, ADEME, 2018.

S. S. Ahankari, A. K. Mohanty, and M. Misra, Mechanical behaviour of agro-residue reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate), (PHBV) green composites: a comparison with traditional polypropylene composites, Compos Sci Technol, vol.71, pp.653-657, 2011.

J. Beigbeder, L. Soccalingame, D. Perrin, J. C. Bénézet, and A. Bergeret, How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites, Waste Manag, vol.83, pp.184-193, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02424754

M. A. Berthet, H. Angellier-coussy, V. Chea, V. Guillard, E. Gastaldi et al., Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties, Compos Part A Appl Sci Manuf, vol.72, pp.139-147, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01268972

M. A. Berthet, H. Angellier-coussy, D. Machado, L. Hilliou, A. Staebler et al., Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging, Ind Crop Prod, vol.69, pp.110-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01268973

C. Boland, Life cycle energy and greenhouse gas emissions of natural fiber composites for automotive applications: impacts of renewable material content and lightweighting By Borken-Kleefeld J, Weidema BP (2013) Background data for transport, 2014.

A. Boulay, I. Vazquez, F. Verones, and J. Woods, Marine impacts in LCA. www.marilca.org, 2019.

. Chambre-régionale-d'agriculture-nouvelle-aquitaine and . Draaf/sral-nouvelle-aquitaine, Guide de l'observateur : La vigne, 2017.

I. Chodak, Polyhydroxyalkanoates: origin, properties and applications, Monomers, polymers and composites from renewable resources, pp.451-477, 2008.

D. Civancik-uslu, L. Ferrer, R. Puig, and P. Fullana-i-palmer, Are functional fillers improving environmental behavior of plastics? A review on LCA studies, Sci Total Environ, vol.626, pp.927-940, 2018.

. Ct-ipc, Centre Technique Industriel de la Plasturgie et des Composites, 2019.

G. David, N. Gontard, H. Angellier-coussy, G. David, J. Michel et al., Angellier-Coussy H (2020a) How vine shoots as fillers impact the biodegradation of PHBVbased composites, Eurofiller polymer blends conference, vol.21, 2019.

G. David, M. Vannini, L. Sisti, P. Marchese, A. Celli et al., Eco-conversion of two winery lignocellulosic wastes into fillers for biocomposites: vine shoots and wine pomace, Polymers, p.12, 2020.

G. David, L. Heux, and S. Pradeau, Upcycling of vine shoots: production of fillers for PHBV-based biocomposites applications, J Polym Environ, 2020.

J. R. Duflou, Y. Deng, K. Van-acker, and W. Dewulf, Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based study, vol.37, pp.374-382, 2012.

. Sd-tech, Deliverable D5.1 Environmental assessment of different packaging materials FranceAgriMer (2016) L'observatoire national des ressources en biomasse: Évaluation des ressources disponibles en France Galanakis CM (2017) Handbook of grape processing by-products, EcoBioCAP, vol.265669, 2013.

G. Gazeau, V. Sibe, R. Mouton, and R. J. , Etude sur les options de valorisation matière (valorisation sous forme d'éco-matériaux) ou énergie des résidus de culture, 2018.

R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made, Sci Adv, vol.3, pp.25-29, 2017.

J. Girones, L. Vo, D. Giuseppe, E. Navard, and P. , Natural fillerreinforced composites: comparison of reinforcing potential among technical fibers, stem fragments and industrial by-products, Cellul Chem Technol, vol.51, pp.839-855, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01701147

S. Grangeot, Vitis valorem, 2019.

V. Guillard, S. Gaucel, C. Fornaciari, H. Angellier-coussy, P. Buche et al., The next generation of sustainable food packaging to preserve our environment in a circular economy context, Front Nutr, vol.5, pp.1-13, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02381094

P. Gullón, B. Gullón, I. Dávila, J. Labidi, and S. Gonzalez-garcia, Comparative environmental life cycle assessment of integral revalorization of vine shoots from a biorefinery perspective, Sci Total Environ, vol.624, pp.225-240, 2018.

T. Gurunathan, S. Mohanty, and S. K. Nayak, A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Compos Part A Appl Sci Manuf, vol.77, pp.1-25, 2015.

K. G. Harding, J. S. Dennis, V. Blottnitz, H. Harrison, and S. , Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologicallybased poly-?-hydroxybutyric acid using life cycle analysis, J Biotechnol, vol.130, pp.57-66, 2007.

M. Hauschild, R. K. Rosenbaum, S. Olsen, B. G. Hermann, L. Debeer et al., To compost or not to compost: carbon and energy footprints of biodegradable materials' waste treatment, Polym Degrad Stab, vol.96, pp.1159-1171, 2011.

J. Hreblay, , 2019.

F. Ifn and S. , Biomasse forestière, populicole et bocagère disponible pour l'énergie à l'horizon, p.2020, 2009.

, Int J Life Cycle Assess

S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Are natural fiber composites environmentally superior to glass fiber reinforced composites?, Compos Part A, vol.35, pp.371-376, 2004.

