N
N

N

HAL

open science

Bayesian inference for hidden Markov models via duality

and approximate filtering distributions

Guillaume Kon Kam King, Omiros Papaspiliopoulos, Matteo Ruggiero

» To cite this version:

Guillaume Kon Kam King, Omiros Papaspiliopoulos, Matteo Ruggiero. Bayesian inference for hidden
Markov models via duality and approximate filtering distributions. 49 esima Riunione scientifica della

Societa Italiana di Statistica, Jun 2018, Palerme, Italy. hal-02967032

HAL Id: hal-02967032
https://hal.inrae.fr /hal-02967032
Submitted on 14 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.inrae.fr/hal-02967032
https://hal.archives-ouvertes.fr

Bayesian inference for hidden Markov models via duality
and approximate filtering distributions

Inferenza bayesiana per modelli di Markov nascosti via dualita e
filtraggio approssimato

Guillaume KON KAM KING, Omiros PAPASPILIOPOULOS and Matteo RUGGIERO

Abstract Filtering hidden Markov models, which can be seen as performing sequential Bayesian in-
ference on the hidden state of a latent signal, is an analytically tractable problem only for a handful of
models. Among these are models with finite-dimensional state space and linear Gaussian systems, which
give rise to the celebrated Baum-Welch and Kalman filters. Recently, |[Papaspiliopoulos and Ruggiero
(2014) and |Papaspiliopoulos et al.|(2016) proposed a principled approach for extending the realm of an-
alytically tractable models, exploiting a duality relation between the hidden process of interest and an
auxiliary process, called dual and related to the time reversal of the former. When such a dual process is
available and has certain characteristics, the solution of the filtering problem is available analytically and
takes the form of a finite mixture of distributions, which can be evaluated by means of a recursion sim-
ilar to the Baum-Welch filter. Here, we study the computational effort required to implements the above
strategy in the case of two hidden Markov models given respectively by the Cox-Ingersoll-Ross process
with Poisson observations and the K-dimensional Wright-Fisher process with multinomial observations.
In both cases, the number of components involved in the filtering distributions increases polynomially
with the number of observations, yielding a so-called computable filter. This behaviour could render the
algorithm impractical for large dimensional hidden spaces or very long observation sequences and under-
mine its practical relevance. However, the mathematical form of the filtering distributions suggest that, in
certain regimes of separation between observation times and speed of the underlying signal, the number
of components which contribute most of the mixture mass remains small. This in turn suggests several
natural and very efficient approximation strategies. In this contribution, we assess the performance of
these strategies in terms of accuracy and speed, which we can benchmark against the exact solution.
Abstract Abstract in Italian
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1 Introduction to optimal filtering using a dual process

Consider a hidden stochastic process and some noisy observations of this process. As new data arrives,
obtaining the distribution for the last hidden state given all the values observed previously is called filter-
ing the hidden process. Let the series {¥;,0 > k > n} be the sequence of observations, denoted Yy, for
Y € %, and let the Markov chain {X;,0 > k > n}, similarly denoted Xj.,, be the unobserved stochastic
process. We assume X., to be the discrete-time sampling of a homogeneous continuous-time Markov
process X;. We also assume that X; has state-space 2, transition kernel P;(x,dx’) and initial distribution
v(dx). The observations relate to the hidden signal by means of conditional distributions assumed to be
given by the kernel F(x,dy) and we let F(x,dy) = f(y)u(dy) for some measure u(dy). The filtering dis-
tributions, which are the target of inference, are . (X,|Yy.,), that we denote v, (dx). Define now an update
and prediction operator acting on probability measures Vv:

wpdatesg,(v)(an) = LTS, with py() = [ £0)v(d M
prediction: Wi (v)(d) = VP (d¥) = /X v(dx)P (x,dY) @)

Then, the filtering distributions can be obtained by repeated applications of the update and prediction
operators, as the recursion: Vo = ¢y, (v) and Vn >0, v, = ¢y, (W;,—, , (Va—1)) (see for instance Cappé et al.
(2003)). An explicit solution to the filtering problem is seldom available, except in two notorious cases:
unobserved Markov chains with a discrete state-space, and Gaussian unobserved Markov chains with
Gaussian conditional distribution. [Papaspiliopoulos and Ruggiero| (2014) extended the class of models
for which an explicit solution is available by exploiting a duality relation between the unobserved Markov
chain and a pure death stochastic process. In order to describe this, assume that » : @ — @ is such that
the differential equation

d@ /dt = r(@,) with @ = 6, 3)

has a unique solution for all 6y. Let A : Z, — R be an increasing function, p : ® — R be a continuous
function, and consider a two-component Markov process (M;,®;) with state-space .Z x ©, where 6,
evolves autonomously according to and when at (M,,®,) = (m, 0), the process jumps down
to state (m — e, 0) with instantaneous rate A (|m|)p (6)m ;. We say that (M;,©;) is dual to X; with respect
to a family of functions 4, e.g.

