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Visible and near-infrared spectral imaging is a key non-destructive technique for rapid

assessment of biophysical traits of plants. A major challenge with close-range spectral

imaging of plants is spectral variation arising from illumination effects, which may mask

the signals due to physiochemical differences. In the present work, we describe a new

scatter correction technique called variable sorting for normalisation (VSN) and compare

its efficiency with that of the commonly used standard normal variate (SNV) technique for

the removal of unwanted illumination effects. Spectral images of potato plants were used

for testing the correction. The results showed that the VSN outperformed SNV in removing

illumination effects from the images of plants. The results show that the VSN approach to

illumination correction can support high-throughput plant phenotyping where spectral

imaging is used as a continuous monitoring tool.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).
1. Introduction

Visible and near-infrared (VNIR: 400e1000 nm) spectral im-

aging is a key non-destructive technique for rapid assessment

of biophysical traits of plants (Mishra, Asaari et al., 2017;

Mishra, Polder et al., 2020). The visible region (400e670 nm)

provides access to different pigments, through their
. Mishra).
.07.010
y Elsevier Ltd on behalf
/by-nc-nd/4.0/).
absorption of light, which can be used to characterise photo-

synthetic activity in plants. In addition, the near-infrared re-

gion (670e1000 nm) can be related to leaf chemicals and the

internal structure of leaves (Mishra, Asaari et al., 2017).

However, spectral imaging of plants suffers from illumination

effects due to the interaction of the incoming light with the

complex plant geometry (Huang, Luo et al., 2018). Illumination
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effects lead to undesirable spectral variability that is unrelated

to plant tissue composition. Much effort has been made to

correct these effects, such as extracting local informationwith

a 3D point cloud and fusing with the spectral data (Behmann,

Mahlein et al., 2016; Huang, Luo et al., 2018), or including local

inclination information into the directional hemispherical

model of leaf optical properties (Jay, Bendoula et al., 2016;

Morel, Jay et al., 2018). These methods have given improved

results in laboratory conditions.

Spectral imaging is typically deployed in high-throughput

phenotyping setups in a dedicated cabinet where the plants

are taken to be imaged during the experiment. In this frame-

work of high throughput spectral imaging, simple pre-

processing methods are preferred due to their relative

simplicity and speed. Thus, standard normal variate (SNV) has

been widely applied to correct for illumination effects.

Vigneau, Ecarnot et al. (2011) showed that the correction of the

spectral imaging of maize leaves with SNV improved the per-

formance of the regression models for prediction of nitrogen

content. The SNV approach was also taken by Asaari, Mishra

et al. (2018) and applied to a high-throughput phenotyping

experiment with maize plants. The results also showed that

SNV was successfully able to reduce linear illumination effects

from the interaction of illumination with the maize leaves.

SNV was used in the same high-throughput phenotyping

platform for extended experiments related to drought stress

induction and recovery of the plants (Asaari, Mertens et al.,

2019). SNV has also been extended to commercial platforms

and used for the detection of drought in Arabidopsis plants

(Mishra, Feller, Schmuck, Nicol,&Nordon, 2019) and for testing

the effects of chemicals on plants in a high-throughput sce-

nario (Mishra, Schmuck, Roth, Nicol, & Nordon, 2019). The re-

sults were conclusive that SNV was useful for illumination

correction. SNV has the advantages of being rapid, model-free

and not requiring additionalmeasurements compared to other

approaches such as 3D modelling (Behmann, Mahlein et al.,

2016) and radiative transfer modelling (Jay, Bendoula et al.,

2016; Morel, Jay et al., 2018).

Although there are many applications of SNV for illumi-

nation correction in close range spectral imaging (SI), the

method does have the disadvantage that it assumes that all

spectral bands are affected in a similar way by the illumina-

tion effects, which is not always the case. Even more

importantly, SNV suffers from the closure problem, due to

the division of the intensity of all the points in the spectrum

by its standard deviation. This can lead to ineffective removal

of complex illumination effects such as multiplicative effects

of higher order (Roger, Boulet et al., 2020) resulting in a

deformation of the general shape of the spectra. To overcome

such limitations, a new method has been developed in the

chemometric domain called variable sorting for normal-

isation (VSN) (Rabatel, Marini et al., 2020). VSN works by

defining a weighting function to identify the variables that

are affected by external effects such as illumination rather

than the response of interest. In addition, VSN helps to

characterise the nature of such external effects, whether they

are additive, multiplicative, polynomial or otherwise. Recent

applications related to the use of VSN have shown an

improvement in model performance compared to traditional
pre-processing techniques (Rabatel, Marini et al., 2020; Sun,

Subedi et al., 2020).

