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Abstract

The Species Sensitivity Distribution (SSD) is a key tool to assess the ecotoxicological threat of
contaminant to biodiversity. It predicts safe concentrations for a contaminant in a community. Widely
used, this approach suffers from several drawbacks: i)summarizing the sensitivity of each species by
a single value entails a loss of valuable information about the other parameters characterizing the
concentration-effect curves; ii)it does not propagate the uncertainty on the critical effect concentration
into the SSD; iii)the hazardous concentration estimated with SSD only indicates the threat to biodiversity,
without any insight about a global response of the community related to the measured endpoint. We
revisited the current SSD approach to account for all the sources of variability and uncertainty into
the prediction and to assess a global response for the community. For this purpose, we built a global
hierarchical model including the concentration-response model together with the distribution law for the
SSD. Working within a Bayesian framework, we were able to compute an SSD taking into account
all the uncertainty from the original raw data. From model simulations, it is also possible to extract
a quantitative indicator of a global response of the community to the contaminant. We applied this
methodology to study the toxicity of 6 herbicides to benthic diatoms from Lake Geneva, measured from
biomass reduction.
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1 INTRODUCTION

1.1 General introduction to SSD
The Species Sensitivity Distribution (SSD) is a cornerstone in ecological risk assessment.
Among other uses, it serves to predict concentrations in contaminant which are safe for
a community. SSD is essentially an extrapolation of the sensitivity of a community from
monospecific laboratory tests. The most standard approach[3], [1], [20] models the inter-
specific sensitivity variability in an assemblage of tested species in three steps. In the first
step, the sensitivity of each species is summarized by a single Critical Effect Concentration
(CEC). This CEC can be a No Observed Effect Concentration (NOEC) or a Lowest Observed
Effect Concentration (LOEC). It can also be a No Effect Concentration (NEC), or an Effective
Concentration at x% (ECx), which are obtained by fitting a model to the concentration-effect
curve. In the second step, the CECs in the community are assumed to follow a distribution
law. Common choices for the distribution law include lognormal, loglogistic, BurrIII, . . . The
chosen distribution is then fitted to the CECs of the sample of tested species. In the third step,
the Hazardous Concentration to p% of the community (HCp) is computed as a percentile of
the previous distribution.

The HCp represents the concentration which is susceptible to affect p% of the community.
The term ”affect” is directly linked to the type of CEC in terms of level of effect (for example
the x of the ECx) and of biological effect (lethal, non-lethal, acute, chronic). With NOECs
or NECs, one expects the HCp to leave (100 − p)% of the community species completely
unharmed. Using EC50 however, which is a level of effect commonly selected, one expects
(100−p)% of the community to remain unaffected, which means that they suffer a reduction
of less than 50% to their measured endpoint. But it is not possible to determine the reduction
suffered by the unaffected species, which could lie anywhere between 0 and 50 %.

SSD essentially carries information about the structural response of a community to a
contaminant, ie. the fraction of species affected at a certain level. The HCp for small p, such
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as the HC5, is ultimately used as a risk indicator. It is compared to the actual concentration
of contaminant in an environmental setting to determine if the community living there is at
risk, or to define an acceptably safe concentration for that community.

Several sources of uncertainty enter at the various steps of the SSD approach and have
an influence on the predicted HCp value. Firstly, there is an uncertainty on the estimate of
the CEC from the experimental data: when the CEC is estimated from a concentration-effect
curve or more generally from any model, it comes with a confidence interval. Secondly,
uncertainty arises from the fitting of a distribution to the CECs: parameters of the dis-
tribution also have their own confidence intervals. This adds to the total uncertainty on
the HC5. The uncertainty of this second step has already been studied and methods have
been found for specific distribution laws[3], [1], [25]. For other types of distributions, it is
possible to use bootstrap[9] to obtain confidence intervals, as described by Shao for the
BurrIII distribution[22] or in previous work by the authors[15]. This uncertainty was also
investigated with non parametric approaches in the estimation of the SSD[13], [4], [24], [12].
However, there are currently very few attempts to include at the same time all the sources
of uncertainty into the final prediction of the SSD[2].

1.2 Several flaws of current SSD methodology
The classical SSD approach described in the previous section and its many variants present
a number of flaws[10], [21] ranging from ecotoxicological concerns (use of laboratory data to
predict field effects, inferring community sensitivity from monospecific sensitivities, chronic
vs. acute effects . . . ) to statistical issues (fitting a distribution on a small dataset, distributional
assumptions, treatment of the uncertainty, . . . ).