E* [A(X,,m,0)] = E™? [h(x,M,,0,)], Vx€yx,mec.#,0¢cO,>0. 4)

where E*[f(X;)] = E[f(X,)|Xo =x] = [, f(x')P(x,dx') and the duality functions are such that h :

XX MXO >R, 0 C R’. The dual process (M;, ;) is separated into a deterministic component 6,
and a pure death process M;, whose rates are subordinated to the deterministic process. The transition
probabilities are:

Pmn(t,0) =P[M; =n|My=m,0 = 6], Vn,me//lz,ngm 5)

This property is key to the computability of the filters, as it allows to replace the expectation with respect
to realisations of the original stochastic process in the prediction operation (Equation 2) by an expectation
over realisations of the pure death component of the dual process, which involves finite sums.



The transition probabilities can be found by exploiting the duality relation(Papaspiliopoulos and Rug-
giero, [2014)):

Pmm—i(t,0) = Vim| }i|Clml,jm|—[i| 1) p(i;m, [i]) ©)
with:
li] e Mm|—k!

i
i| = Mml—n |, and C () = (=)l
e i (}go mi /> jmlm il (7) = (= 1) k;()Hoghg\i\,h%k(l\m\*k7/’L|m|*h)

(N

and p(i;m, |i|) is the hypergeometric probability mass function. We also define the following notion of
conjugacy, by assuming that %y, = {h(x,m,0)n(dx),m € .#,0 € O} is a family of probability mea-
sures such that there exist functions t : & X # — # and T : % x ® — © with m — 7(y,m) increasing
and such that ¢,(h(x,m, 8)7x(dx)) = h(x,(y,m),T(y,0))r(dx). The filtering algorithm proposed in [Pa-
paspiliopoulos and Ruggiero| (2014) can be summarised by the two following relations. For the family
of finite mixtures .# {Y mea Wwmh(x,m, 0)7(dx) : A C A ,|A| < %0, ¥ mea Wm = 1}, the update operation
acts as:

dy ( ) wmh(x,m,G)n(dx)> = Y Wmh(x,n,T(y,0))r(dx) 8)
meA

net(y,A)

with#(y,A) ={n:n=¢(y,m),m € A}, and ¥y > wm, and for n =¢(y,m), ¥sc/(.a) Wn = 1. This updates
the signal given the new data by means of the Bayes theorem.
The prediction operation acts as:

v, ( Y wmh(x7m,9)7t(dx)> =Y ( Y wmpm,n(t,9)> h(x,n,6;)m(dx) ©)
neG(A)

meA meA,m>n

where G(A) ={n € .# :n <m,m € A}, propagating the current filtering distribution by means of the
signal transition kernel. As such, this means that filtering a hidden Markov model using the duality rela-
tion amounts to successive operations on finite mixtures of distributions, where the number of components
evolves but and remains finite, while the components remain within the same family of distributions. At
each new observation, the mixture distribution is shifted towards the data, and until the next observation,
the mixture progressively forgets the past information and drifts back towards the prior distribution.

2 Implementation of the dual filtering algorithm

The filtering algorithm resulting from the method presented above is similar to the Baum-Welch filter and
it alternates update and prediction steps. The update step shifts each component and modifies its weight,
while the prediction step lets all the components propagate some of their mass towards the components
close to the prior. We illustrate this dual filtering algorithm for two stochastic processes: the
Cox-Ingersoll-Ross (CIR) process and the Wright-Fisher (WF), presented in full details later. For these
two models, it is possible to compute the number of mixture components in the filtering distributions.
Indeed, let K be the dimension of the latent space and m = m.x. Then the number of components which
receive some mass from the component m during the prediction is |G(m)| = [TX, (m; + 1). For the two
processes considered in this paper, the transformation ¢ from is t(yym) = m+y. Then the
number of components evolves as: |A,| = [TX | (mo; + 1+ X7, ¥;). The prediction step is much costlier



