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Graphical Abstract 17 

 18 
 19 

Abstract 20 

Pyrogenic carbon (PyC) may leave the soil surface where it is deposited, either through 21 

degradation, lateral transport or transfer within the profile. However, PyC has been 22 

seldom measured in the subsoil. We estimated the quantity and molecular composition of 23 

PyC in the topsoil and subsoil of 22 French forests with diverse soil types and vegetation 24 

cover. While the absolute PyC content decreased with depth, its proportion to the soil 25 

organic carbon remained constant or tended to increase. The benzene polycarboxylic 26 

acids pattern indicated that more condensed structures were found in the subsoil. Our 27 

results show that PyC transfers through the soil profile, probably as soluble fraction, and 28 

tends to accumulate in the subsoil, specifically in podzolic soils. 29 

 30 

Keywords: pyrogenic carbon; benzene polycarboxylic acids; soil type; solubilization; 31 

subsoil; forest soils;  32 
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Soil pyrogenic carbon (PyC) represents about 10–15% of total soil organic carbon 33 

(SOC) worldwide (Forbes et al., 2006; Preston and Schmidt, 2006; Bird et al., 2015; 34 

Reisser et al., 2016 and references therein) and can locally reach up to 35–45% (Schmidt 35 

et al., 1999; Skjemstad et al., 2002). 36 

Deep (> 30 cm) SOC accounts for a significant amount of total SOC (Jobbágy and 37 

Jackson, 2000), and is older and more stable than surface SOC (Rumpel and Kögel-38 

Knabner, 2010; Balesdent et al., 2018). This raises the question of how much PyC 39 

contributes to deep SOC stocks. However, to date, studies on PyC have mostly focused 40 

on surface soils, where the PyC is deposited after a fire. Only a few studies report PyC in 41 

deeper soil horizons (e.g., Rodionov et al. 2006; Guggenberger et al., 2008; Rodionov et 42 

al. 2010; Vasilyeva et al., 2011; Abney et al., 2017) and out of the 55 studies considered 43 

in the meta-analysis of Reisser et al. (2016), only 4 considered a complete soil profile. 44 

Since PyC has to be transferred from the surface to reach deeper soil layers, its quality 45 

may be prone to changes with depth that have not been studied yet. 46 

Drivers explaining PyC stocks in soil have been often related to fire properties. However, 47 

in a recent global study, Reisser et al. (2016) showed that soil properties like pH or clay 48 

content had a stronger impact on the PyC concentration than fire characteristics, land use 49 

or climate. It is yet unclear if this global picture still holds at a landscape or regional 50 

scale. 51 

In this study, we took advantage of a large network of forest sites and an established PyC 52 

characterization and quantification method to address the following research questions: 53 

• Does PyC contribute significantly to total SOC in the subsoil? 54 

• Does PyC quality evolve with depth? 55 
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We explored the effects of depth and of two potential drivers (soil class and vegetation 56 

type) on PyC quantity and quality using a balanced design. 57 

 58 

We analysed soil samples collected from sites of the French national network for the 59 

long term monitoring of forest ecosystems (‘‘RENECOFOR’’). This network consists of 60 

102 sites in managed forests, with even-aged stands. Mineral soil samples of the network 61 

were collected by layers up to 1-m depth to ensure comparability among sites and 62 

facilitate subsequent sampling to monitor SOC evolutions. Here, we chose to focus on 63 

samples collected at two depths: 0–10 cm, hereafter topsoil and 40–80 cm, hereafter 64 

subsoil. Details related to sample collection are available in Soucémarianadin et al. 65 

(2018a). We selected 22 sites, out of the entire network, to cover a diversity of soil 66 

classes and vegetation types. Soil classes were the following: (i) entic Podzols, (ii) eutric 67 

Cambisols and (iii) dystric Cambisols (IUSS Working Group, 2015). Forest vegetation 68 

was separated into two types with stands dominated by either (i) coniferous [silver fir 69 

(Abies alba Mill.) or Norway spruce (Picea abies (L.) H. Karst.)] or (ii) deciduous [beech 70 