This paper focuses on several of these: first, the classical SSD approach does not propagate
the uncertainty on the CEC to the prediction. This is a source of concern, because following
this approach, the uncertainty on the HCp depends on the number of species, but not on
the quality of the data used. Second, the CEC retains only a fraction of the information
originally present in the data. Since the aim of SSD is to model the variability in sensitivity
in the community, it is important to consider all the information available in the data. Indeed,
there is relevant biological information in the parameters of the concentration-effect curve
and their potential correlations. Third, providing an HCp, the classical SSD approach outputs
information about a structural response of the community only. It essentially yields the
proportion of affected species for a given concentration in contaminant. It does not give
information about the global response of the community[10], [14], [7], ie. a response of the
same nature as the measured endpoint. For instance, when using EC50 for biomass reduction
as input, the SSD does not say anything about the change in the biomass of the community.
In other words, the SSD aims to protect the structure of the community, but does not consider
the effect on the community endpoint linked to the tested species which could be growth,
reproduction, biomass, respiration, photosynthesis or any ecosystem process.

To address such issues, we revisited the current SSD approach to account for all the sources
of variability and uncertainty into the prediction and to assess the risk for the community
from a global point of view. For this purpose, we built a hierarchical model inspired by [17]
including the concentration-effect model together with the distribution law of the SSD. From
this hierarchical model, we were able to develop : 1) an indicator for the global response
of the community, which we compared to the structural response predicted by the classical
SSD; and 2) an SSD calculated on any level of effect (x of the ECx) including interspecies
correlation and all the uncertainty from the original data.

2 MATERIALS AND METHODS

2.1 Diatoms dataset
Our work was developed on a previously published dataset[16] containing 10 diatom species
exposed to 6 herbicides : atrazine, terbutryne, diuron, isoproturon, metolachlor and dimetachlor.
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Diatoms were unicellular microalgae which form a group of high diversity. The selected
species of diatoms are representative of their community, and covered a great diversity in
terms of taxonomy, morphology, sensitivity and ecological traits. Diatoms are often used to
monitor water quality. The sensitivity of the species was determined assessing the growth
over four days as endpoint, based on chlorophyll a fluorescence, a proxy of the biomass.
Bioassays were conducted in triplicates, on diatom strains in the exponential growth phase,
when the daily growth ratio is approximately constant. Seven to ten herbicide concentrations
were tested. Chlorophyll a fluorescence was measured using Fluoroskan (Fluoroskan Ascent,
Thermo-scientific, Finland) at the beginning and at the end of the experiment.

2.2 Concentration-effect model
Contrasting with [16], the response of each set (contaminant, species, replicate) was defined
as the ratio:

R =
βf
β0

(1)

where R is the response, βf the fluorescence after 4 days and β0 the initial fluorescence.
Taking the logarithm of R and dividing by four, it would represent the daily exponential
fluorescence growth rate, a proxy for the daily biomass exponential growth rate. Dividing
by four has no influence on the results as we consider the relative reduction in fluorescence.
Thus, we chose to ignore it for the sake of simplicity. Given the small number of replicates
and given that this is not the focus of this article, we also chose not to model the replicate-
effect, essentially grouping the three replicates together.

The response of a species j to a given herbicide at concentration xi was modelled using
a three parameter loglogistic model:

R =
d

1 +
(
C
e

)b (2)

where C stands for the concentration, d is the response in the control, parameter e is the
EC50 in this model, ie. the concentration which induces a reduction of 50% with regards to
the response in the control. b is a shape parameter, which is proportional to the slope of the
concentration-effect curve at concentration x = e. By extension, parameter b is usually called
the slope of the concentration-effect curve, although the real slope at x = e is − d

4eb.
A log-transformation of the data was necessary to avoid heteroscedasticity when estimat-

ing model parameters. Therefore, the following error model was used:

Y = ln(R) + ε = ln

(
d

1 +
(
C
e

)b
)

+ ε (3)

where Y is the natural logarithm (ln) of the measured endpoint, and ε ∼ N (0, σ)
Parameter d was estimated as the mean of the response in the control replicates for all

the herbicides. Parameters b and e were estimated by fitting model 3 to observed data
at the other concentrations to avoid using data twice. We chose to estimate parameter d
separately, because we were not interested in modelling or predicting the response in the
control experiment. Only parameters b and e characterise the effect of the herbicide on the
diatom.