than the update step, as at each iteration it involves computing the transitions from |A;| to the |A;4|
components. It is possible to contain the cost of the prediction operation by storing the transition terms
Pm.n, Which will be used multiple times during the successive iterations. However, the rapid growth in
the number of those terms (proportional to |G(A,)|?) does not permit saving all of them in memory. Yet,
the pm n are themselves a product of a number of terms which grows only quadratically with the sum of
all observations, in our two cases. Indeed, Y| i and Cim|,jm||i| inonly depend on the sum of
the indices, and the density of the multivariate hypergeometric distribution depends on various products
of binomial coefficients whose number has a similar growth: p(i;m,|i|) = [IX_, (I;‘k) / (‘lﬂ‘). Given the
observed data, it is possible to know in advance all the terms that need to be computed and to store them
in an efficiently accessible format. Another technical difficulty is that the computation of the weights
in the update step and in the prediction step both present potential over and underflow risks. While the
weights of the update step can be computed on a log scale without difficulty, the sum with terms of
alternated sign in is more challenging. We compute it using the Nemo library for arbitrary
precision computation (Fieker et al., [2017).

Although considerable efficiency gains are achieved by storing the transition terms, further improve-
ments may be obtained by a natural approximation of the filtering distributions. Indeed, the filtering
distributions contain a number of components that grows quickly as new observations arrive, but the
complexity of the hidden signal does not necessarily increase accordingly. Hence, if the prior is reason-
able and the posteriors appropriately concentrated, there is no reason for the number of components in the
filtering distributions which have non negligible weight to explode. Indeed, simulation studies show that
the number of components representing 99% of the weight of the mixture saturates as new observations
arrive (Figure 2)). This would suggest that some components may be deleted from the mixtures, speeding
the computations, without loosing much in terms of precision. We envision three strategies for pruning
the mixtures:

e prune all the components who have a weight below a certain threshold, which is an attempt at control-
ling the approximation error at a given step. This approach will be referred to as the fixed threshold
strategy.

e retain only a given number of components, hopefully chosen above the saturation number (cf.
[ure 2). This is an attempt at controlling the computation budget at each time step. This approach will
be referred to as the fixed number strategy.

e retain all the largest components needed to reach a certain amount of mass, for instance 99%. This
is an adaptive strategy to keep the smallest possible number of components under a certain error
tolerance level. It involves sorting the weights and summing them, which is more expensive than
the other two strategies for a large number of weights. This approach will be referred to as the fixed
fraction strategy.

In[algorithm T} the pruning is performed just after the update step. This choice is dictated by two reasons:
first, after the update step the mixture is likely to be more concentrated because of the incorporation of
the information from the new observation, so the number of components with non negligible weight is
potentially small. Then, as the prediction step is the most computationally expensive, reducing the number
of components before predicting entails the maximum computational gain. After pruning, we renormalise
all the remaining weights so that they sum to 1. The fact that the pruning operation occurs at each time
step means that the level of approximation on a given filtering distribution results from several successive
approximations.



Algorithm 1: Optimal filtering algorithm using the dual process, with the option of pruning.

Data: Y., to:, and v = h(x,mq, 8y) € .% for some my € .#,6) € O

Result: Oy.,,, Ao, and Wy, with W; = {wi,,m € A;}

Initialise

Set @y = 6,

Set Ag = {t(¥o,mp)} = {m*} and Wy = {1} with ¢ as in[Equation §|

Let O, evolve according to[Equation 3|during #; —fo and set 6* equal to the new value

Set A* = G(Ag) and W* = {py= n(t1 —10,60),m € A*} with G as in[Equation 9|and pm n as in

for i from 1 to n do

Update
Set ©; = 6*
Set A; = {¢(Y;,m),m € A*}
SetW; = {%,m € A”} with pj( m ¢) defined as in[Equation 1

if pruning then
Prune(A;) and remove the corresponding weights in W;
Normalise the weights in W;

Predict
Let ©; evolve during t;;1 —t; and set 8 equal to the new value

Set A* = G(A;) and W* = Y  Wapma(tio —14,0)neA
meA; m>n
end

3 Filtering two stochastic processes

For illustration we consider two stochastic processes, a 1-dimensional Cox-Ingersoll-Ross process and a
3-dimensional Wright-Fisher process, which we filter using the strategy outlined above. The dimension
of the state space of the pure death process is dependent on the dimension of the signal, therefore the
number of components in the filtering distributions for the WF process is much greater than for the CIR
process, rendering the inference computationally more challenging. The one-dimensional CIR process
has the following generator: o/ = (§62% — 2}/x)£ + 262)6;722. with 8,¥,0 > 0 and stationary distribution
Ga(8/2,y/0?). To use the duality relation, we choose the density of the observations given the signal as:
Y;|X; ~ Po(X;). The duality function can be found in Papaspiliopoulos and Ruggiero| (2014). We simulate
a CIR process starting from X = 3 with § = 3.6, y = 2.08, ¢ = 2.8. which corresponds to a stationary
distribution Gamma(1.8,0.38). Furthermore, we simulate 10 observations at each time, with 200 time
steps separated by 0.011 seconds. For the inference, we use as a prior for the stationary distribution a
Gamma(1.5,0.15625) which corresponds to y=2.5, 8 = 3., 6 = 4. and mo = 0.
The Wright-Fisher model is a K-dimensional diffusion, whose generatoris & = § Y& | (o — |et|x;) 9%1 +

