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Abstract 25 

The growth response of Phaseolus vulgaris to dual inoculation with arbuscular mycorrhizal 26 

(AM) fungi and rhizobia was studied in a low-fertility tropical soil in Madagascar. Two 27 

isolates of AM fungi identified as Acaulospora sp. and Glomus sp., respectively, along with a 28 

cocktail of ten Rhizobium spp. strains were used to conduct a greenhouse experiment in a 29 

fully randomized block design with two factors. The Phaseolus vulgaris seedlings received 30 

one of the following inoculation treatments: no inoculation, separate inoculation with each of 31 

the three microbial symbionts (the two AM fungal isolates and the rhizobia), and co-32 

inoculation with each of the two AM fungal isolates and the mix of rhizobium strains. The 33 

results showed an additive effect of co-infection by AM fungi and rhizobia on plant growth 34 

and on the total N content of the plants, along with a synergistic effect on the total P content, 35 

the number of nodules and the mycorrhizal rate of the plants. Dual symbiosis with native 36 

strains contributes to the success of legumes, especially in harsh environments and low-37 

fertility tropical soils. 38 

 39 
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1. Introduction 43 

The intensive agriculture model, based on the use of synthetic inputs and natural 44 

resources to minimize the effects of production-limiting factors and environmental 45 

heterogeneity, is gradually giving way to an alternative model based on agro-ecological 46 

technologies (Duru and Therond, 2015; Stavi et al., 2016). One such technology relies on 47 

biodiversity management within agro-ecosystems to provide supporting and regulating 48 

ecosystem services in a manner to improve resource-use efficiency and reduce the negative 49 

impacts of conventional agriculture (Duru and Therond, 2015). 50 

Within this biodiversity, soil microorganisms mostly belonging to the bacteria and fungi 51 

are involved in complex and diverse forms of interactions with terrestrial plants (van der 52 

Heijden et al., 2016). Consequently, plants can no longer be considered as stand-alone 53 

biological entities (Vandenkoornhuyse et al., 2015). Their multiple and complex interactions 54 

with mutualistic symbionts enable them to derive a wide range of benefits (Ossler et al., 2015; 55 

Souza et al., 2015). Indeed, it is widely recognized that soil microorganisms perform crucial 56 

roles in nutrient cycling and are involved in key plant functions, such as nutrition and growth 57 

(Richardson et al., 2009). 58 

Two of these complex interactions have been widely described: the close association 59 

between roots and (i) fungi forming the well-known arbuscular mycorrhizal (AM) fungal 60 

association and (ii) bacteria belonging to the genus Rhizobium forming the root-nodule with 61 

Fabaceae. AM fungi are obligate plant symbionts that provide resources for plants, primarily 62 

phosphorus (P), in exchange for plant photosynthates (Smith and Read, 2008). Rhizobia are 63 

free-living soil bacteria that colonize the root systems of many legume species and fix 64 

atmospheric nitrogen (N) (Peoples et al., 1995). A key meta-analysis found an overall additive 65 

effect of co-infection by AM fungi and rhizobia on plant growth responses (Larimer et al., 66 

2010). To our knowledge, few studies have investigated synergistic effects arising from 67 



mixed inoculation of Rhizobium-mycorrhiza (e.g. Young et al., 1988). However, according to 68 

Nadeem et al. (2014), synergistic interactions are more likely to be effective in conditions 69 

where biotic or abiotic stresses have occurred. 70 

One of the major mechanisms by which inoculation with AM fungus acts on plant 71 

functions seems to be phosphatase activity, involving key enzymes responsible for the 72 

hydrolysis of organic P (Tabatabai, 1994). Indeed, there is a broad consensus on the limitation 73 

of symbiotic N2 fixation by P availability in terrestrial ecosystems (Augusto et al., 2013) and 74 

the lack of adequate levels of available P in tropical soils, such as in Madagascar, is one of the 75 

major constraints for crop production (Raminoarison et al., 2020). Despite various studies 76 

showing the benefits of the dual inoculation of legumes, such effectiveness in low-fertility 77 

tropical soils with a high P sorption capacity is still poorly documented. 78 

The aim of this study was to determine the effects of dual inoculation of both native 79 

microsymbionts, rhizobial bacteria and AM fungi, on Phaseolus vulgaris growth in a P- and 80 