2.3 Classical SSD
For each concentration-effect curve, we first fitted the model from eq.(3) by non linear
regression using the R package nlstools[5] and extracted the EC10 and the EC50 in order
to compare two levels of effect. We computed bootstrap 95% confidence intervals using
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TABLE 1: Description of the links indicated in Fig.1

Node Type Equation
(log (bj) , (log (ej)) Stochastic (log (bj) , (log (ej)) ∼ Nm(µ,Σ)
Ri,j Deterministic Eq. (2)
Yi,j Stochastic Yi,j ∼ N (ln(Ri,j), σ)

where µ =

(
µlog b
µlog e

)
, Σ =

(
σ2log b ρσlog bσlog e

ρσlog bσlog e σ2log e

)
, N is the normal distribution and

Nm is the multivariate normal distribution.

non-parametric bootstrapping. Confidence intervals were also computed using the delta
method[26], and were found to be similar in general. Preference was given to the bootstrap
method, because it prevents the lower bound of the interval from being negative, whereas the
delta method sometimes gave negative values. Then, we fitted two lognormal distributions
to the set of EC10 and EC50 using maximum likelihood via the web-tool MOSAIC SSD[15]
and obtained the HC5 for the community.

2.4 Hierarchical species sensitivity distribution
2.4.1 Hierarchical approach
A hierarchical approach is very different from the fitting of individual concentration-effect
curves. The philosophy behind the hierarchy is that all tested species represent a random
sample from the community, and that their responses follow a distribution. More precisely,
parameters b and e of the concentration-effect model are assumed to follow a multivariate
distribution. This reasoning falls in line with the classical SSD, where CECs of the species
are assumed to be sampled from a community sensitivity distribution. However, in the hier-
archical approach, the whole response is assumed to be a sample from the community. This
allows us to reconstruct the response of the whole community. Another difference with the
classical SSD approach is that the parameters of the community, called the hyperparameters,
are estimated in one stroke from all the experimental data. This provides the advantage of
pooling all the information together. Species for which the data are of very good quality
will have the most important contribution to the global fit. Species for which the response
is not characterized very precisely (large uncertainty on the parameters), or where data are
missing, contribute less. In other words, all the data contribute to the estimation of the
parameters at the extent of the information they contain. The classical SSD approach, on the
contrary, heavily relies on the quality of the CEC estimates, and the requirements may be
severe[8]. In the previous study of the diatom dataset, this entailed discarding all the data
which did not allow to fit a concentration-effect model[16].

Fig. 1 sketches the hierarchy in the model and table 1 describes the links of the model.
Parameter d having been estimated separately, we modelled the joint distribution of param-
eters b and e. Both of them were assumed to follow a lognormal distribution. The lognormal
distribution is the most commonly used for parameter e[27] (which corresponds to the EC50).
We assumed the same distribution for the b parameter, knowing that the small number of
species does not allow a better informed choice of distribution. There could be a correlation
between these two parameters, which we also modelled (parameter ρ). Therefore, log(b) and
log(e) were assumed to follow a multivariate normal distribution (log is used for the base-10
logarithm).

The transition between the classical one-parameter SSD to our hierarchical model can be
understood by the following consideration: in classical SSD, one species is accounted for
one value in the distribution and the whole community is represented by an univariate
distribution. In our hierarchical model, each species is accounted for by a pair of values in
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j=species

i=conc

Fig. 1: Directed Acyclic Graph (DAG) of the hierarchical model and stochastic links in the
model. Stochastic links are in solid lines, deterministic links in dotted lines.

TABLE 2: Prior distributions used for the hyperparameters of the hierarchical model (Fig.1)

Parameter Distribution Source of prior information
µlog b ∼ N (−6, 6) non informative
σlog b ∼ N (0, 10) non informative
µlog e ∼ N (µlog C, σlog C) concentrations range
σlog e ∼ U(0, 10) non informative
ρ ∼ U(−1, 1) non informative
σ ∼ U(0, 2) non informative

µlog C = log(min(Ci,j))+log(max(Ci,j))
2 and σlog C = log(max(Ci,j))−log(min(Ci,j))

4 . N (µ, σ) denotes
the normal gaussian distribution of mean µ and standard deviation σ, U(a, b) denotes the
uniform distribution between a and b.

a two dimensional distribution and the whole community is represented by a multivariate
distribution.

