J. E. Tate, A. H. Burton, C. Boschi-pinto, and U. D. Parashar, World Health Organization-Coordinated Global Rotavirus Surveillance Network, Global, regional, and national estimates of rotavirus mortality in children <5 years of age, Clin. Infect. Dis, vol.62, pp.96-105, 2000.

W. Y. Zou, S. E. Blutt, X. L. Zeng, M. S. Chen, Y. H. Lo et al., Epithelial WNT ligands are essential drivers of intestinal stem cell activation, Cell Rep, vol.22, pp.1003-1015, 2018.

P. P. Hernandez, T. Mahlakoiv, I. Yang, V. Schwierzeck, N. Nguyen et al., Interferon-? and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection, Nat. Immunol, vol.16, pp.698-707, 2015.

A. Z. Kapikian and R. E. Shope, Rotaviruses, reoviruses, coltiviruses, and orbiviruses, 1996.

B. Zhang, B. Chassaing, Z. Shi, R. Uchiyama, Z. Zhang et al., , vol.12, p.2020

M. Vijay-kumar and A. T. Gewirtz, Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18, Science, vol.346, pp.861-865, 2014.

M. Munoz, C. Eidenschenk, N. Ota, K. Wong, U. Lohmann et al., Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection, Immunity, vol.42, pp.321-331, 2015.

K. Wolk, S. Kunz, E. Witte, M. Friedrich, K. Asadullah et al., IL-22 increases the innate immunity of tissues, Immunity, vol.21, pp.241-254, 2004.

C. A. Lindemans, M. Calafiore, A. M. Mertelsmann, M. H. O&apos;connor, J. A. Dudakov et al., Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration, Nature, vol.528, pp.560-564, 2015.

G. Pickert, C. Neufert, M. Leppkes, Y. Zheng, N. Wittkopf et al., STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing, J. Exp. Med, vol.206, pp.1465-1472, 2009.

M. L. Nagalakshmi, A. Rascle, S. Zurawski, S. Menon, R. De-waal et al., Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells, Int. Immunopharmacol, vol.4, pp.679-691, 2004.

J. L. Bishop, M. E. Roberts, J. L. Beer, M. Huang, M. K. Chehal et al., Lyn activity protects mice from DSS colitis and regulates the production of IL-22 from innate lymphoid cells, Mucosal Immunol, vol.7, pp.405-416, 2014.

J. A. Dudakov, A. M. Hanash, M. R. Van-den, and . Brink, Interleukin-22: Immunobiology and pathology, Annu. Rev. Immunol, vol.33, pp.747-785, 2015.

A. M. Hanash, J. A. Dudakov, G. Hua, M. H. O&apos;connor, L. F. Young et al., Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease, Immunity, vol.37, pp.339-350, 2012.

Y. Zheng, P. A. Valdez, D. M. Danilenko, Y. Hu, S. M. Sa et al., Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens, Nat. Med, vol.14, pp.282-289, 2008.

O. Lundgren and L. Svensson, Pathogenesis of rotavirus diarrhea. Microbes Infect, vol.3, pp.1145-1156, 2001.

A. P. Morris and M. K. Estes, Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VIII. Pathological consequences of rotavirus infection and its enterotoxin, Am. J. Physiol. Gastrointest. Liver Phtysiol, vol.281, pp.303-310, 2001.

L. W. Peterson and D. Artis, Intestinal epithelial cells: Regulators of barrier function and immune homeostasis, Nat. Rev. Immunol, vol.14, pp.141-153, 2014.

X. Tang, H. Liu, S. Yang, Z. Li, J. Zhong et al., Epidermal growth factor and intestinal barrier function, Mediators Inflamm, p.1927348, 2016.

M. R. Frey, A. Golovin, and D. B. Polk, Epidermal growth factor-stimulated intestinal epithelial cell migration requires Src family kinase-dependent p38 MAPK signaling, J. Biol. Chem, vol.279, pp.44513-44521, 2004.