N-depleted tropical soil. Given the complementarity of N and P as plant growth-limiting 81 

resources, this study tested the hypothesis that dual inoculation with both symbionts would 82 

have a positive interaction in association with plant roots, and would benefit Phaseolus 83 

vulgaris growth and productivity. Moreover, we assumed that, whereas most of the time AM 84 

fungi and rhizobia do not interact synergistically (Larimer et al., 2010), it could be more 85 

effective for enhancing N fixation in stressful environments caused by the low availability of 86 

P in tropical soils. 87 

 88 

2. Materials and methods 89 

We conducted a greenhouse experiment in Madagascar with Phaseolus vulgaris L. cv. 90 

Ranjonomby as a plant model. A Ferralsol (0-20 cm), typical of the hills of the Malagasy 91 

Highlands, was collected at Lazaina (18°46′ S, 47°32′ E, North of Antananarivo) from 92 



unfertilized long-term grassland fallows. It was an acidic (pH 5.4) sandy clay loam, with total 93 

carbon, N and P contents of 16.4, 0.91 and 0.61 g kg-1, respectively (Henintsoa et al., 2017). 94 

Phosphorus availability was very low (Piwater = 1.1 mg P kg-1) due to its sorption by clay 95 

minerals and iron/aluminium oxides, which amounted to 244 g kg-1 for kaolinite, 247 g kg-1 96 

for gibbsite and 36 g kg-1 for iron oxides. It was sieved with a 2-mm mesh, mixed (1:1, w/w) 97 

with washed river sand (with total C, N and P contents of 0.17, 0.013, 0.002 g kg-1), and 98 

autoclaved at 121°C for 40 min.  99 

Native strains of rhizobia and AM fungi were isolated from the roots and rhizospheric 100 

soil of bean (Phaseolus vulgaris), respectively, taken from an experimental design with 101 

intercropped bean and rice growing in the same soil at Lazaina. Two AM fungal isolates 102 

extracted by the wet sieving and decanting method (Gerdemann and Nicolson, 1963) were 103 

selected. They were identified according to their morphological features (colour, size and 104 

shape), and by using the key provided by the International Culture Collection of Vesicular 105 

Arbuscular Mycorrhizal Fungi (INVAM, http://www.invam.wvu.edu): M1, with 50-µm 106 

brown spores, consisting of Acaulospora sp. and M2, with 80-µm black spores, consisting of 107 

Glomus sp. The rhizobial inoculum S1 corresponded to a cocktail of ten Rhizobium spp. 108 

strains from bioassays carried out on a collection of infective isolates, selected for their 109 

greater symbiotic effectiveness.  110 

The experiment was a fully randomized block design with two factors, inoculations of 111 

AM fungus (coded “M”) and rhizobia (coded “S”), and four replications. The design 112 

comprised a negative control without inoculation (coded “S0/M0”), and treatments with 113 

inoculation by the two AM fungal strains, Acaulospora sp. (“M1”) or Glomus sp. (“M2”), and 114 

by the rhizobial mixture (“S1”), either alone or together.  115 

One bean seed was sown in 1-litre mesocosms with 1 kg of a sterile soil-sand mixture 116 

placed in a greenhouse with a 12-hour photoperiod and 28/18°C day/night temperature. Tap 117 



water was supplied every two days to adjust moisture to nearly 80% of water-holding 118 

capacity, i.e. 31 g of water per 100 g of the dry soil-sand mixture. The soils were inoculated 119 

on sowing with AM fungi and/or one week after sowing with rhizobia. For AM fungi, the 120 

strains were maintained on Sorghum sp. grown for 6 weeks in sterilised sand, and a sand 121 

inoculum (1 g of chopped AM-colonized sorghum roots (75% infection levels) and 50 g of 122 

sand) was placed in a 5-cm slot made near the seedling (Duponnois et al., 2001). For rhizobia, 123 