2.4.2 Bayesian methods
We used JAGS[19] to fit the hierarchical model. JAGS performs Bayesian inference using
Gibbs sampling via Markov Chain Monte Carlo (MCMC) simulation. The priors are detailed
in Table 2. The prior on µe was a normal distribution centred on the middle of the range of
all tested concentrations. Its standard deviation was defined so that µe had a 95% probability
to lie between the largest and the smallest tested concentrations. All the other priors were
non informative. The chains were run for 500 000 iterations, and one in 40 were conserved.

The convergence of three chains was checked computing the Gelman-Rubin diagnostic[6].
Prior and posterior distributions were compared to check visually that the priors did not
constrain the estimation of the posteriors. The relative width of the prior and posterior
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distributions was also compared to ensure that sufficient information was learned from the
data. The parameters of the hierarchical model came out as a joint posterior distribution. The
median of the marginal distributions were used as estimates of the parameters. The 2.5 and
97.5 percentiles of the distribution were used to define a 95% credible interval. An R script
to fit the hierarchical model on the atrazine data is provided in the Supporting Information.

2.5 Modelling the global response of a community
Once the model fitted, the joint posterior distribution of the parameters contained all the
information that can be extracted from the data about the response of the community to the
contaminant. For a set of global parameters θ = (µb, σb, µe, σe, ρ) obtained from the posterior
distribution, it was possible to reconstruct a full community by sampling individual species
and to predict its response to the contaminant. Sampling a species i is equivalent to sampling
a pair of parameters (bi, ei) from the multivariate normal distribution parametrised by θ.

In order to predict the response of a realistic community, we chose to focus on finite-size
communities. Diatom communities may number around 30 different species. Note that a
specific draw of 30 species produces a community with a certain response and that another
draw of 30 species would produce a different response. Therefore, there is some uncertainty
in the response obtained for a group of 30 species, even assuming that θ is known. Moreover,
the θ parameters themselves are uncertain and follow a distribution. These two sources of
uncertainty were taken into account by sampling around 10 000 sets θk, then sampling 30
species for each θk.

After a community was simulated, we defined its global response as the global fluo-
rescence of the community, depending on the concentration. The global fluorescence was
defined as the sum of the fluorescence of each species. To obtain a global response, we
assumed that all species participated equally in the global fluorescence. Following this
assumption, it was possible to define an indicator of the global response of the community
at a given concentration, called rtot:

rtot =

∑
i∈species

Ri

R0
i

Nspecies
(4)

where Ri is the response of species i at a given concentration, and R0
i the response in the

control experiment. The indicator rtot of the global response is a quantity between 0 and 1
which describes the global reduction in fluorescence growth compared to the control, as a
function of the concentration in contaminant. Analogous to the HC5 for the SSD, a Global
Effect Concentration of 5% (GEC5) was defined, corresponding to the concentration leading
to a reduction of 5% of the global response rtot. In our case, the GEC5 corresponds to a
reduction by 5% of the community fluorescence (rtot = 0.95). Following the terminology
used for SSD in Posthuma[20], the hierarchical SSD, and more precisely the prediction of
the global response, can be used in a forward and an inverse manner. The forward approach
consists in setting a protective concentration threshold, the GEC5, below which 95% of the
global response of the community should be protected. The inverse approach consist in
determining the reduction in the global response of the community for a given concentration
level.

2.6 Hierarchical SSD with confidence intervals
From the fitted model, it is also possible to reconstruct an SSD. In this case, the simulation
aimed at representing the variability of species sensitivity, ie. the distribution of any ECx

in the community. For 2000 sets of global parameters θk, the concentration-effect responses
(Eq. (2)) of a community of species were simulated, and their ECx calculated. Estimating an
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Fig. 2: EC10 in black and EC50 in blue for each species, with the 95% bootstrap confidence
interval. Vertical dotted lines separate each species. The box at the right hand side of each
plot is the distribution of the point estimates of the ECx at the corresponding level of x for
all the species.