G. T. Eisenhoffer, P. D. Loftus, M. Yoshigi, H. Otsuna, C. B. Chien et al., Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia, Nature, vol.484, pp.546-549, 2012.

J. M. Williams, C. A. Duckworth, A. J. Watson, M. R. Frey, J. C. Miguel et al., A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide, Dis. Model. Mech, vol.6, pp.1388-1399, 2013.

J. Sarhan, B. C. Liu, H. I. Muendlein, P. Li, R. Nilson et al., Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.10888-10897, 2018.

Z. Shi, J. Zou, Z. Zhang, X. Zhao, J. Noriega et al., Segmented filamentous bacteria prevent and cure rotavirus infection, Cell, vol.179, pp.644-658, 2019.

J. H. Park, T. Kotani, T. Konno, J. Setiawan, Y. Kitamura et al., Promotion of intestinal epithelial cell turnover by commensal bacteria: Role of short-chain fatty acids, PLOS ONE, vol.11, p.156334, 2016.

A. P. Gilmore, Anoikis. Cell Death Differ, vol.12, pp.1473-1477, 2005.

S. Y. Alabbas, J. Begun, T. H. Florin, and I. Oancea, The role of IL-22 in the resolution of sterile and nonsterile inflammation, Clin. Trans. Immunol, vol.7, p.1017, 2018.

J. Zou, B. Chassaing, V. Singh, M. Pellizzon, M. Ricci et al., Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health, Cell Host Microbe, vol.23, pp.41-53, 2018.

A. Sen, M. E. Rothenberg, G. Mukherjee, N. Feng, T. Kalisky et al., Innate immune response to homologous rotavirus infection in the small intestinal villous epithelium at single-cell resolution, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.20667-20672, 2012.

W. T. He, H. Wan, L. Hu, P. Chen, X. Wang et al., Gasdermin D is an executor of pyroptosis and required for interleukin-1? secretion, Cell Res, vol.25, pp.1285-1298, 2015.

S. Zhu, S. Ding, P. Wang, Z. Wei, W. Pan et al., Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells, Nature, vol.546, pp.667-670, 2017.

M. A. Garcia, J. Gil, I. Ventoso, S. Guerra, E. Domingo et al., Impact of protein kinase PKR in cell biology: From antiviral to antiproliferative action, Microbiol. Mole. Biol. Rev, vol.70, pp.1032-1060, 2006.

E. Vercammen, J. Staal, and R. Beyaert, Sensing of viral infection and activation of innate immunity by toll-like receptor 3, Clin. Microbiol. Rev, vol.21, pp.13-25, 2008.

C. B. Wilen, S. Lee, L. L. Hsieh, R. C. Orchard, C. Desai et al., Tropism for tuft cells determines immune promotion of norovirus pathogenesis, Science, vol.360, pp.204-208, 2018.

M. K. Jones, M. Watanabe, S. Zhu, C. L. Graves, L. R. Keyes et al., Enteric bacteria promote human and mouse norovirus infection of B cells, Science, vol.346, pp.755-759, 2014.

U. C. Karandikar, S. E. Crawford, N. J. Ajami, K. Murakami, B. Kou et al., Detection of human norovirus in intestinal biopsies from immunocompromised transplant patients, J. Gen. Virol, vol.97, pp.2291-2300, 2016.

R. Zang, M. F. Gomez-castro, B. T. Mccune, Q. Zeng, P. W. Rothlauf et al., TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes, Sci. Immunol, vol.5, p.3582, 2020.

L. Pan, M. Mu, P. Yang, Y. Sun, R. Wang et al., Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China, Am J Gastroenterol, vol.115, pp.766-773, 2020.

M. Fenaux, M. A. Cuadras, N. Feng, M. Jaimes, and H. B. Greenberg, Extraintestinal spread and replication of a homologous EC rotavirus strain and a heterologous rhesus rotavirus in BALB/c mice, J. Virol, vol.80, pp.5219-5232, 2006.

, This article cites 37 articles, 11 of which you can access for free