(Fagus sylvatica L.)] trees. Study plots were mainly found in midslope or upslope 71 

positions (Table S1). 72 

Bulk < 2 mm-sieved soil samples were ground and carbon concentrations were 73 

determined by dry combustion. Samples with carbonates were first decarbonated (Harris 74 

et al., 2001). 75 

PyC was measured using the benzene polycarboxylic acids (BPCA) molecular marker 76 

method, which consists of extracting organic molecular markers specific from PyC 77 

(Glaser et al., 1998; Brodowski et al., 2005). We followed the protocol described in 78 
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Wiedemeier et al. (2013). We used a conversion factor of 2.27 (Glaser et al., 1998) to 79 

calculate PyC proportion (% SOC) and content (g PyC·kg−1 soil). While this ratio has 80 

been criticized in the literature (e.g., Schneider et al., 2010), we used it to compare our 81 

values with previous reports of PyC quantitative estimates (Reisser et al., 2016). We also 82 

used the distribution patterns of BPCA markers as a quality indicator of the PyC. High 83 

proportion of B5CA and B6CA were indicative of more condensed and aromatic material 84 

(Wiedemeier et al., 2015), while B3CA and B4CA were the product of small condensed 85 

units of 3 aromatic rings minimum (Ziolkowski et al., 2011). 86 

We used paired t-test and multivariate models (see Soucémarianadin et al. (2018b) for 87 

details) to assess the effects of the three factors (depth, soil class and vegetation type) on 88 

the quantity and quality of PyC using R software (R Core Team, 2016). A generalized 89 

least squares function (Pinheiro et al., 2016) was used for the linear mixed models, with 90 

forest site as a random effect. Model selection was implemented with a top-down 91 

strategy. 92 

 93 

The mean PyC content in these French forest topsoils was 3.1 g PyC·kg−1 soil, 94 

representing 4.4% of total SOC (Table 1). This proportion was comparable to topsoils in 95 

Switzerland (0.6–4.7% of total SOC; Reisser, 2018) and in the “Centre” region of France 96 

(mean PyC = 5.3% of total SOC; Paroissien et al., 2012). However, our average PyC 97 

proportion to SOC was relatively low when compared to global values that average 98 

13.7% of total SOC (Reisser et al., 2016). This could be linked to the ongoing fire 99 

suppression over Europe that started in the 18th century (Pyne, 1997). The mean 100 

distribution of total BPCA among the four markers (Fig. 1; Table S2) was quite similar to 101 
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what have been measured in Swiss forest topsoils (Reisser, 2018). In these topsoils, 102 

B5CA represented a proportion of total BPCA (23–51%; Reisser, 2018) similar to the one 103 

we observed in French forest soils. We also observed similar B6CA proportions to those 104 

reported in topsoils of alpine Leptosols (about 25%; Eckmeier et al., 2013). However, a 105 

few samples had very different proportions of B5CA and B6CA (Fig. S1). Specifically, 106 

the PyC in HET09 topsoil had a very low B5CA proportion (6%; Fig. S1), while PyC in 107 

HET21 and SP25 subsoils displayed relatively low B6CA (5% and 1%, respectively) and 108 

high B5CA proportions (52% and 55%, respectively; Fig. S1). Moreover, given the 109 

relative proportion of B6CA, around 30% (Fig. 1; Table S2), we assumed that soot 110 

contribution to total PyC had been minimal (e.g., Li et al., 2015) and that the PyC present 111 

in these forest soils originated mostly from biomass burning through forest fire. 112 

Historical records showed that charcoal had been produced on-site in some of these 113 

forests (Table S1). However, no trace of kilns was observed on the sampling plots and 114 

although anthropogenic charcoal production might have constituted a source of PyC in 115 

some of our study plots, it is thus unlikely to be significant. 116 

 117 

Although absolute PyC content decreased significantly with depth, PyC proportion 118 

tended to increase with depth (Fig. 2; Table 1). This increase was however not significant 119 

(Table 2). These results suggest a preferential transfer of PyC to the subsoil compared to 120 

other SOC moieties. Studies including samples from both topsoil and subsoil (> 30-cm 121 

depth) are not common, as shown by the meta-analysis of Reisser et al. (2016), but some 122 

previous observations agreed with our results. In Longleaf pine forests of the southern 123 

USA, despite PyC content decreasing significantly with depth in most sites, PyC 124 
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proportion (5–7% of SOC) was independent of depth (Butnor et al., 2017). A tendency 125 

for PyC proportion to increase with depth was observed in Russian Chernozems (from 126 