The aim of the present work is to evaluate the use of the

VSN pre-processing approach for illumination correction in

spectral imaging of plants. Aa an example, potato plant was

chosen for this study. The comparison was performed with

the commonly used SNV method and the raw reflectance

signal. In order to show the improvement by using VSN, un-

supervised cluster analysis was applied to the spectral images

to visualise the segmentation of plant parts i.e. leaf blade and

the vein.
2. Material and methods

2.1. Spectral imaging of potato plants

The image (a single hyperspectral image of approximately 4

plants) was selected from an experiment for the early detec-

tion of diseased potato plants. The image was captured with a

V10e spectral line-scan camera from Specim (Oulu, Finland)

with top view as illustrated in Fig. 1. Illumination was pro-

vided by a 15 W halogen light source. The camera provided a

500 x 656 x 193 data cube with 2 spatial dimensions, and a

spectral dimension including 193 bands acquired in the range

of 400e1000 nm, at a resolution of 3 nm (FWHM). For illumi-

nation a fibre-optic line light was used, using a tungsten

halogen light source. The image was corrected with white

(>98% reflectivity Spectralon) and dark reference samples.

However, it should be noted that this correction is carried out

using a flat white calibration reference, therefore despite this

correction, spectral images of plants suffer from unavoidable

illumination effects due to plant geometry. Image segmenta-

tion to separate leaves from the background was done with

normalised difference vegetation index. The images were

processed using MATLAB 2017b (Natwick, USA).

2.2. Pre-processing with SNV

SNV includes subtraction of the mean signal intensity from

the intensity at all wavelengths and then dividing by the

standard deviation of the spectrum. In this way, the mean

corrects for the offset effect and the standard deviation cor-

rects global differences in intensities (Roger, Boulet et al.,

2020). In the case of SI, the spectral cube is first unfolded

and SNV is then applied to each spectrum. The SNV transform

can be represented as in equation (1):

XSNV ¼ x� Xmean

Xstd
(1)

where XSNV is the transformed spectra, x is the reflectance (or

raw signal corresponding to each wavelength), Xmean is the

mean intensity and Xstd is the standard deviation of the

intensities.

2.3. Pre-processing with VSN

Variable sorting for normalisation (VSN) is a recently

developed scatter correction technique that calculates

https://doi.org/10.1016/j.biosystemseng.2020.07.010
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weights to be applied to wavelengths when applying clas-

sical methods such as SNV, multiple scatter correction

(MSC) or Detrend (Rabatel, Marini et al., 2020). VSN esti-

mates the weights based on random consensus (RANSAC)

algorithm which estimates to what extent a wavelength is

affected by size effects (additive and multiplicative offsets

by scattering) or by shape effects (chemical-related fea-

tures). In this way, variables that are strongly related to

chemicals have a low weight and negligible role in the

calculation of the size effect.

Themain benefit of the VSN approach in comparison to the

MSC is that it does not require a reference spectrum to

perform the weight estimation. In the present work, VSN was

implemented as presented by Rabatel, Marini et al. (2020),

which involved using the weight while estimating the mean

and standard deviation for the SNV. The 3D spectral data cube

was unfolded and the VSNwas applied in the spectral domain

as can be understood from Fig. 2.
Fig. 2 e Schematic of spectra image unfo

Fig. 1 e A schematic of close range spectral imaging of

plants.
2.4. K-means clustering analysis

K-means clustering is used here for data modelling in order to

demonstrate the effect of the different pre-processing tech-

niques. K-means is a vector quantisation method which par-

titions n observations into k number of clusters in which each

observation belongs to the cluster with the closest barycentre.

Any number of clusters can be defined; however, it is always

necessary to perform an optimisation to find the optimal

number of clusters. The cluster number optimisation protocol

includes defining a criterion thatminimises thewithin-cluster

distances and maximises the between-cluster distances. In

the present work, the K-means clustering was implemented

using MATLAB’s ‘Statistics and machine learning toolbox’ and the

criterion used to determine the optimal number of clusters

was the ‘Calinski Harabasz’ index, which is defined as the ratio

between the within-cluster dispersion and the between-

cluster dispersion.
3. Result and discussion

3.1. Illumination effects in image

A single band from a spectral image of potato plants and

corresponding to ~700 nm was taken from the spectral data

cube (Fig. 3). The image reveals the presence of illumination

effects as the yellowish regions on the leaves. The illumina-

tion effects are so dominant in some regions that it masks the

differences between the veins and the leaf blade. If any data

analysis were performed without removing these effects, the

model would therefore not be able to capture the difference

between the veins and the leaf blades (Asaari, Mishra et al.,

2018; Mishra, Schmuck et al., 2019).

