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 proposed a principled approach for extending the realm of analytically tractable models, exploiting a duality relation between the hidden process of interest and an auxiliary process, called dual and related to the time reversal of the former. When such a dual process is available and has certain characteristics, the solution of the filtering problem is available analytically and takes the form of a finite mixture of distributions, which can be evaluated by means of a recursion similar to the Baum-Welch filter. Here, we study the computational effort required to implements the above strategy in the case of two hidden Markov models given respectively by the Cox-Ingersoll-Ross process with Poisson observations and the K-dimensional Wright-Fisher process with multinomial observations. In both cases, the number of components involved in the filtering distributions increases polynomially with the number of observations, yielding a so-called computable filter. This behaviour could render the algorithm impractical for large dimensional hidden spaces or very long observation sequences and undermine its practical relevance. However, the mathematical form of the filtering distributions suggest that, in certain regimes of separation between observation times and speed of the underlying signal, the number of components which contribute most of the mixture mass remains small. This in turn suggests several natural and very efficient approximation strategies. In this contribution, we assess the performance of these strategies in terms of accuracy and speed, which we can benchmark against the exact solution.

1 Introduction to optimal filtering using a dual process Consider a hidden stochastic process and some noisy observations of this process. As new data arrives, obtaining the distribution for the last hidden state given all the values observed previously is called filtering the hidden process. Let the series {Y k , 0 ≥ k ≥ n} be the sequence of observations, denoted Y 0:n for Y ∈ Y , and let the Markov chain {X k , 0 ≥ k ≥ n}, similarly denoted X 0:n , be the unobserved stochastic process. We assume X 0:n to be the discrete-time sampling of a homogeneous continuous-time Markov process X t . We also assume that X t has state-space X , transition kernel P t (x, dx ) and initial distribution ν(dx). The observations relate to the hidden signal by means of conditional distributions assumed to be given by the kernel F(x, dy) and we let F(x, dy) = f x (y)µ(dy) for some measure µ(dy). The filtering distributions, which are the target of inference, are L (X n |Y 0:n ), that we denote ν n (dx). Define now an update and prediction operator acting on probability measures ν:

update: φ y (ν)(dx) = f x (y)ν(dx) p ν (y) , with p ν (y) = χ f x (y)ν(dx) (1) 
prediction:

ψ t (ν)(dx ) = νP t (dx ) = χ ν(dx)P t (x, dx ) (2) 
Then, the filtering distributions can be obtained by repeated applications of the update and prediction operators, as the recursion: ν 0 = φ Y 0 (ν) and ∀n > 0, ν n = φ Y n (ψ t n -t t-1 (ν n-1 )) (see for instance [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]). An explicit solution to the filtering problem is seldom available, except in two notorious cases: unobserved Markov chains with a discrete state-space, and Gaussian unobserved Markov chains with Gaussian conditional distribution. [START_REF] Papaspiliopoulos | Optimal filtering and the dual process[END_REF] extended the class of models for which an explicit solution is available by exploiting a duality relation between the unobserved Markov chain and a pure death stochastic process. In order to describe this, assume that r :

Θ → Θ is such that the differential equation dΘ /dt = r(Θ t ) with Θ 0 = θ 0 (3)
has a unique solution for all θ 0 . Let λ : Z + → R + be an increasing function, ρ : Θ → R + be a continuous function, and consider a two-component Markov process (M t ,Θ t ) with state-space M × Θ , where Θ t evolves autonomously according to Equation 3, and when at (M t ,Θ t ) = (m, θ ), the process jumps down to state (m -e j , θ ) with instantaneous rate λ (|m|)ρ(θ )m j . We say that (M t ,Θ t ) is dual to X t with respect to a family of functions h, e.g.