5 ml of liquid inoculum, grown on yeast mannitol broth (YMB) for 24 h, was applied to the 124 

base of each seedling. The negative controls (S0 and M0) were managed in the same way as 125 

the positive ones, but without inocula, i.e. by adding 5 ml of YMB for S0 or a mixture of sand 126 

and non‐mycorrhizal sorghum roots for M0. 127 

Plants were harvested two months after sowing. Shoots and roots were gently separated 128 

and washed to remove the soil, and their biomass was determined after drying at 65°C for 129 

48 h. The N and P contents of the shoot biomass were determined by the Kjeldahl method and 130 

by colorimetry (molybdenum blue) after acid digestion, respectively. Nodules were separated 131 

from fresh roots and counted. Fresh roots were stained with Trypan Blue (Phillips and 132 

Hayman 1970) and the percentage of root length colonized by the mycorrhizal fungus was 133 

quantified by the Giovannetti and Mosse method (1980) using 30 root segments. Soil 134 

phosphatase activity was measured by the Tabatabai method (1994), using the hydrolysis of 135 

p-nitrophenylphosphate (p-NPP), buffered at pH 6.0 for acid phosphatase measurement, and 136 

pH 11 for alkaline phosphatase measurement, respectively, using a citrate-phosphate buffer 137 

(i.e. McIlvain buffer). Means and standard deviations were calculated per treatment for all 138 

variables. In order to test the interaction significance between plant mutualists, we performed 139 

a two-way ANOVA with AM fungi and rhizobia inoculations as factors, including three 140 

treatments for the AM fungus factor (None, M1 and M2) and two treatments for rhizobia (S0, 141 

S1). The two-way ANOVAs were followed by Tukey HSD post hoc tests to localize the 142 



significant differences between treatments and display letters of pair-wise comparisons. When 143 

the interaction was significant, the Tukey HSD post hoc results from the interaction were 144 

displayed. When the interaction was not significant, the Tukey HSD post hoc results for the 145 

main effects were displayed. The ANOVA residuals were checked for normality using Wilk-146 

Shapiro tests. All tests were performed using R software (R Core Team, 2015) at P < 0.05. 147 

 148 

3. Results 149 

After two months of growth, shoot biomass was significantly impacted by the inoculation 150 

of rhizobia (P-value 0.012) and mycorrhiza (P-value 0.021), without any significant 151 

interaction (P-value 0.251) between these two factors (Table 1). The inoculation of rhizobia 152 

(S1) and AM fungus (M1, M2), alone or together, induced higher shoot biomass (around 50% 153 

more) than the controls (S0 and M0). The total plant biomass showed similar patterns with the 154 

highest values for treatments S1 (0.29 g) and M1 (0.30 g). In contrast, we did not find any 155 

significant changes in root biomass or in the shoot:root ratio between the treatments. A slight 156 

increase (P-value <0.001) in the total N content of the plant was observed with the inoculation 157 

of both rhizobia (+ 13%) and mycorrhiza (+7%). Thus, the amount of N accumulated in plant 158 

biomass increased by 70% after inoculation with rhizobia or mycorrhiza. Alkaline 159 

phosphatase activity exhibited the same trend as shoot and total plant biomass, i.e. higher 160 

values for the inoculation of rhizobia (P-value 0.013) and mycorrhiza (P-value 0.001), 161 

without any significant interaction (P-value = 0.401). AM fungal isolate M2 was more 162 

efficient than M1.  163 

The plant P content, the number of nodules, the mycorrhizal rate of the plants and acid 164 

phosphatase activity were affected by inoculation with both AM fungi and rhizobia, with 165 

significant interactions (Table 1). The plant P content, which was 0.85 g kg-1 without 166 