HC5 for a community consists in determining the fifth percentile of that ECx distribution.
To get the best estimation of the fifth percentile, large communities were simulated (4× 106

species). An SSD (and HC5) with a 95% credible interval was estimated for these 2000 sets
of parameters, from the median, 2.5th and 97.5th percentiles. This SSD is an improvement on
the classical SSD, since it is estimated taking into account all the information present in the
original data and accounting for the potential inter species correlation among the parameters
b and e of the concentration-effect model. Especially, the uncertainty in the estimation of
the parameters of the concentration-effect curves was propagated in the SSD estimation.
Another advantage of reconstructing the SSD from the fitted hierarchical model is that it
does not require to choose the x of the ECx in advance, contrary to the classical SSD, which
starts with a certain level of ECx. Fitting a classical SSD on another level requires going
back to the original data. Using the fitted model and the simulation scheme instead, it is
possible to calculate an SSD on any x of the ECx. We used our hierarchical model to study
how the HC5 may vary as a function of the x of the ECx

3 RESULTS

3.1 Classical SSD
The EC10 and the EC50 of each species were computed for every contaminants. Results
for two contaminants are displayed on Fig. 2. For both herbicides, the confidence intervals
appeared to be much larger on the EC10 than on the EC50. Similar results were observed
for the four other herbicides.

3.2 Convergence of the MCMC algorithm
The MCMC chains converged for all contaminants, according to the Gelman-Rubin statistics[6].
Fig. 3 shows for Diuron that except for parameter ρ, the non informative prior distributions
did not constrain the posterior distribution of the parameters and that there was sufficient
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information in the experimental data to estimate them. Similar results were observed for
the other herbicides. The apparent constraint on correlation parameter ρ is natural, since
the correlation lies between 0 and 1. The fit of the model was visualised at the level of
the original diatom species by superimposing the fitted curves on the original data. The
fitted curves were obtained by taking the median values of parameters bi and ei from the
marginal posterior distributions. Fig. 7 shows that for atrazine and diuron, the estimation
of the global parameters of the hierarchical model corresponds to a good fit at the level of
the original diatom species. Results for the other herbicides can be found on Fig. 7 in the
Supplementary Information.
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Fig. 4: Original data and fit of the model at the level of the original diatom species for
Atrazine (left) and Diuron (right). Each colour denotes a different species. The rectangle
denotes the control response in log scale. Parameters for the curves are the median values
of the marginal parameter distributions.

3.3 Parameter estimation
The estimated parameters for atrazine and diuron are presented in Table 3, along with their
95% credibility interval. Table 3 presents a summary of the marginal posterior distributions.
Table 4 contains the values of the correlation parameter for all herbicides. For atrazine, the
95% credibility interval is centred around 0, suggesting the absence of correlation between
parameters b and e. For all the other herbicides, however, there was a correlation between
these two parameters. Slope parameter b qualitatively determines how a species is affected by
the contaminant: for a small value of b, the species is gradually affected by the contaminant,
whereas for a large value of b, this species is almost insensitive to the contaminant up to a
certain threshold, then suffers a drastic effect. A strong positive correlation between b and
e, the slope parameter and the EC50, implies that a species with a low slope parameter also
has a small EC50, ie. the most sensitive species are affected gradually. A positive correlation
also implies that the most resilient species show no effect up to a certain threshold, followed
by a sudden drop in fluorescence. In the absence of correlation, there is no constraint on the
relative value of b and e for a given species, and all types of behaviours can be encountered.
The effects of that correlation are apparent on Fig. 7: atrazine, a contaminant for which
species show no correlation between parameters b and e, shows all sorts of behaviours, for
diuron, the species with small EC50 have a gradual slope and those with large EC50 have a
steep slope.

Such information about correlation between the dose-response parameters is not consid-
ered or taken advantage of using the classical SSD approach. Yet this is an information of
biological relevance which can only by addressed through the hierarchical modelling of SSD.

TABLE 3: Median parameters of the hierarchical model and their 95% credibility interval,
for atrazine and diuron.

Atrazine Diuron
Parameter Estimate Estimate
log10 µb 0.28[0.02, 0.55] 0.16[−0.15, 0.46]
log10 σb 0.37[0.22, 0.69] 0.46[0.30, 0.82]
log10 µe 3.36[2.93, 3.75] 2.49[1.76, 3.16]
log10 σe 0.58[0.37, 1.12] 1.07[0.70, 1.9]

ρ −0.22[−0.74, 0.47] 0.83[0.39, 0.96]

TABLE 4: Correlation parameters for all herbicides and their 95% credibility interval.
Pesticide ρ

Atrazine −0.22[−0.74, 0.47]
Terburtyne 0.68[0.52, 0.91]