E x [h(X t , m, θ )] = E m,θ [h(x, M t ,Θ t )] , ∀x ∈ χ, m ∈ M , θ ∈ Θ ,t ≥ 0. ( 4 
)
where

E x [ f (X t )] = E [ f (X t )|X 0 = x] = χ f (x )P t (x, dx
) and the duality functions are such that h :

χ × M × Θ → R + , Θ ⊆ R l . The dual process (M t ,Θ t ) is separated into a deterministic component Θ t
and a pure death process M t , whose rates are subordinated to the deterministic process. The transition probabilities are:

p m,n (t, θ ) = P [M t = n|M 0 = m,Θ 0 = θ ] , ∀ n, m ∈ M 2 , n ≤ m (5)
This property is key to the computability of the filters, as it allows to replace the expectation with respect to realisations of the original stochastic process in the prediction operation (Equation 2) by an expectation over realisations of the pure death component of the dual process, which involves finite sums.

The transition probabilities can be found by exploiting the duality relation [START_REF] Papaspiliopoulos | Optimal filtering and the dual process[END_REF]:

p m,m-i (t, θ ) = γ |m|,|i| C |m|,|m|-|i| (t)p(i; m, |i|) (6) 
with:

γ |m|,|i| = |i|-1 ∏ h=0 λ |m|-h , and C |m|,|m|-|i| (t) = (-1) |i| |i| ∑ k=0 e -λ |m|-k t ∏ 0≤h≤|i|,h =k (λ |m|-k -λ |m|-h ) (7) 
and p(i; m, |i|) is the hypergeometric probability mass function. We also define the following notion of conjugacy, by assuming that 

F 0 = {h(x, m, θ )π(dx), m ∈ M , θ ∈ Θ}
φ y ∑ m∈Λ w m h(x, m, θ )π(dx) = ∑ n∈t(y,Λ ) ŵm h (x, n, T (y, θ )) π(dx) (8) 
with t(y,Λ ) = {n : n = t(y, m), m ∈ Λ }, and ŵm ∝ w m , and for n = t(y, m), ∑ n∈t(y,Λ ) ŵn = 1. This updates the signal given the new data by means of the Bayes theorem.

The prediction operation acts as:

ψ t ∑ m∈Λ w m h(x, m, θ )π(dx) = ∑ n∈G(Λ ) ∑ m∈Λ ,m≥n w m p m,n (t, θ ) h (x, n, θ t ) π(dx) (9) 
where G(Λ ) = {n ∈ M : n ≤ m, m ∈ Λ }, propagating the current filtering distribution by means of the signal transition kernel. As such, this means that filtering a hidden Markov model using the duality relation amounts to successive operations on finite mixtures of distributions, where the number of components evolves but and remains finite, while the components remain within the same family of distributions. At each new observation, the mixture distribution is shifted towards the data, and until the next observation, the mixture progressively forgets the past information and drifts back towards the prior distribution.

Implementation of the dual filtering algorithm

The filtering algorithm resulting from the method presented above is similar to the Baum-Welch filter and it alternates update and prediction steps. The update step shifts each component and modifies its weight, while the prediction step lets all the components propagate some of their mass towards the components close to the prior. We illustrate this dual filtering algorithm (algorithm 1) for two stochastic processes: the Cox-Ingersoll-Ross (CIR) process and the Wright-Fisher (WF), presented in full details later. For these two models, it is possible to compute the number of mixture components in the filtering distributions. Indeed, let K be the dimension of the latent space and m = m 1:K . Then the number of components which receive some mass from the component m during the prediction is |G(m)| = ∏ K i=1 (m i + 1). For the two processes considered in this paper, the transformation t from Equation 8 is t(y, m) = m + y. Then the number of components evolves as:

|Λ n | = ∏ K i=1 (m 0,i + 1 + ∑ n i=1 Y i ).
The prediction step is much costlier than the update step, as at each iteration it involves computing the transitions from |Λ i | to the |Λ i+1 | components. It is possible to contain the cost of the prediction operation by storing the transition terms p m,n , which will be used multiple times during the successive iterations. However, the rapid growth in the number of those terms (proportional to |G(Λ n )| 2 ) does not permit saving all of them in memory. Yet, the p m,n are themselves a product of a number of terms which grows only quadratically with the sum of all observations, in our two cases. Indeed, γ |m|,|i| and C |m|,|m|-|i| in Equation 7only depend on the sum of the indices, and the density of the multivariate hypergeometric distribution depends on various products of binomial coefficients whose number has a similar growth:

p(i; m, |i|) = ∏ K k=1 i k m k / |i| |m| .
Given the observed data, it is possible to know in advance all the terms that need to be computed and to store them in an efficiently accessible format. Another technical difficulty is that the computation of the weights in the update step and in the prediction step both present potential over and underflow risks. While the weights of the update step can be computed on a log scale without difficulty, the sum with terms of alternated sign in Equation 7 is more challenging. We compute it using the Nemo library for arbitrary precision computation [START_REF] Fieker | Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language[END_REF].

Although considerable efficiency gains are achieved by storing the transition terms, further improvements may be obtained by a natural approximation of the filtering distributions. Indeed, the filtering distributions contain a number of components that grows quickly as new observations arrive, but the complexity of the hidden signal does not necessarily increase accordingly. Hence, if the prior is reasonable and the posteriors appropriately concentrated, there is no reason for the number of components in the filtering distributions which have non negligible weight to explode. Indeed, simulation studies show that the number of components representing 99% of the weight of the mixture saturates as new observations arrive (Figure 2). This would suggest that some components may be deleted from the mixtures, speeding the computations, without loosing much in terms of precision. We envision three strategies for pruning the mixtures:

• prune all the components who have a weight below a certain threshold, which is an attempt at controlling the approximation error at a given step. This approach will be referred to as the fixed threshold strategy.

• retain only a given number of components, hopefully chosen above the saturation number (cf. Fig-

ure 2). This is an attempt at controlling the computation budget at each time step. This approach will be referred to as the fixed number strategy. • retain all the largest components needed to reach a certain amount of mass, for instance 99%. This is an adaptive strategy to keep the smallest possible number of components under a certain error tolerance level. It involves sorting the weights and summing them, which is more expensive than the other two strategies for a large number of weights. This approach will be referred to as the fixed fraction strategy.

In algorithm 1, the pruning is performed just after the update step. This choice is dictated by two reasons: first, after the update step the mixture is likely to be more concentrated because of the incorporation of the information from the new observation, so the number of components with non negligible weight is potentially small. Then, as the prediction step is the most computationally expensive, reducing the number of components before predicting entails the maximum computational gain. After pruning, we renormalise all the remaining weights so that they sum to 1. The fact that the pruning operation occurs at each time step means that the level of approximation on a given filtering distribution results from several successive approximations.

Algorithm 1: Optimal filtering algorithm using the dual process, with the option of pruning.

Data: Y 0:n , t 0:n and ν = h(x, m 0 , θ 0 ) ∈ F for some m 0 ∈ M , θ 0 ∈ Θ Result: Θ 0:n , Λ 0:n and W 0:n with

W i = {w i m , m ∈ Λ i } Initialise Set Θ 0 = θ 0 Set Λ 0 = {t(Y 0 , m 0 )} = {m * }
and W 0 = {1} with t as in Equation 8Let Θ 0 evolve according to Equation 3 during t 1t 0 and set θ * equal to the new value Set Λ * = G(Λ 0 ) and W * = {p m * ,n (t 1t 0 , θ 0 ), n ∈ Λ * } with G as in Equation 9and p m,n as in Equation 6for i from 1 to n do Update

Set Θ i = θ * Set Λ i = {t(Y i , m), m ∈ Λ * } Set W i = { w * m p h(x,m,Θ i ) ∑ n∈Λ * w * n p h(x,n,Θ i )
, m ∈ Λ * } with p h(x,m,θ ) defined as in Equation 1if pruning then Prune(Λ i ) and remove the corresponding weights in W i Normalise the weights in W i Predict Let Θ i evolve during t i+1t i and set θ * equal to the new value

