Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation
Pauline Seguinot, V Englezos, G Bergler, P Brial, Anne Ortiz-Julien, M Brulfert, Carole Camarasa, A Bloem

To cite this version:
Pauline Seguinot, V Englezos, G Bergler, P Brial, Anne Ortiz-Julien, et al.. Non-Saccharomyces yeast-nitrogen consumption and metabolite production during wine fermentation. OENO 2019 11th Symposium of Oenology, Jun 2019, Bordeaux, France. hal-02966818

HAL Id: hal-02966818
https://hal.inrae.fr/hal-02966818
Submitted on 14 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Non-*Saccharomyces* yeast nitrogen consumption and metabolite production during wine fermentation

P. Seguinot, V. Englezos, G. Bergler, P. Brial, A. Ortiz-Julien, M. Brulfert, C. Camarasa, A. Bloem
Context: toward the diversification of enological yeasts

- Wide diversity of yeast species at the beginning of the fermentation
 → But domination of *S. cerevisiae* at the end of FA

- Use of active dry yeasts to control the process
- Some of the non-*Saccharomyces* yeasts have interesting properties

- Association of a non-*Saccharomyces* strain with *S. cerevisiae*:

 Non-Saccharomyces
 - Aroma production
 - Do not complete the fermentation

 S. cerevisiae
 - Fermentation completion

 Interactions: nutrients competition

- Contribution of *M. pulcherrima* Flavia® for the production of aromas?
- Assessment of nutrient requirements to ensure alcoholic fermentation?
M. pulcherrima Flavia® in sequential inoculation with S. cerevisiae Lalvin QA23®

- Experimental conditions:

 In SM with thiol precursors

 Fermentation progress

 T=0h : inoculation of M. pulcherrima Flavia®
 T=48h : inoculation of S. cerevisiae Lalvin QA23®

- Results: fermentative aroma compounds

 - Characteristic profile of fermentative aromas production, with increased production of acetate esters derived from branched higher alcohols ➔ diversification of aroma profile of wines
M. pulcherrima Flavia® in sequential inoculation with *S. cerevisiae* Lalvin QA23®

- Results: thiols

- Strong increase in the production of thiols in seq. inoculation with *M. pulcherrima* Flavia®
- Phenotypic diversity of non-Saccharomyces yeasts for the production of aromas to be exploited

- Management of nitrogen important in sequential inoculation for the alcoholic fermentation process. Co-cultures result in interactions between the yeasts with effect on the quality of the final product, on the production of positive aromas.

Nitrogen sources prematurely consumed

- Limitation for the S. cerevisiae development?

28% of yeast assimilable nitrogen consumed by M. pulcherrima in 48h: mainly Glu, Gln and amino acids branched.

Lower implantation of S. c in sequential inoculation.
Thank you for your attention

Thanks to:

INRA - UMR SPO
Carole Camarasa
Audrey Bloem
Pascale Brial
Christian Picou

Pauline,
Vasilis,
Guillaume

Lallemand SAS
Anne Ortiz-Julien
Michel Brulfert
M. pulcherrima Flavia®: A high ability to secrete hydrolytic enzymes

- Release of hydrolytic enzymes into the must, such as β-lyase which involved in the cleavage of thiol precursors

![Diagram showing β-lyase and thiol precursors](image)

- **Thiol precursors**:
 - NH₄, amino acids, or peptides

- **β-lyase**
- **Thiol**

![Graph showing β-lyase activity](image)

- **S. cerevisiae (control)**
- **Sequential inoculation (M.p et S.c)**

- Diversification of aroma profile
Impact of must characteristics on *M. pulcherrima* Flavia® performances

Thiols

- 3MH and 4MMP: same shape = same liberation pathway
- 3MHA: different shape, close to acetate esters = similar production pathway

- Quadratic effect of nitrogen on the release of 3MH and 4MMP
- Positive effect of nitrogen on the production of 3MHA

3MHA production using similar mechanisms than the other acetate esters