Diuron 0.83[0.39, 0.96]
Isoproturon 0.87[0.78, 0.97]
Metolachlor 0.41[0.14, 0.89]
Dimetachlor 0.85[0.64, 0.99]

3.4 Modelling the global response of a community
The hierarchical SSD approach extracts more information from the raw data than the classical
SSD. It provides an indicator of the global response of the community, which is a relevant
information for the protection of that community. Fig. 5 shows the importance of considering
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the global response of the community for risk assessment. The top of Fig. 5 shows the HC5

obtained using the classical SSD approach on the EC50 endpoint, while the bottom shows
the HC5 obtained using the EC10. This concentration is used for regulatory purposes as the
Predicted No Effect Concentration (PNEC), which determines the threshold under which
the community is considered protected. The HC5 only aims at preventing a proportion of
the species from being harmed, disregarding the possibility that harming key species could
endanger the whole community. In order to protect the community in terms of the endpoint
measured in the original data (fluorescence, biomass), it is interesting to consider also the
GEC5 in the risk assessment. In the case of Atrazine, the concentration which induces a
reduction of 5% of the global fluorescence (GEC5) is lower than both the HC5 based on
the EC50 and on the EC10 (see on Fig. 5). In the case of Diuron, the GEC5 is much lower
than the HC5 based on the EC50 and similar to the HC5 based on the EC10. For the four
other herbicides, the GEC5 is between the two HC5 and in general, the GEC5 is close to
the HC5 based on EC10. Calculating of the reduction in global fluorescence at the HC5

(ie. using the inverse approach) indicates that for Atrazine, the classical HC5 built on the
EC50, which protects 95% of the species, could induce a reduction of 81% [55%,94%] of the
global fluorescence. The classical HC5 based on the EC10 could induce a reduction of 92%
[73%,99%] of the global fluorescence. In the case of Diuron, the classical HC5 built on the
EC50 protects 86%[69%, 96%] of the fluorescence, while the classical HC5 built on the EC10

protects 96%[86%, 100%] of the global fluorescence.
To summarize the comparison, there is no systematic relationship between the GEC5 and

the HC5. Aiming to protect 95% of the global response of the community could prove either
more or less protective than aiming to protect 95% of the species. More precisely, using the
forward approach we can estimate that for Atrazine and Diuron, a HC5 based on the EC50

might protect only 80− 86% of the global response of the community.
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Fig. 5: Species sensitivity distribution and global response of the community for atrazine
(left) and diuron (right). Top: classical SSD, built on the EC10 with 95% bootstrap confidence
intervals and the HC5. Middle: classical SSD, built on the EC50 with bootstrap confidence
intervals and the HC5. Bottom: global response of the community with 95% credible
confidence intervals and the concentration corresponding to a reduction of 5% of the global
response (GEC5). The horizontal dotted lines provide visual cues to compare the HC5,EC10

,
HC5,EC50

and the GEC5.

3.5 SSD as a function of the level of effect (x of the ECx)
Fig. 6 shows the HC5 of the diatom community exposed to Diuron, computed from the
hierarchical SSD. This is an HC5 which includes the uncertainty from the raw data. The
prediction from the hierarchical model was compared to the predictions from the classical
SSD. The first striking observation is that the classical HC5 based on the EC10, which ignores
the uncertainty from the determination of the CECs, is much higher than the hierarchical
HC5. The second observation is that for a hierarchical HC5 which includes the original
uncertainty on the CECs, the confidence intervals expand wildly for an x of the ECx below
50. This can be linked to the fact that for small values of x, the uncertainty on the ECx

estimated from a concentration-effect curve is larger than on the EC50 (as was observed on
the EC10 on Fig. 2). Therefore, in estimating the HC5, the effect of discarding the uncertainty
should be greater. This phenomenon cannot be observed with classical SSD, since it does not
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take into account uncertainty on the CECs. Such an observation contrasts with the reasoning
from Aldenberg and Rorije[2], which state that taking uncertainty on the CECs into account
should increase the value of the HC5. However valid, their argument cannot be directly
applied to our case, for it rests strongly on the assumption of lognormality of the CECs,
be they NOEC, QSAR or ECx at any level of effect. In our model, the EC50 is assumed to
follow a lognormal distribution (parameter b and e follow a lognormal distribution), which
implies that log ECx = log e+ 1

b log
(

x
1−x

)
for any other x than 50 does not follow a normal

distribution. Therefore, it is not surprising to find a hierarchical HC5 different from the
classical HC5.
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Fig. 6: HC5 as a function of the x of the ECx for Diuron obtained from the hierarchical SSD,
with the 95% credibility bands. In red, the HC5 obtained from the classical SSD based on
the EC10 and the EC50 with bootstrap confidence intervals.