Set Λ * = G(Λ i ) and W * = ∑ m∈Λ i ,m≥n w i m p m,n (t i+1 -t i ,Θ i ), n ∈ Λ * end 3
Filtering two stochastic processes

For illustration we consider two stochastic processes, a 1-dimensional Cox-Ingersoll-Ross process and a 3-dimensional Wright-Fisher process, which we filter using the strategy outlined above. The dimension of the state space of the pure death process is dependent on the dimension of the signal, therefore the number of components in the filtering distributions for the WF process is much greater than for the CIR process, rendering the inference computationally more challenging. The one-dimensional CIR process has the following generator: A = (δ σ 2 -2γx) d dx + 2σ 2 x d 2 dx 2 . with δ , γ, σ > 0 and stationary distribution Ga(δ /2, γ/σ 2 ). To use the duality relation, we choose the density of the observations given the signal as: Y t |X t ∼ Po(X t ). The duality function can be found in [START_REF] Papaspiliopoulos | Optimal filtering and the dual process[END_REF]. We simulate a CIR process starting from X = 3 with δ = 3.6, γ = 2.08, σ = 2.8. which corresponds to a stationary distribution Gamma(1.8, 0.38). Furthermore, we simulate 10 observations at each time, with 200 time steps separated by 0.011 seconds. For the inference, we use as a prior for the stationary distribution a Gamma(1.5, 0.15625) which corresponds to γ = 2.5, δ = 3., σ = 4. and m 0 = 0.

The Wright-Fisher model is a K-dimensional diffusion, whose generator is

A = 1 2 ∑ K i=1 (α i -|α|x j ) ∂ ∂ x i + 1 2 ∑ K i, j=1 x i (δ i j -x j ) ∂ 2 ∂ x i ∂ x j .
and its stationary distribution is a Dirichlet(α). To use the duality relation, we choose the density of the observations given the signal as:

f x (Y ) = ∏ J i=1 |n i |! ∏ K k=1 x n ki k n ki ! .
The duality function can also be found in [START_REF] Papaspiliopoulos | Optimal filtering and the dual process[END_REF]. We simulate two datasets using a discrete time and finite population Wright-Fisher model of dimension K = 3 initialised at random from a Dirichlet(0.3, 0.3, 0.3) with α = (0.75, 0.75, 0.75) and a population size of 50000. 15 observations are collected at each observation time. There are 10 observation times with a time step of 0.1 second for the first dataset and 20 observation times with a time step of 0.004 second for the second dataset. As a prior, we use a uniform distribution Dirichlet(1,1,1). The two different time steps for the WF model are intended to explore two regimes, one for which the time between observations is sufficient for the filtering distributions to significantly move back towards the prior by the time a new observation arrives, and one for which the high measurement rate means that past information still has a lot of influence by the time a new observation arrives, so that the filtering distribution incorporates a lot of past information. In these two regimes, the number of components with non negligible weights is expected to be very different. Notably, in the second regime the impact of the successive approximations is expected to be stronger. Figure 1 shows that in all the studied cases, the filtering distributions are centred around the signal. For the WF model with the short time step, the filtering distributions do not evolve fast enough to follow the signal exactly, but this is to be expected given the rapid rate at which new observations arrive. It is informative x q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q x1 x2 x3 0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 Time Fraction q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q x1 x2 x3 0.00 0.02 0.04 0.06 0.080.00 0.02 0.04 0.06 0.080.00 0.02 0.04 0.06 0.08 For this purpose, we consider how many weights concentrate the major part of the total weight in the three study cases (Figure 2). We observe that after a rapid increase, the number of components which account for most of the mass saturates at a value several orders of magnitude lower than the total number of components, which keeps increasing. This observation suggests that some components may be deleted with a minimal loss of precision on the filtering distributions.