inoculation (S0-M0), increased to 1.57 g kg-1 with dual inoculation (S1-M2), corresponding to 167 



an amount of P accumulated in plant biomass that was three times greater. The nodule 168 

number, which was zero in the absence of inoculation with the rhizobium strains, reached 134 169 

nodules per plant after inoculation. However, co-inoculation of soil with mycorrhizal strains 170 

increased nodulation by 77-89%. The mycorrhization rate, which was also zero in the absence 171 

of inoculation, increased slightly (12%) following inoculation with rhizobia. The 172 

mycorrhization rate increased from 30-63% for inoculation with mycorrhiza alone to 80-95% 173 

for inoculation with both mycorrhiza and rhizobia, i.e. an increase of 28-216% (Table 1). 174 

 175 

4. Discussion 176 

We showed positive responses of legumes to rhizobial and AM symbioses, as often found 177 

(Xie et al., 1995; Ndoye et al., 2015), despite strong N and P depletion in these tropical soils. 178 

Based on greenhouse experiments, a meta-analysis showed an increase in yield of 59% for 179 

rhizobial inoculation, 45% for AM fungi and 44% for rhizobial and AM fungi (Kaschuk et al., 180 

2010), in line with our results. However, we found a synergistic effect of dual inoculation on 181 

plant P content, nodulation, mycorrhizal rate and acid phosphatase activity. Few data have 182 

shown a similar synergistic effect of dual inoculation (e.g. Chalk et al., 2006; Ossler et al., 183 

2015), with most results showing that the effects of dual inoculation are only additive (see the 184 

quantitative review of Larimer et al. 2010). Synergistic benefits of dual inoculation are 185 

thought to occur mostly in soils with both limited N and P availability (Mortimer et al., 2012). 186 

According to the stress‐gradient hypothesis for plant communities predicting an increasing 187 

importance of facilitative mechanisms relative to competition along gradients of increasing 188 

environmental stress (Maestre et al., 2009), it is possible that dual inoculation is likely to 189 

produce synergistic effects in severely nutrient-depleted Malagasy soils. This hypothesis is 190 

supported by the fact that the main mechanism by which inoculation with AM fungi acts on 191 

plant functions seems to be improved phosphatase activity, particularly that of acid 192 



phosphatases responsible for organic P hydrolysis (Tabatabai, 1994) and involved in 193 

supplying the high P requirements of N2-fixing nodules (Sulieman and Tran, 2015). However, 194 

according to Zhang et al. (2016), phosphatase activity would not seem to be due to the AM 195 

fungus itself, but to a free-living phosphate-solubilizing bacterium associated with AM fungi. 196 

Our study, carried out on a tropical soil with high P-fixing capacity and poor N availability, 197 

supported the hypothesis of a contribution of acid phosphatase activity and showed a highly 198 

significant positive interaction between the two symbionts on the number of nodules and the 199 

mycorrhization rate. However, the costs and benefits associated with these interactions for the 200 

plant are context-dependent, with AM fungi and rhizobia being less beneficial to plants in 201 

environments high in P (Hoeksema et al., 2010) or N (Herridge et al., 1984) (in Larimer et al., 202 

2014). However, dual symbioses with AM fungus and rhizobia contribute to the success of 203 

legumes, especially in a harsh environment and on low-fertility soils (Franco and de Faria, 204 

1997; van der Heijden et al., 2016). 205 

We also highlighted the positive effect of native symbiotic microorganisms selected from 206 

the soils of the Malagasy Highlands. Native microorganisms can display better adaptability to 207 

soil and environmental stress under harsh conditions (e.g. Kawaka et al., 2014), with the M2 208 

strain displaying greater efficiency. As the quality of the commercial products used as 209 

biofertilizers is sometimes questionable (Herrmann and Lesueur, 2013) and the potential 210 

negative consequences of introducing microorganisms into the soil is poorly understood 211 