4 DISCUSSION

Classical SSDs are widely used to assess risk of chemicals for natural communities, but
they present certain limitations[10], [21]. In this study, we presented a hierarchical approach
to SSD, which includes all the information present in the raw bioassay data to overcome
some of these limitations. This hierarchical SSD differs from classical SSD in that the whole
concentration-effect curve is used to build the SSD instead of a single CEC per species. This
implies that the hierarchical model requires the full output from bioassays response curves.
Unfortunately, such data are not always available. For the three parameters loglogistic model
used in this study, providing two CECs, such as the EC10 and the EC50 would be sufficient to
describe the effect of the contaminant on a species. Therefore, reporting only two CECs at the
end of a bioassay would be enough to construct a hierarchical SSD in the same spirit as that
developed in this work, though without propagating the uncertainty on the CECs. Making
full use of the bioassay data, the hierarchical SSD propagates not only all the uncertainty
from the concentration-effect curve, but also all the information on the shape of the curve. It
also unveils possible correlations among the parameters, which have a biological significance
and might be related to the mode of action of the contaminant.
One of the advantages of the hierarchical approach is the prediction of the global response
of a community presented as a concentration-effect curve which in turn makes it possible to
derive a global effect concentration of x%GECx. This new kind of threshold does not provide
a priori information at the species level (what and how much specific species are affected)
but it is a tool to make a priori risk assessment at the community level (response of all the
species together). This appeared especially interesting for microbial community, for which
chemical effects are often observed and reported at the community level for many endpoints
(i.e. respiration, photosynthesis, fluorescence, enzyme activity. . . ). This global response does
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not require the choice of an arbitrary effect level such as the EC50 or EC10. Moreover, on the
tested contaminants, the hierarchical approach resulted in safe concentration levels which
were very close to the classical HC5 defined on the EC10. This led us to think that from
an operational point of view, the use of the global response should prove as protective as
the classical SSD approach. The global response may also be used to provide structural or
functional information depending on the structural or functional nature of the measured
endpoint. In that case, the global response would provide information on the functional
response of a community and solve one of the problems in the SSD approach [7], [14].
Fundamentally, the global response is an indicator containing a radically different type of
information compared to SSD. The HC5 aims to protect 95% of the species in a community,
but there is considerable uncertainty about the fate of the community if the 5% affected
play a key role for some other properties of the community (such as the global response).
The GEC5 protects 95% of the global response, but does not say what proportion of the
species are significantly affected (above a given level of effect). Together, both SSD and
global response provide complementary means to assess the effect of a contaminant on a
community. Both need to be considered when defining acceptable levels of concentration
for a contaminant.
The definition of the global response strongly depends on the assumption of equipartition of
species contribution to the global response. In communities of diatoms, one or several species
may dominate and their contribution to the global fluorescence could be preponderant.
However, it has been observed that the dominance and the diversity of diatom species
within a community change across the seasons[23], [18]. Therefore, when considering the
fluorescence over a year, the contribution of many species might be averaged, rendering
our assumption of equirepartition more plausible. At any rate, this assumption is already
present in the classical SSD approach[10]. As the simulated species are unidentified, it is not
possible to attribute a weight to each of them to sum their fluorescence. To circumvent this
assumption, it could be possible to define groups of species having comparable fluorescence
and define weights according to these groups. On a larger dataset, it would certainly be
interesting to adopt this approach.
The first advantage of the hierarchical approach was to introduce more ecological relevance
to the risk assessment than the bare classical SSD. The hierarchical approach also provides
a perspective on the treatment of uncertainty in the classical SSD. Classical SSD adopts
the same approach whatever the level of effect chosen. Yet, the degree of uncertainty can
strongly depend on the level of effect, and neglecting that uncertainty might certainly bias
the estimation of the HC5. In particular, the hierarchical SSD shows that building an SSD on
EC10 without considering the uncertainty on these EC10 might lead to a wrong estimate of
the HC5 and of its confidence intervals. The hierarchical SSD, which correctly propagates the
uncertainty from the raw data to the HC5 and builds the SSD on any ECx, does not rest on
this assumption however. We simply assumed that parameter e followed the usual lognormal
distribution[27] and opted for the same distribution law for the second parameter. With only
ten species, there is not much ground to argue for other distributions, but in the future it
would be very interesting to analyse larger datasets. More tested species would provide a
better characterisation of the distribution laws for the concentration-effect model parameters
and might support the current distribution choice or guide towards a different structure for
the hierarchical model. We noted that our result on the hierarchical SSD including all sources
of uncertainty and variability contrasted with the argument put forward by Aldenberg and
Rorije in [2], where they explained that taking uncertainty into account should increase
the estimate of the HC5 compared to a classical SSD approach. We gave a first reason
why their argument was not in contradiction with our work: in our model the ECx for
x different from 50 do not follow a lognormal distribution. A second reason is that in the
hierarchical approach in [2], it is assumed that the uncertainty on the CEC (the length of the
95% confidence interval on the CEC) is identical for all species, whereas in our model the