7% to 10% SOC in 0–10 cm and 30–50 cm, respectively), in a mixed-grass savanna in 127 

Texas (5–9% BPCA-C at 0–10 cm vs. 7–13% BPCA-C at 10–20 cm) and in black soils 128 

of the Southern Alps (Dai et al., 2005; Hammes et al., 2008; Eckmeier et al., 2010). 129 

However, non-linear evolutions of PyC proportion with depth have been reported 130 

(Rodionov et al., 2006; Hammes et al., 2008; Soucémarianadin et al., 2014) and 131 

distribution of PyC proportion in the complete soil profile cannot thus be inferred from 132 

our results. 133 

Downwards transfer of PyC by leaching, either through particulate or soluble forms, has 134 

been evidenced in various field conditions (Hockaday et al., 2006; Leifeld et al., 2007; 135 

Major et al., 2010; Santos et al., 2016). Although PyC quality did not change drastically 136 

between the top and deep soil layers (Fig. 1), we observed a significant decrease in B3CA 137 

and a concomitant significant increase in more condensed B5CA (Table S2). Abiven et 138 

al. (2011) observed that, over time, B5CA tended to preferentially solubilize, contrary to 139 

B3CA. These quality changes were also observed when comparing dissolved organic 140 

matter and particulate organic matter in rivers (Wagner et al., 2015). Our results therefore 141 

suggest a significant contribution of soluble PyC to the deeper soil horizons. Meanwhile, 142 

we did not observe any significant change in the B4CA/B6CA or B5CA/B6CA ratios 143 

with depth (Table S2). As these ratios are mainly affected by PyC decomposition in soils, 144 

this result suggests that no major PyC degradation occurred in our soil profiles (Singh et 145 

al., 2014; Guggenberger et al., 2008).  146 
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While PyC solubilization seems to be consistent with the BPCA distribution patterns, 147 

alternative transfer processes may have occurred. For example, mesofauna could 148 

contribute to PyC transfer through bioturbation, but this was probably limited in our 149 

coniferous sites and in our acidic soils, which tend to have few earthworms. Particle 150 

movement in the soil macro-porosity after PyC fragmentation could have also played an 151 

important role in plots where charcoal pieces have been observed (Table S1). Erosion 152 

could impact horizontal transfer of PyC in sloping landscapes (e.g., Rumpel et al., 2006; 153 

Abney et al., 2017). Further burial of PyC in depositional landforms could affect its 154 

vertical distribution (Abney and Berhe, 2018). However this vertical transfer process was 155 

unlikely to dominate in our study plots given their geomorphologic position (Table S1) 156 

and the absence of colluvial soils in our data set. 157 

 158 

Multivariate models showed that PyC quantity (content) and quality (relative proportion 159 

of B3CA) were influenced by soil class, while vegetation type was only marginally 160 

influential in B6CA distribution (Table 2). PyC proportion was higher in Podzols subsoils 161 

than in both Cambisols subsoils (Fig. 2). This could be due to an increased solubilization 162 

in Podzols caused by the podzolization process itself, during which transfer of organic 163 

matter and sesquioxides takes place (Lundström et al., 2000; Buurman and Jongmans, 164 

2005). High dissolved PyC concentrations were indeed measured in the E horizon of 165 

Podzols from sites that experienced severe burning around 100 years prior to sampling 166 

(Santos et al., 2017). Similar to OC, PyC was shown to be retained and to accumulate in 167 

podzolic B horizons (Soucémarianadin et al., 2014; Santos et al., 2017). In these horizons, 168 

PyC was associated with the fine fraction and PyC content was correlated with 169 
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sesquioxide content (Soucémarianadin et al., 2014). PyC accumulation was also observed 170 

in other soil types rich in Fe and Al oxides (Major et al., 2010; Cusack et al., 2012; 171 

Rumpel et al., 2012). These previous observations suggest that dissolved PyC is likely to 172 

be stabilized in the subsoil of podzolic soils either through organo-mineral or organo-173 

metallic complexes.  174 

The marginal effect of vegetation type on PyC content, proportion and quality compared 175 

with soil class may be linked to the time frame that needs to be considered for PyC 176 

evolutions. In these managed forests, trees were planted and current species may not 177 

reflect species composition over the last centuries, which is the time frame related to PyC 178 

turnover. Conversely, soil class encompassed long temporal scale (millennium) matching 179 