%ij:l xi(6;j—x ])JW and its stationary distribution is a Dirichlet(c). To use the duality relation, we
, 10%

i
choose the density of the observations given the signal as: f,(Y) = {: 1 |n,~|!]'[kK=1 fj;,) The duality

function can also be found in |[Papaspiliopoulos and Ruggiero| (2014). We simulate two datasets using a
discrete time and finite population Wright-Fisher model of dimension K = 3 initialised at random from
a Dirichlet(0.3,0.3,0.3) with a = (0.75,0.75,0.75) and a population size of 50000. 15 observations are
collected at each observation time. There are 10 observation times with a time step of 0.1 second for the
first dataset and 20 observation times with a time step of 0.004 second for the second dataset. As a prior,
we use a uniform distribution Dirichlet(1,1,1). The two different time steps for the WF model are intended
to explore two regimes, one for which the time between observations is sufficient for the filtering distri-
butions to significantly move back towards the prior by the time a new observation arrives, and one for



which the high measurement rate means that past information still has a lot of influence by the time a new
observation arrives, so that the filtering distribution incorporates a lot of past information. In these two
regimes, the number of components with non negligible weights is expected to be very different. Notably,
in the second regime the impact of the successive approximations is expected to be stronger.
shows that in all the studied cases, the filtering distributions are centred around the signal. For the WF
model with the short time step, the filtering distributions do not evolve fast enough to follow the signal
exactly, but this is to be expected given the rapid rate at which new observations arrive. It is informative
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to observe how the weights are distributed among the different components of the filtering distributions.
For this purpose, we consider how many weights concentrate the major part of the total weight in the
three study cases (Figure 2). We observe that after a rapid increase, the number of components which
account for most of the mass saturates at a value several orders of magnitude lower than the total number
of components, which keeps increasing. This observation suggests that some components may be deleted
with a minimal loss of precision on the filtering distributions.

To quantify this loss of precision due to the approximation, we compute the Hellinger function be-
tween the exact and the approximate filtering distributions obtained by pruning: dg (fi, f2) = % fx Vfi—
VE)?=1- % V11> The Hellinger distance takes values in [0, 1]. As there is one filtering distribution er
observation time, to compare two sets of filtering distributions we consider the maximum over time of the
distance between the distributions at each time, i.e. sup,, (dg (Vu,exact, Va,approx ) ). The numerical evaluation
of the distances is done using standard quadrature rules for the one dimensional CIR process and simpli-
cial cubature rules from the R package SimplicialCubature (Nolan, 2016). Parallel to the loss of
precision due to the approximation, we consider the gain in efficiency by measuring the time needed to
filter the whole dataset. The computing time is measured using the dedicated Benchmarktools. jlin-
terface, with the processes shielded from interferences on a single processor core using cpuset.
shows that the approximation strategies afford a reduction in computing time by 5 orders of magnitude
for the CIR process, or by 2 to 3 orders of magnitude for the three-dimensional WF process. The fixed
fraction strategy is noticeably slower in the case of the WF process with the shorter time step because the
mass is spread over more components, as was also apparent on For all strategies and all pro-
cesses, it seems possible to find a compromise between accuracy and computing time where increasing
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the computational effort starts yielding diminishing returns. Except in the case of the CIR model where
the fixed threshold strategy seems to slightly outperform the others, no strategy seems to offer a funda-
mentally better precision/cost ratio than the others. gives another perspective on the evolution
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of the approximation error by comparing selected exact and approximate filtering distributions. In order
to emphasise the effect, the most drastic approximation possible was utilised, consisting on pruning all
the components of the mixture except for that with the single largest weight. The effect is indiscernible
except in the case of the WF process with the shorter time step, in which case the difference is invisible
after 2 time steps, and only modest after 10 time steps, although it has increased over time. also
shows that the approximate distribution is slightly more concentrated than the exact distribution, which
can probably be attributed to the smaller number of components.

The results presented here are a preliminary study on the computational costs of filtering strategies
based on duality. A more thorough investigation of these and other aspects involved in this type of filtering
are currently ongoing work.
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