To quantify this loss of precision due to the approximation, we compute the Hellinger function between the exact and the approximate filtering distributions obtained by pruning:

d H ( f 1 , f 2 ) = 1 2 χ ( √ f 1 - √ f 2 ) 2 = 1-χ √ f 1 f 2 .
The Hellinger distance takes values in [0, 1]. As there is one filtering distribution er observation time, to compare two sets of filtering distributions we consider the maximum over time of the distance between the distributions at each time, i.e. sup n (d H (ν n,exact , ν n,approx )). The numerical evaluation of the distances is done using standard quadrature rules for the one dimensional CIR process and simplicial cubature rules from the R package SimplicialCubature [START_REF] Nolan | R package SimplicialCubature[END_REF]. Parallel to the loss of precision due to the approximation, we consider the gain in efficiency by measuring the time needed to filter the whole dataset. The computing time is measured using the dedicated Benchmarktools.jl interface, with the processes shielded from interferences on a single processor core using cpuset. Figure 3 shows that the approximation strategies afford a reduction in computing time by 5 orders of magnitude for the CIR process, or by 2 to 3 orders of magnitude for the three-dimensional WF process. The fixed fraction strategy is noticeably slower in the case of the WF process with the shorter time step because the mass is spread over more components, as was also apparent on Figure 2. For all strategies and all processes, it seems possible to find a compromise between accuracy and computing time where increasing the computational effort starts yielding diminishing returns. Except in the case of the CIR model where the fixed threshold strategy seems to slightly outperform the others, no strategy seems to offer a fundamentally better precision/cost ratio than the others. Figure 4 gives another perspective on the evolution q q q q q q q q q q q q q Fixed fraction Fixed number Fixed threshold 2.5e-05 5.0e-05 7.5e-05 1.0e-04 2.5e-05 5.0e-05 7.5e-05 1.0e-04 2.5e-05 5.0e-05 7.5e-05 1.0e-04 0.0e+00 5.0e-06

1.0e-05 1.5e-05 q q q q q q q q q q q q q q q 0.000 0.001 0.002 0.003 0.000 0.001 0.002 0.003 0.000 0.001 0.002 0.003 0e+00 1e-04 2e-04 3e-04 4e-04

Maximum Hellinger distance q q q q q q q q q q q q q q q 0.00 of the approximation error by comparing selected exact and approximate filtering distributions. In order to emphasise the effect, the most drastic approximation possible was utilised, consisting on pruning all the components of the mixture except for that with the single largest weight. The effect is indiscernible except in the case of the WF process with the shorter time step, in which case the difference is invisible after 2 time steps, and only modest after 10 time steps, although it has increased over time. Figure 4 also shows that the approximate distribution is slightly more concentrated than the exact distribution, which can probably be attributed to the smaller number of components.

The results presented here are a preliminary study on the computational costs of filtering strategies based on duality. A more thorough investigation of these and other aspects involved in this type of filtering are currently ongoing work. 
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 1 Fig. 1: Hidden signal, data and 95% credible intervals of the filtering distribution for the three datasets. The hidden signal is denoted by the blue line, the data by the black dots and the credible bands are delimited by the red dashed lines. Top: CIR, centre: WF, bottom: WF with short time step. For the WF model, each panel corresponds to one marginal, and the data plotted is the proportion of the 15 multinomial observations which are from the corresponding type.

  the weights are distributed among the different components of the filtering distributions.

Fig. 2 :

 2 Fig.2: Number of components (in log scale) in the filtering distributions as a function of the iteration number. Left: CIR, centre: WF, right: WF with short time step. The blue line denotes the total number of components in the filtering distributions, the green line denotes the number of components needed to account for 99% of all the mass and the blue the number of components needed to account for 95% of all the mass.

Fig. 4 :

 4 Fig.4: Exact and approximate filtering distributions for the Wright-Fisher model with dimension 3 and very short time step, at various times. The solid blue line denotes the exact distribution, while the dashed pink line denotes the approximate distribution obtained by, at each step, pruning all the components except the largest one.