PyC longer turnover and infrequent inputs into the soil, resulting in patterns over longer 180 

timescale. 181 

 182 

A few conclusions could be drawn from the observations we made in the soil profiles of 183 

these twenty-two French forest sites. First, PyC transferred to and accumulated in the 184 

subsoil in all soil types. Second, PyC appeared to transfer downwards preferably through 185 

solubilization, specifically in podzolic soils. Third, the accumulation of PyC in the 186 

subsoil was soil class dependent, but not related to present vegetation. Yet, our 187 

investigation presents certain limitations and more studies on PyC in the complete soil 188 

profile should be carried on in diverse soil types to further improve our understanding of 189 

PyC transfer and accumulation in mineral soils. 190 

 191 
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Tables and figures captions 351 

Table 1. Range (mean, minimum, maximum) of PyC proportion (percentage of total 352 

SOC) and content (g PyC/kg soil), ratio of B3CA/B5CA markers, SOC content (g OC/kg 353 

soil), pH in water and texture for topsoil and subsoil layers in the 22 study plots. 354 

 355 

Table 2. Details of models and their significant terms selected to explain variations in 356 

PyC quantity and quality in the 22 soil profiles. All models used a gls function (see 357 

details in the Statistical analyses section). NS (non signifiant): p > 0.1; T (trend) p < 0.1; 358 

* p < 0.05; ** p < 0.01 and *** p < 0.001. 359 

 360 

Fig. 1. Mean (± standard deviation) relative distribution of total BPCA among the four 361 

BPCA markers in the topsoil and subsoil. 362 

 363 

Fig. 2. Comparison of PyC proportion (% of total SOC) in topsoil (0–10 cm) and subsoil 364 

(40–80 cm) samples for the 22 forest plots. For each site, a symbol and color represent 365 

the corresponding vegetation type and soil class, respectively. Podzols are above (or on) 366 

the 1:1 line, whereas the two other soil classes tend to be below the line. 367 







Table 1. Range (mean, minimum, maximum) of PyC proportion (percentage of total SOC) and content (g PyC/kg soil), ratio of B3CA/B5CA 

markers, SOC content (g OC/kg soil), pH in water and texture for topsoil and subsoil layers in the 22 study plots. 

Factor classes   
PyC proportion 

(% SOC) 

PyC content 

(g BPCA-C/kg soil) 

B3CA/B5CA 

ratio 

SOC content 

(g/kg soil) 
pHwater 

clay content 

(%)* 

sand content 

(%)* 

DEPTH  n mean min. max. mean min. max. mean min. max. mean min. max. mean min. max. mean min. max. mean min. max. 

 topsoil 22 4,4 1,9 10,3 3,1 0,8 10,4 0,22 0,12 0,41 72,4 22,3 147,1 5,0 4,1 7,5 27 6 45 32 1 83 

 subsoil 22 8,8 1,4 44,3 1,2 0,1 6,1 0,16 0,09 0,2 13,4 3,3 42,4 5,9 4,6 8,7 20 5 53 42 6 85 

  All 44 6,6 1,4 44,3 2,2 0,1 10,4 0,19 0,09 0,41 42,9 3,3 147,1 5,5 4,1 8,7 23 5 53 37 1 85 

* data from Ponette et al. (1997). 



Table 2. Details of models and their significant terms selected to explain variations in PyC 

quantity and quality in the 22 soil profiles. All models used a gls function (see details in the 

Statistical analyses section). NS (non signifiant): p > 0.1; T (trend) p < 0.1; * p < 0.05; ** p < 

0.01 and *** p < 0.001. 

Response variable Transformation 
Predictors in final model and level 

of significance 
na 

PyC proportion 1/ depthNS + soilNS + depth × soilT 44 

PyC content 1/sqrt depth*** + soil** 44 

B3CA 1/ depth** + soilT 44 

B5CA 1/ depth** 43 

B6CA no vegT + soilNS + veg × soilT 42 

B4CA 1/ no significant factor 44 

a outliers were identified with Cook's distance. 