The correction of the illumination effects using VSN pre-

processing for the same spectral plane shown in Fig. 3A

(~700 nm) is shown in Fig. 3B. VSN identified that the spectral

data have multiplicative effects with 3rd order polynomial

baseline. Regions of interest from the images in Fig. 3A and B,

showing ‘zoomed in’ regions for specific plant, are shown in

Fig. 3C to F. Figure 3B shows that the effects are removed by

the VSN pre-processing. After removal of illumination effects,

the veins can be distinguished from the leaf blades. Similar

effects can be seen when the image is zoomed for the two

plants as shown in Fig. 3C to F. In both of the plants, the VSN
lding and pre-processing with VSN.

https://doi.org/10.1016/j.biosystemseng.2020.07.010
https://doi.org/10.1016/j.biosystemseng.2020.07.010


Fig. 3 e Spectral image corresponding to ~700 nm: (A) before any correction, and (B) after VSN correction. The illumination

effects have been eliminated. The zoomed plants are (C) plant 1 before correction, (D) plant 1 after correction, (E) plant 2

before correction, and (F) plant 2 after correction.
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pre-treatment has led to a reduction of illumination effects

and a highlighting of the plant parts.

3.2. k-means clustering applied to spectral images of
plants

The plant part segmentation results obtained with the k-

means clustering are shown in Figs. 4e6. The optimisation for

the identification of the optimal number of cluster centroids

showed that the raw reflectance gave 4 clusters (Fig. 4A), SNV

gave 3 clusters (Fig. 4B) and VSN gave only 2 clusters (Fig. 4C).

The clusters are further visualised as cluster maps in Fig. 5.
Fig. 4 e The optimisation of K-means clustering and automatic

index. (A) Reflectance (4 clusters), (B) SNV corrected data (3 clus
Cluster maps show that the clustering of raw reflectance data

(Fig. 5A) only modelled the differences in illumination and

does not have any biophysical basis. This is because the re-

gions which were highlighted due to illumination effects in

Fig. 3 are identified as belonging to the same cluster.

Furthermore, these clusters that were related to illumination

effectsmasked the identification of leaf blade and veins. In the

case of SNV, the clustermaps obtained from the three clusters

show that there is an improvement in the identification of

plant parts compared to the raw reflectance data. This in-

dicates that SNV indeed works for illumination reduction as

stated by Vigneau, Ecarnot et al. (2011), Asaari, Mishra et al.
selection of cluster numbers based on ‘Calinski Harabasz’

ters) and (C) VSN corrected data (2 clusters).

https://doi.org/10.1016/j.biosystemseng.2020.07.010
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Fig. 5 e The cluster maps obtained from the k-means clustering: (A) Reflectance, (B) SNV pre-processed and (C) VSN pre-

processed.

Fig. 6 e The cluster centroids from K-Means: (A) raw reflectance, (B) SNV pre-processed and (C) VSN pre-processed.
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(2018), Asaari, Mertens et al. (2019), Mishra, Feller et al. (2019),

and Mishra, Schmuck et al. (2019). However, despite the

reduction in illumination effects by SNV, the clustering does

not result in a clear identification of different plant parts

(Fig. 5B); there are still multiple clusters assigned to the same

leaves, and the leaf blade and vein parts are found in a single

cluster. On the other hand, the clustermaps after VSN showed

a clear segmentation of the leaf blade and the vein part

(Fig. 5C). In the case of clustering based on the VSN pre-

processed data, two clusters were found by the cluster selec-

tion criterion, and these two clusters were sufficient to

distinguish the leaf blade and veins in the plants. Compared to

the cluster maps of raw reflectance, there is a significant

improvement in the identification of the veins in the illumi-

nation affected parts.

To get an understanding of the cluster maps, the spectra of

the cluster centroids are presented in Fig. 6. The cluster

centroid shows that the clustering on raw reflectance spectra

(Fig. 6A) just captured the differences in global intensities of

the pixels. Such differences are the result of illumination

differences and do not carry physicochemical information.

The clustering on the SNV pre-processed spectra was able to

avoid illumination effects and so captured physicochemical
information. However, the information was mainly limited to

colour differences. Capturing the colour differences by the

cluster centroids of SNV shows that the pre-processed data

still has its main variability in the colour part of the spectrum,

which is masking the chemical differences between the leaf

blade and the vein. In the case of the VSN pre-processed data,

the clustered centroids have their main differences in the

chlorophyll and the red edge parts of the spectrum, both of

which are indicators of plant photosynthetic activity. Differ-

ences highlighted by VSN in this region can be understood as

differences in the photosynthetic activity of the leaf blade and

vein, which are at the origin of the separate clusters and the

segmentation in the cluster maps.
4. Conclusion

Close-range spectral imaging of plants suffers from illumi-

nation effects due to interaction of the light with the complex

plant geometry. Such illumination effects can mask the un-

derlying physicochemical signals from the various plant parts.

Present work recommends the use of spectral normalisation

techniques before modelling the close-range spectral images

of plants. Spectral normalisation techniques such as SNV and

https://doi.org/10.1016/j.biosystemseng.2020.07.010
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VSN have the key advantage over 3D modelling and radiative

transfer modelling that they are fast, do not require extra

sensor measurements and do not require any external pa-

rameters. SNV can reduce the global differences in the signal

intensities, but, in the present work, it did not allow clear

identification of the physicochemical differences in plant

parts. On the other hand, VSN was successful in removing

illumination effects and a clear segmentation of leaf blade and

vein was obtained.
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