P. Nakpong and S. Wootthikanokkhan, High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand, Renew. Energy, vol.35, pp.1682-1687, 2010.

J. F. Oliveira, I. L. Lucena, R. M. Saboya, M. L. Rodrigues, A. E. Torres et al., Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption, Renew. Energy, vol.35, pp.2581-2584, 2010.

P. Khuwijitjaru, K. Watsanit, and S. Adachi, Carbohydrate content and composition of product from subcritical water treatment of coconut meal, Ind. Eng. Chem, vol.18, pp.225-229, 2012.

S. Sulaiman, A. R. Aziz, and M. K. Aroua, Reactive extraction of solid coconut waste to produce biodiesel, J. Taiwan Inst. Chem. Eng, vol.44, pp.233-238, 2013.

T. Kobayashi, H. Kuramochi, and K. Q. Xu, Variable oil properties and biomethane production of grease trap waste derived from different resources, Int. Biodeterior. Biodegrad, vol.119, pp.273-281, 2017.

, The (a) growth (as weight biomass) of S. cerevisiae BCM and (b) HDDA and DDA yields when cultured in YPCCW medium at 30 ? C for 120 h at different initial medium pH, Figure, vol.5

P. Nakpong and S. Wootthikanokkhan, High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand, Renew. Energy, vol.35, pp.1682-1687, 2010.

J. F. Oliveira, I. L. Lucena, R. M. Saboya, M. L. Rodrigues, A. E. Torres et al., Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption, Renew. Energy, vol.35, pp.2581-2584, 2010.

P. Khuwijitjaru, K. Watsanit, and S. Adachi, Carbohydrate content and composition of product from subcritical water treatment of coconut meal, Ind. Eng. Chem, vol.18, pp.225-229, 2012.

S. Sulaiman, A. R. Aziz, and M. K. Aroua, Reactive extraction of solid coconut waste to produce biodiesel, J. Taiwan Inst. Chem. Eng, vol.44, pp.233-238, 2013.

T. Kobayashi, H. Kuramochi, and K. Q. Xu, Variable oil properties and biomethane production of grease trap waste derived from different resources, Int. Biodeterior. Biodegrad, vol.119, pp.273-281, 2017.

S. Lertsriwong, J. Comwien, W. Chulalaksananukul, and C. Glinwong, Isolation and identification of anaerobic bacteria from coconut wastewater factory for ethanol, butanol and 2,3 butanediol production, Int. Biodeterior. Biodegrad, vol.119, pp.461-466, 2017.

P. Buathong, N. Boonvitthya, G. Truan, and W. Chulalaksananukul, Biotransformation of lauric acid into 1, 12-dodecanedioic acid using CYP52A17 expressed in Saccharomyces cerevisiae and its application in refining coconut factory wastewater, Int. Biodeterior. Biodegrad, vol.139, p.969, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02170461

N. Naksagul, K. Antrakarnapa, and S. Silapanintakul, Biogas production from treatment of coconut milk wastewater using anaerobic process, Thai Environ. Eng. J, vol.20, pp.1-10, 2006.

E. Garuda, Specifies that Pollution Sources that the above Standards Are to Be Applied Are Factories Group II and III Issued under the Factory Act B.E. 2535 (1992) and Every Kind of Industrial Estates. Royal Government Gazette, National Environmental Quality Act B.E, vol.113, issue.4, p.2535, 1992.

M. A. Nur and M. A. Irawan, Utilization of coconut milk skim effluent (cmse) as medium growth for Spirulina platensis, Procedia Environ. Sci, vol.23, pp.72-77, 2015.

S. Karnasuta, V. Punsuvon, and R. Nokkaew, Biodiesel production from waste coconut oil in coconut milk manufacturing, Walailak J. Sci. Technol, vol.12, pp.291-298, 2014.

F. M. Dayrit, The properties of lauric acid and their significance in coconut oil, J. Am. Oil Chem. Soc, vol.92, pp.1-15, 2015.

E. J. Seo, Y. J. Yeon, J. H. Seo, J. H. Lee, J. P. Boñgol et al., Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, Bioresour. Technol, vol.9, pp.288-294, 2018.

L. Han, Y. Peng, Y. Zhang, W. Chen, Y. Lin et al., Designing and creating a synthetic omega oxidation pathway in Saccharomyces cerevisiae enables production of medium-chain ?,?-dicarboxylic acids, Front. Microbiol, 2017.

W. H. Eschenfeldt, Y. Zhang, H. Samaha, L. Stols, L. D. Eirich et al., Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis, Appl. Environ. Microbiol, vol.69, pp.5992-5999, 2003.