(Thomsen and Hart, 2018), commercial inoculants should be used with caution, especially in 212 

ecosystems like Madagascar, which are hotspots of endemic biodiversity that need to be 213 

protected (Mittermeier et al., 2011). 214 
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Variables Unit

Interaction

S0 S1 M0 M1 M2 P -value P -value

Shoot biomass g 0.14 (0.05) x 0.21 (0.07) y 0.13 (0.05) α 0.21 (0.04) β 0.20 (0.09) αβ 0.021* 0.251

Root biomass g 0.07 (0.03) x 0.07 (0.04) x 0.05 (0.03) α 0.08 (0.04) α 0.07 (0.02) α 0.202 0.661

Total biomass g 0.23 (0.09) x 0.29 (0.10) y 0.18 (0.09) α 0.30 (0.08) β 0.26 (0.11) αβ 0.034* 0.521

Shoot:Root / 2.77 (0.94) x 3.30 (1.31) x 2.98 (0.87) α 3.09 (1.33) α 3.09 (1.39) α 0.982 0.228

Plant N content g kg
-1

18.8 (0.82) x 21.3 (1.05) y <0.001*** 19.1 (1.37) α 20.4 (1.15) β 20.6 (1.86) β <0.001*** 0.225

Plant P content g kg
-1

1.09 (0.19) 1.33 (0.23) 0.95 (0.12) 1.30 (0.08) 1.38 (0.23) 0.006**

Alkaline phosphatase µg-pNP h
-1

 g
-1

0.9 (0.8) x 1.5 (0.7) y 0.5 (0.4) α 1.1 (0.6) α 2.0 (0.6) β 0.001* 0.401

Mycorrhization rate % 30.9 (29.0) 62.2 (38.8) 40 (42.7) 71.2 (13.6) 67.1 (34.7) <0.001***

Nodule number Number 0.0 (0.0) 208.3 (59.0) 67.1 (72.3) 118.5 (128.6) 145.0 (136.0) <0.001***

Fluorescein diacetate µg-FDA h
-1

 g
-1

179.1 (25.6) 171.5 (108.8) 104.1 (80.2) 197.6 (49.9) 224.3 (39.3) <0.001***

Acid phosphatase µg-pNP h
-1

 g
-1

2.8 (3.0) 5.0 (3.3) 0.91 (1.1) 5.0 (2.6) 5.8 (3.4) 0.036*

Significant interaction Treatments

Plant P content g kg
-1

0.85 (0.02) d 1.05 (0.07) bc 1.24 (0.06) c 1.36 (0.05) ab 1.17 (0.12) cd 1.57 (0.08) a

Mycorrhization rate % 0.0 (0.0) d 11.5 (14.4) cd 62.5 (14.2) b 80.0 (4.8) ab 30.0 (2.0) c 95.0 (1.6) a

Nodule number Number 0.0 (0.0) c 134.2 (14.0) b 0.0 (0.0) c 253.7 (15.4) a 0.0 (0.0) a 237.0 (34.6) a

Fluorescein diacetate µg-FDA h
-1

 g
-1

175.8 (18.4) ab 32.3 (18.2) c 168.7 (38.9) b 226.5 (46.9) a 192.96 (17.4) ab 255.7 (24.6) a

Acid phosphatase µg-pNP h
-1

 g
-1

0.06 (0.07) bc 1.76 (1.09) bc 5.49 (3.44) ab 4.55 (2.34) abc 3.01 (1.68) bc 8.77 (1.30) a

When the interaction was not significant, letters "x, y" and "α, β" indicate main effect significance within rhizobium and mycorrhiza treatments, respectively. When the interaction was significant, letters "a, b, c, d

and e" indicate significant difference among cross-treatments according to Tukey HSD test (P < 0.05, n=5).

*P  < 0.05; **P  < 0.01; ***P  < 0.001

S0-M1 S1-M1 S0-M2 S1-M2

Rhizobium inoculation treatments

Factors

Mycorrhiza inoculation treatments

S0-M0 S1-M0

0.013*

0.012*

0.330

0.034*

P -value

0.294