14



uncertainty on the parameters of the concentration-effect model is specific to each species.
The species-specific uncertainty mostly depends on the quality of the raw data for that
species. This is important because the reasoning of Aldenberg and Rorije focuses on the
estimation on the variance of the SSD, while including varying degrees of uncertainty for
each species could affect the estimation of the mean of the SSD. To understand the role of
varying levels of uncertainty, let us consider an extreme case: if there is a large uncertainty
on the most sensitive species and a rather small uncertainty on all the other species, we
can expect that taking uncertainty into account will shift the estimate of the mean upwards.
Since the value of the HC5 is a function of both the mean and the variance of the SSD, taking
uncertainty into account, although reducing the variance of the SSD, does not necessarily
increase the estimate of the HC5. A third reason stems from the hierarchical structure of the
model and the fact that the fit of the concentration effect models at the level of the species
is performed in one stroke. The fit of the b and e parameters for one species is influenced
by the data from the other species. More specifically, since the tested species are assumed to
come from the same community with the same species sensitivity distribution, the estimation
of the concentration-effect model parameters is the result of information coming from all
species together. On the contrary, in classical SSD the fit of the concentration effect parameters
obtained by linear regression depends solely on the data for one species. Therefore, the e
parameter for a given species estimated in the hierarchical model can be slightly different
from the e parameter estimated by nonlinear regression. Translated at the community level,
this implies that the value of the HC5 is not determined by the value of the CECs and their
uncertainty, but by a more subtle interplay between the raw data and the distribution law
of species sensitivity in the community. For all these reasons, we do not believe that our
results are incompatible with previous work by Aldenberg and Rorije.
As a conclusion, the current hierarchical modelling of SSD aimed to include all the experi-
mental data into the SSD. The first step was to avoid summarizing the full concentration-
effect curve by a single critical effect concentration. However, only data at the end of the
experiment were used. Bioassay data often include a tracking over time of the contaminant
effect and this information could be included as well in the SSD. Modelling time-dependence
would essentially consists in adding a supplementary level to the hierarchy. Studying
the time component of SSD is particularly interesting because toxicity of a contaminant
clearly evolves over time, yet the observation period is often constrained by practical
considerations[11]. Future work will focus on including time dependence into the SSD
approach to improve the accuracy and the biological relevance of its predictions.
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SUPPLEMENTARY INFORMATION

A) Fit at the species level for the other herbicides
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Fig. 7: Original data and fit of the model at the level of the original diatom species for
terbutryne (top left), isoproturon (top right), metolachlor (bottom left) and Dimetachlor
(bottom right). Each colour denotes a different species. The rectangle denotes the control
response in log scale. Parameters for the curves are the median values of the marginal
parameter distributions.

B) R script to fit the hierarchical model
To run the example script, you must:

1) install R (http://cran.r-project.org/)
2) install JAGS (http://mcmc-jags.sourceforge.net/)
3) install the R package rjags within R
4) It is recommanded but not compulsory to install the R package dclone
5) run the script written in file run mcmc.R, for instance using the command Rscript

run mcmc.R
File run mcmc.R contains an R function to calculate posterior distribution of the parameters
of the hierarchical model. It also contains a computation of the Gelman and Rubin diagnostic,
and a traceplot of the posterior distributions.
If there are several cores on the computer, it is possible to run the MCMC chains in parallel.
To run the mcmc algorithm in parallel, comment out the sequential version and uncomment
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the parallel version.
File data.db contains the Diuron dataset, file model.txt contains the jags model.
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