L. D. Eirich, D. L. Craft, L. Steinberg, A. Asif, W. H. Eschenfeldt et al., Cloning and characterization of three fatty alcohol oxidase genes from Candida tropicalis strain ATCC 20336, Appl. Environ. Microbiol, vol.70, pp.4872-4879, 2004.

W. Lu, J. E. Ness, W. Xie, X. Zhang, J. Minshull et al., Biosynthesis of monomers for plastics from renewable oils, J. Am. Chem. Soc, vol.132, pp.15451-15455, 2010.

Z. Cao, H. Gao, M. Liu, and P. Jiao, Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid, Biotechnol. J, vol.1, pp.68-74, 2006.

H. Park, G. Park, W. Jeon, J. O. Ahn, Y. H. Yang et al., Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids), Biotechnol. Adv, vol.40, 2020.

J. H. Seo, S. M. Lee, J. Lee, and J. B. Park, Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ?-hydroxycarboxylic, ?,?-dicarboxylic, and ?-aminocarboxylic acids, J. Biotechnol, vol.216, pp.158-166, 2015.

C. W. Van-roermund, H. R. Waterham, L. Ijlst, and R. J. Wanders, Fatty acid metabolism in Saccharomyces cerevisiae, Cell. Mol. Life Sci, vol.60, pp.1838-1851, 2003.

P. Durairaj, S. Malla, S. P. Nadarajan, P. G. Lee, E. Jung et al., Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ?-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb, Cell Factories, vol.14, p.45, 2015.

G. Truan, C. Cullin, P. Reisdorf, P. Urban, and D. Pompon, Enhanced in vivo monooxygenase activities of mammalian P450s in engineered yeast cells producing high levels of NADPH-P450 reductase and human cytochrome b5, Gene, vol.125, pp.49-55, 1993.

C. C. De-carvalho, Enzymatic and whole cell catalysis: Finding new strategies for old processes, Biotechnol. Adv, vol.29, pp.75-83, 2011.

B. Hahn-hägerdal, K. Karhumaa, C. U. Larsson, M. Gorwa-grauslund, J. Görgens et al., Role of cultivation media in the development of yeast strains for large scale industrial use, Microb. Cell Factories, vol.4, p.31, 2005.

H. Lee, C. Han, H. W. Lee, G. Park, W. Jeon et al., Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources, Biotechnol. Biofuels, vol.11, p.969, 2018.

R. Akmalina, R. Purwadi, and J. Sitompul, Bioconversion Studies of Methyl Laurate to Dodecanedioic Acid using a Wild-type of Candida tropicalis, Proceedings of the MATEC Web of Conferences, vol.156, p.1001, 2017.

E. Bestawy, A. H. Ahmed, R. Amer, and R. A. Kashmeri, Decontamination of domestic wastewater using suspended individual and mixed bacteria in batch system, J. Bioremediat. Biodegrad, vol.5, 2014.

D. Scheps, S. H. Malca, S. Richter, K. Marisch, B. M. Nestl et al., Production of ?-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct, Microb. Biotechnol, vol.6, pp.694-707, 2013.

S. H. Azhar, R. Abdulla, S. A. Jambo, H. Marbawi, J. A. Gansau et al., Yeasts in sustainable bioethanol production: A review, Biochem. Biophys, vol.10, pp.52-61, 2017.

W. Qi, W. T. Zhang, and F. P. Lu, Effect of temperature, NaCl and ferulic acid concentration on bioconversion of ferulic acid to 4-vinylguaiacol and 4-ethylguaiacol by halotolerant yeasts Candida versatilis, Proceedings of the International Conference on Applied Biotechnology, pp.289-297, 2016.

K. D. Green, M. K. Turner, and J. M. Woodley, Candida cloacae oxidation of long-chain fatty acids to dioic acids, Enzym. Microb. Technol, vol.27, pp.205-211, 2000.

S. Liu, C. Li, and L. Xie, Intracellular pH and metabolic activity of long-chain dicarboxylic acid-producing yeast Candida tropicalis, J. Biosci. Bioeng, vol.96, pp.349-353, 2003.

S. Liu, C. Li, X. Fang, and Z. A. Cao, Optimal pH control strategy for high-level production of long-chain ?, ?-dicarboxylic acid by Candida tropicalis, Enzym. Microb. Technol, vol.34, pp.73-77, 2004.

S. Huf, S. Krügener, T. Hirth, S. Rupp, and S. Zibek, Biotechnological synthesis of long-chain dicarboxylic acids as building blocks for polymers, Eur. J. Lipid Sci. Technol, vol.113, pp.548-561, 2011.

W. Cao, H. Li, J. Luo, J. Yin, and Y. Wan, High-level productivity of ?, ?-dodecanedioic acid with a newly isolated Candida viswanathii strain, J. Ind. Microbiol. Biotechnol, vol.44, pp.1191-1202, 2017.