe, N. Arinaga, T. Umezawa, S. Katsura, K. Nagamachi et al., Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis, Plant Cell, vol.25, pp.609-624, 2013.

J. L. Parker and S. Newstead, Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1, Nature, vol.507, issue.7490, pp.68-72, 2014.

K. Philippar, I. Fuchs, H. Lüthen, S. Hoth, C. S. Bauer et al., , 1999.

, Auxin induced K + channel expression represents an essential step in coleoptile growth and gravitropism, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.12186-12191

M. G. Pitman, Nutrient uptake by plants roots and transport to the xylem: uptake processes, Transport and transfer processes in plants, pp.85-98, 1976.

N. Raddatz, L. Morales-de-los-rios, M. Lindahl, F. J. Quintero, and J. M. Pardo, Coordinated transport of nitrate, potassium, and sodium, Front. Plant Sci, vol.11, p.247, 2020.

M. Rashid, S. Bera, A. B. Medvinsky, G. Sun, B. Li et al., Adaptive regulation of nitrate transceptor NRT1.1 in fluctuating soil nitrate conditions, vol.2, pp.41-50, 2018.

T. Remans, P. Nacry, M. Pervent, T. Girin, P. Tillard et al., A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in arabidopsis, Plant Physiol, vol.140, issue.3, pp.909-921, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00087065

T. Remans, P. Nacry, M. Pervent, S. Filleur, E. Diatloff et al., The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.19206-19211, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00124948

H. Renault, V. Roussel, A. El-amrani, M. Arzel, D. Renault et al., The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance, BMC Plant Biol, vol.10, p.20, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00473590

J. Ricard, Molecular stereospecific recognition and reduction in cell biology, New Compr. Biochem, vol.40, pp.40001-40001, 2006.

S. Ruffel, A. Gojon, and L. Lejay, Signal interactions in the regulation of root nitrate uptake, J. Exp. Bot, vol.65, pp.5509-5517, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01137627

W. Scheible, M. Lauerer, E. Schulze, M. Caboche, and M. Stitt, Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco, Plant J, vol.11, pp.671-691, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02696138

W. Scheible, R. Morcuende, T. Czechowski, C. Fritz, D. Osuna et al., Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen, Plant Physiol, vol.136, pp.2483-2499, 2004.

M. Y. Siddiqi, A. D. Glass, T. J. Ruth, and T. W. Rufty, Studies of the uptake of nitrate in barley. I. Kinetics of 13 NO 3 -influx, Plant Physiol, vol.93, pp.1426-1432, 1990.

J. Sun, J. R. Bankston, J. Payandeh, T. R. Hinds, W. N. Zagotta et al., Crystal structure of a plant dual-affinity nitrate transporter, Nature, vol.507, issue.7490, pp.73-77, 2014.

J. Swift, J. M. Alvarez, V. Araus, R. A. Gutie?rez, and G. M. Coruzzi, Nutrientdose-response transcriptome changes driven by Michaelis-Menten kinetics underlie plant growth rates, Proc. Natl. Acad. Sci. U.S.A, vol.117, issue.23, pp.12531-12540, 2020.

K. Takei, T. Takahashi, T. Sugiyama, T. Yamaya, and H. Sakakibara, Multiple rooutes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin, J. Exp. Bot, vol.53, issue.370, pp.971-977, 2002.

M. Thellier, Electrokinetic formulation of ionic absorption by plants samples, Ions Transport in Plants, pp.47-63, 1973.

Y. Tsay, J. I. Schroeder, K. A. Feldmann, C. , and N. M. , The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nnitrate transporter, Cell, vol.72, issue.5, p.903999, 1993.

E. Vidal, J. M. Alvarez, V. Araus, E. Riveras, M. D. Brooks et al., Nitrate in 2020: thirty years from transport to signalling networks, Plant Cell Adv, vol.32, issue.7, pp.2094-2119, 2020.

J. C. Vincent and M. Thellier, Theoretical analysis of the significance of whether or not enzymes or transport systems in structured media follow Michaelis-Menten kinetics, Biophys. J, vol.41, p.2328, 1983.

N. A. Walker and M. G. Pitman, Measurements of fluxes across membranes, Encyclopedia of plant physiology, pp.93-126, 1976.

R. Wang, R. Tischner, R. A. Gutie?rez, M. Hoffman, X. Xing et al., Genomic analysis of the nitrate response using a nitrate reductasenull mutant of Arabidopsis, Plant Physiol, vol.136, pp.2512-2522, 2004.

M. Watanabe, S. Balazadeh, T. Tohge, A. Erban, P. Giavalisco et al., Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis, Plant Physiol, vol.162, issue.3, pp.1290-1310, 2013.

J. N. Weiss, The Hill equation revisited: uses and misuses, FASEB J, vol.11, pp.835-841, 1997.

Z. Wen and B. N. Kaiser, Unraveling the functional role of NPF6 transporters, Front. Plant Sci, vol.9, p.973, 2018.

Z. Wen, S. D. Tyerman, J. Dechorgnat, E. Ovchinnikova, K. S. Dhugga et al., Maize NFP6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride, Plant Cell, vol.29, pp.2581-2596, 2017.

Z. B. Yan, X. Liu, K. Ljung, S. Li, W. Zhao et al., Type B response regulators act as central integrators in transcriptional control of the auxin biosynthesis enzyme TAA1, Plant Physiol, vol.175, issue.3, pp.1438-1454, 2017.

J. Y. Ye, H. W. Tian, J. , and C. W. , A reevaluation of the contribution of NRT1.1 to nitrate uptake in Arabidopsis under low-nitrate supply, FEBS Lett, vol.593, issue.15, pp.2051-2059, 2019.

B. A. Young, R. T. Sherwood, and E. C. Bashaw, Cleared-pistil and thicksectioning techniques for detecting aposporous apomixis in Grasses, Can. J. Bot, vol.57, pp.1668-1672, 1979.

Z. Zhou, C. Zhang, L. Wu, C. Zhang, J. Chai et al., Functional characterization of the CKR1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root, Plant J, vol.66, pp.516-527, 2011.

D. Zhuo, M. Okamoto, J. J. Vidmar, and A. D. Glass, Regulation of a putative high-affinity nitrate transporter (NRT2; At) in roots of Arabidopsis thaliana, Plant J, vol.17, issue.5, pp.563-568, 1999.