M. Keller, Water relations and nutrient uptake, pp.101-124, 2015.

A. C. Kilinc, M. Atagur, and O. Ozdemir, Manufacturing and characterization of vine stem reinforced high density polyethylene composites, Compos Part B Eng, vol.91, pp.267-274, 2016.

S. Kim, B. E. Dale, L. T. Drzal, and M. Misra, Life cycle assessment of kenaf fiber reinforced biocomposite, J Biobased Mater Bioenergy, vol.2, pp.85-93, 2008.

E. Labouze, L. Guern, and Y. , Analyse du Cycle de Vie d'emballages en plastique de différentes origines-Rapport final, 2007.

S. Lammi, L. Moigne, N. Djenane, and D. , Dry fractionation of olive pomace for the development of food packaging biocomposites, Ind Crop Prod, vol.120, pp.250-261, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02623602

L. Duigou, A. Davies, P. Baley, and C. , Replacement of glass/ unsaturated polyester composites by Flax/PLLA biocomposites: is it justified?, J Biobased Mater Bioenergy, vol.5, pp.466-482, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00714959

W. S. Lee, A. Chua, H. K. Yeoh, and G. C. Ngoh, A review of the production and applications of waste-derived volatile fatty acids, Chem Eng J, vol.235, pp.83-99, 2014.

B. Max, J. M. Salgado, S. Cortes, and J. M. Dominguez, Extraction of phenolic acids by alkaline hydrolysis from the solid residue obtained after prehydrolysis of trimming vine shoots, J Agric Food Chem, vol.58, pp.1909-1917, 2010.

C. Mayer-laigle, R. Rajaonarivony, N. Blanc, and X. Rouau, Comminution of dry lignocellulosic biomass: part II. technologies, improvement of milling performances, and security issues, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01869878

A. K. Mohanty, M. Misra, and L. T. Drzal, Surface modifications of natural fibers and performance of the resulting biocomposites: an overview, Compos Interfaces, vol.8, pp.313-343, 2001.

A. K. Mohanty, M. Misra, and L. T. Drzal, Natural fibers, biopolymers, and biocomposites, 2005.

G. Picchi, S. Silvestri, and A. Cristoforetti, Vineyard residues as a fuel for domestic boilers in Trento Province (Italy): comparison to wood chips and means of polluting emissions control, Fuel, vol.113, pp.43-49, 2013.

. Plasticseurope, Plastics-the, 2018.

, PRé Sustainability, 2018.

T. Qiang, D. Yu, A. Zhang, H. Gao, Z. Li et al., Life cycle assessment on polylactide-based wood plastic composites toughened with polyhydroxyalkanoates, J Clean Prod, vol.66, pp.139-145, 2014.

S. J. Royer, S. Ferrón, S. T. Wilson, and D. M. Karl, Production of methane and ethylene from plastic in the environment, PLoS One, vol.13, pp.1-13, 2018.

A. Sanchez, F. Ysunza, M. Neltran-garcia, and M. Esqueda, Biodegradation of viticulture wastes by pleurotus: a source of microbial and human food and its potential use in animal feeding, J Agric Food Chem, vol.50, pp.2537-2542, 2002.

N. Scarlat, J. Dallemand, F. Monforti-ferrario, and N. V. , The role of biomass and bioenergy in a future bioeconomy: policies and facts, vol.15, pp.3-34, 2015.

R. Spinelli, C. Nati, L. Pari, E. Mescalchin, and N. Magagnotti, Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues, Appl Energy, vol.89, pp.374-379, 2012.

M. Tabone, J. Cregg, E. Beckman, and A. Landis, Sustainability metrics: life cycle assessment and green design in polymers, Environ Sci Technol, vol.44, pp.8264-8269, 2010.

R. Vidal, P. Martínez, and D. Garraín, Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters, Int J Life Cycle Assess, vol.14, pp.73-82, 2009.

G. Wernet, C. Bauer, B. Steubing, R. J. Moreno-ruiz, E. Weidema et al., The ecoinvent database version 3 (part I): overview and methodology, Int J Life Cycle Assess, vol.21, pp.1218-1230, 2016.

J. S. Woods, K. Veltman, M. Huijbregts, F. Verones, and E. G. Hertwich, Towards a meaningful assessment of marine ecological impacts in life cycle assessment ( LCA ), 2016.

X. Xu, K. Jayaraman, C. Morin, and N. Pecqueux, Life cycle assessment of wood-fibre-reinforced polypropylene composites, J Mater Process Technol, vol.8, pp.168-177, 2008.

M. R. Yates and C. Y. Barlow, Life cycle assessments of biodegradable, commercial biopolymers-a critical review, Resour Conserv Recycl, vol.78, pp.54-66, 2013.

, Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations