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Summary 14 

Membrane trafficking is critical for cell compartmentalisation, which allows for the 15 

maintenance of specialized environments required for specific cellular activities. To 16 

achieve this goal, cells need to tightly regulate vesicular transport between donor and 17 

acceptor compartments. This process involves several different protein families; 18 

including the SNAREs (65 genes) and small GTPases Rabs (57 genes), which show 19 

the highest number of isoforms and therefore are of most interest. We will focus on 20 

the roles of these proteins in the ER-Golgi-Plasma membrane pathway to illustrate 21 

how Rabs and SNAREs mediate a specific set of functions.  22 
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INTRODUCTION 28 

Professor Chris Hawes was, throughout his tremendous career, passionate about the 29 

study of cell compartmentalisation. Membrane trafficking through the secretory 30 

pathway from the endoplasmic reticulum (ER), to the Golgi and to the plasma 31 

membrane (PM) contributes to cell compartmentalisation. This is critical for many 32 

aspects of plant development (cell elongation, cell division, cell wall formation, 33 

organelle morphodynamics, and homeostasis, plant responses to environmental 34 

stresses, and so forth).  35 

Contrary to mammalian cells where the Golgi apparatus is a singular organelle 36 

associated with the microtubule organizing center (MTOC), the Golgi apparatus in 37 

plant cells is made of several distinct individual stacks (with each collection of stacks 38 

comprising a single Golgi body, with potentially hundreds of Golgi bodies being 39 

present in each cell). Professor Hawes et al. determined that these Golgi bodies 40 

move on an ER-actin network (Boevink et al., 1998) and interact with ER export sites, 41 

constituting what was termed “single mobile secretory units” (daSilva et al., 2004). 42 

Therefore, the ER-Golgi interface in the secretory pathway of plant cells cannot be 43 

considered analogous to what is known and described in mammals (Brandizzi and 44 

Barlowe, 2013).   45 

Vesicle trafficking through the secretory pathway allows for each subcellular 46 

compartment to be composed of unique combinations of proteins and lipids. This 47 

compartmentalisation of cells permits the maintenance of specialized environments 48 

required for specific cellular activities. To achieve this goal, cells need to tightly 49 

regulate a set of events. Vesicle transport generally requires formation and budding 50 

of the vesicle from the donor membrane (with appropriately sorted cargos), 51 
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correct/specific targeting of the vesicle to the acceptor membrane, and finally fusion 52 

of the vesicle with this target membrane (Söllner et al., 1993; Kim and Brandizzi, 53 

2012; Brandizzi and Barlowe, 2013). At each step, several different protein families 54 

are involved: budding factors, small GTPases Sar/Arf (secretion-associated Ras-55 

related protein/ADP-ribosylation factor) and Rab/Ypt (Ras-related in brain/ Yeast 56 

protein transport), GTPase effectors, coat proteins, tethering factors, SNAREs 57 

(soluble N-ethylmaleimide-sensitive-factor attachment protein receptor), to name just 58 

a few (Rutherford and Moore, 2002; Vernoud et al., 2003; Sutter et al., 2006; Lipka et 59 

al., 2007; Moreau et al., 2007; Sanderfoot, 2007; Woollard and Moore, 2008; Saito 60 

and Ueda, 2009; Kim and Brandizzi, 2012; Brandizzi and Barlowe, 2013; Singh and 61 

Jürgens, 2018). The protein families comprising the trafficking machinery are well 62 

conserved and, at the ER-Golgi interface, anterograde trafficking is thought to be 63 

mediated by the coat proteins of the COPII machinery, and the retrograde Golgi to 64 

ER trafficking with the coat proteins of the COPI machinery, with these two pathways 65 

being interdependent (Stefano et al., 2006). We will see later that this scheme 66 

continues to evolve in its structure and that our view and understanding of the ER-67 

Golgi interface in plant cells continue to progress.  68 

Professor Hawes has worked on several members of these different protein families, 69 

especially on Rab proteins with Professor Ian Moore in Oxford, and to some extent 70 

on SNAREs with the team of Dr. Patrick Moreau in Bordeaux. This review will focus 71 

on these two families of proteins, and their essential function in the ER-Golgi-Plasma 72 

membrane pathway and various aspects of plant life and development.  73 

Two classes of Ras-like small GTPases participate in the overall mechanism of 74 

membrane trafficking. First, Sar/Arf are required for vesicle formation at the donor 75 

membrane, and then Rab/Ypt are required for targeting and/or tethering of transport 76 
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vesicles to the acceptor compartment (Rutherford and Moore, 2002; Vernoud et al., 77 

2003; Woollard and Moore, 2008; Saito and Ueda, 2009). Finally, vesicle fusion to 78 

the acceptor membrane is ensured by proteins known as SNAREs (Sutter et al., 79 

2006; Lipka et al., 2007; Moreau et al., 2007; Sanderfoot, 2007; Saito and Ueda, 80 

2009; Kim and Brandizzi, 2012; Brandizzi and Barlowe, 2013). The number of 81 

Rab/Ypt and SNARE genes are usually significantly higher than Sar/Arf. For 82 

example, in Arabidopsis, 57 Rab genes and 65 SNARE genes are present in the 83 

genome whereas only 16 Sar/Arf exist. From a phylogenetic point of view the 84 

diversity in Rab and SNARE genes was often associated with multicellularity and a 85 

high complexity of internal membranes and organelles (Sanderfoot, 2007; Woollard 86 

and Moore, 2008; Saito and Ueda, 2009; Kim and Brandizzi, 2012; Brandizzi and 87 

Barlowe, 2013). Compared to animals and fungi in terms of evolution, plants show 88 

both high conservation of some ancestral genes but also specialization of some, 89 

leading to novel functions of many proteins (Barlow and Dacks, 2018). This 90 

observation raised a fundamental question as to the functional role of such 91 

complexity, and especially how Rabs and SNAREs are able to achieve so many 92 

different specific functions (Lipka et al., 2007; Sanderfoot, 2007; Woollard and Moore, 93 

2008; Saito and Ueda, 2009; Kim and Brandizzi, 2012; Brandizzi and Barlowe, 2013; 94 

Di Sansebastiano, 2013; Singh and Jürgens, 2018). 95 

 96 

RAB PROTEINS 97 

The Rab GTPase was one of the first elements involved in vesicle trafficking to be 98 

characterised (Gallwitz et al., 1983; Schmitt et al., 1986; Goud et al., 1990). First 99 

identified in yeast and called Ypt, their animal counterpart was found by 100 
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complementation approaches with cDNA isolated from rat brain (Touchot et al., 101 

1987). During vesicular trafficking, Rab usually acts in targeting and/or tethering of 102 

transport vesicles to an acceptor membrane. A complex set of proteins functions to 103 

maintain the equilibrium between the active GTP-bound form and an inactive GDP-104 

bound form of Rab. After a brief explanation of how Rabs are activated/inactivated 105 

and targeted to the membrane, we will further discuss their function in plant 106 

membrane trafficking. 107 

 108 

Rab Prenylation  109 

When associated with GTP, Rab typically binds to membranes through prenylation of 110 

its C-terminus. The Rab geranylgeranyl transferases (RGGT) are required for Rab 111 

prenylation in plants. They work as heterodimers of alpha and beta subunits. To be 112 

efficiently prenylated by RGGT, Rab needs to be in a complex with the Rab Escort 113 

Protein (REP), as it was demonstrated for RabA2a (Hála et al., 2005; Wojtas et al., 114 

2007; Shi et al., 2016) (Figure1). In the absence of AtREP1, the Arabidopsis RGGT 115 

can prenylate other substrates, like Rho GTPases or G-proteins (Shi et al., 2016).  116 

Going Apart with GDI 117 

When Rabs are in their inactive, GDP-bound state, they dissociate from the 118 

membrane and are retained in the cytoplasm through the action of GDI proteins 119 

(GDP dissociation inhibitor) that mask their geranylgeranyl moiety (Figure1). Two 120 

isoforms of GDI are expressed in Arabidopsis vegetative tissues. They both interact 121 

with RabA5c and were shown to complement the defective yeast mutant sec19/gdi1, 122 

suggesting that they have a conserved function (Ueda et al., 1996; Andreeva et al., 123 

1997; Ueda et al., 1998). A third isoform of GDI present in the Arabidopsis genome is 124 
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predominantly expressed in pollen, ovules, and embryos suggesting that it has an 125 

activity related to reproduction and the early stages of plant development.  126 

Coming Back to the Membrane 127 

To execute their function, Rabs have to dissociate from GDI and travel to the 128 

appropriate membrane. This is achieved by the GDI displacement factor (GDF), 129 

PRA1/YIP belongs to this family (Figure1).  130 

In Arabidopsis, 19 small membrane proteins grouped in 8 clades display sequence 131 

homology to animal or yeast PRA1/YIP (Kamei et al., 2008). Depending on the 132 

isoform, these membrane proteins can localise to all membranes in the secretory 133 

pathway, from the ER and Golgi to the TGN (trans Golgi network)/early endosomes 134 

and PVC (pre-vacuolar compartment) (Kamei et al., 2008). It was demonstrated that 135 

a unique PRA1/YIP isoform in rice, which interacts with OsRab7, is required for 136 

vesicular trafficking toward the vacuole (Heo et al., 2010). Also, the overexpression 137 

and RNAi approach demonstrated that AtPRA1.B6 regulates ER anterograde 138 

trafficking, perturbing post Golgi trafficking (Lee et al., 2011). Another isoform of 139 

PRA1/YIP, AtPRA1F4, is localized at the Golgi and participates in the sorting of 140 

cargo proteins to the TGN (Lee et al., 2011).  141 

More recently, the YIP4a and b were shown to be associated with ECHIDNA at the 142 

TGN, suggesting that they may participate in PM sorting of specific cargo like AUX1 143 

(Gendre et al., 2013; Gendre et al., 2019). The role of YIP4a and b on exocytotic 144 

routing could also be estimated since they interact with the Golgi localized RABH1b 145 

(Renna et al., 2018). Indeed, rabh1b shows a defect in CESA6 distribution and 146 

velocity at the PM. This default was associated with a slowdown of CESA6 trafficking 147 



 
 

7 
 
 

to the PM together with a thinner cell wall and a reduction in the growth of etiolated 148 

hypocotyls (He et al., 2018). 149 

 150 

 151 

Rab Inactivation and Activation  152 

As with many small GTPases, Rabs by themselves only have a weak GTPase 153 

activity. To be “turned off” by putting them back in their GDP-bound forms, they need 154 

the help of accessory proteins called GTPase-activating proteins (GAP) to hydrolyze 155 

GTP. In Arabidopsis, 20 genes show RabGAP catalytic core motifs and contain a 156 

conserved Arg residue critical for RabGAP activity, but the exact physiological role of 157 

the RabGAP proteins in plants remains mostly elusive (Albert et al., 1999; Vernoud et 158 

al., 2003).  159 

After being associated with the appropriate membrane, Rabs can be converted to 160 

their activated form by RabGEF (Guanine nucleotide Exchange Factor) proteins. 161 

They mediate the exchange of GDP to GTP, allowing a conformational change of 162 

Rabs and ultimately affecting their interaction with effector proteins. AtVPS9a and b 163 

are the only genes containing a typical RabGEF domain in the Arabidopsis genome, 164 

suggesting a weak specificity of interaction between Rabs and RabGEFs (Saito and 165 

Ueda, 2009). This was illustrated by Goh et al., who demonstrated that VSP9a 166 

mediates the activation of RabF1, RabF2a, RabF2b but not RabG3f (Goh et al., 167 

2007). The interaction of the VPS9a and RabF2b complex was resolved by 168 

crystallography and it was shown that the leaky allele vps9a-2 could be rescued by 169 

the dominant active Q92L form of RabF2b (Goh et al., 2007; Uejima et al., 2010). 170 

This suggests that VPS9a acts upstream of RabF. In addition to the VPS9s, other 171 
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types of proteins that do not contain the typical RabGEF domain can participate 172 

directly or indirectly in Rab activation. For instance, PUF2 was shown to recruit 173 

VSP9a in the endosomal membrane and coordinates the activation of RabF2b and 174 

RabF1 (Ito et al., 2018a). Also, some proteins were suggested to have a GEF 175 

activity. Loss of TGN (LOT) displays a substantial homology with the yeast Rgp1 (Jia 176 

et al., 2018). RGP1 was suggested to act as a functional RabGEF for the yeast YPT6 177 

and the animal Rab6 (Siniossoglou et al., 2000; Bonifacino and Rojas, 2006). The 178 

authors show that LOT cDNA was able to complement yeast rgp1, and that loss of 179 

function plants have massive defects in Golgi and TGN structure. These results 180 

suggest that LOT may act as a RabGEF protein in plants (Jia et al., 2018). GEF 181 

activity toward Rab proteins can also be mediated by tethering complexes. It is most 182 

prominently the case in yeast and animal cells through the transport protein particle 183 

(TRAPP) complex (Barrowman et al., 2010; Vukašinović and Žárský, 2016). In yeast, 184 

four forms of TRAPP complexes are described, where TRAPPI acts as a tethering 185 

factor for COPII derived vesicles, TRAPPII and TRAPPIII are involved in post Golgi 186 

trafficking and TRAPPIII and TRAPPIV in autophagy (Barrowman et al., 2010). More 187 

recently, this model has been challenged, and it was concluded that yeast may only 188 

possess TRAPPII and TRAPPIII complexes as in mammalian cells (Thomas et al., 189 

2018). In plants, TRS130, one element of the TRAPPII complex, and RabA1c were 190 

found to co-localize at the TGN (Qi and Zheng, 2011). Overexpression of GTP-locked 191 

Q72L RabA1c was able to partially complement the trs130 loss of function mutant, 192 

suggesting that TRAPPII is an upstream activator of Rabs in plants (Qi and Zheng, 193 

2011). More recently, Rabs of several clades (E, D, B, A, and G) were identified in a 194 

TRS130 interactome and several elements of the TRAPPII complex, including 195 

TRS130, demonstrate a preferential binding with the dominant-negative S26N 196 
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RabA2a. In addition, a GTP locked Rab variant can complement a trappii mutant 197 

(Kalde et al., 2019). These results illustrate the ability of the plant TRAPPII complex 198 

to activate Rab proteins. The STOMATAL CYTOKINESIS DEFECTIVE1 (SCD1) 199 

contains a tripartite DENN domain that has been demonstrated in other systems to 200 

function as GEF for Rab GTPases (Marat et al., 2011). SCD1 acts on the exocyst 201 

complex and loss of function plants display perturbations of protein exocytosis and 202 

recycling of PM proteins like PIN1 (Mayers et al., 2017). SCD1 interacts preferentially 203 

with Rabs from the clade E and in a nucleotide state manner. Indeed, SCD1 interacts 204 

in vitro with a dominant negative form S29N, but not with a constitutively active form 205 

of RabE1c (Q74L). Mayer et al show that overexpression of wild type or Q74L 206 

RabE1c can rescue the phenotype of scd1.1. Consequently, it was postulated that 207 

SCD1 acts as a GEF to mediate RadE1c activation during the process of exocytosis. 208 

 209 

RAB Complexes Talk with Effector Proteins 210 

In their GTP-bound form, Rabs interact with effector proteins. Compared to the huge 211 

number of Rab isoforms in plants, only a few effectors have been characterized. A 212 

portion of them act as tethering factors and participate in the docking of vesicles to 213 

acceptor membranes. This is especially true in the case of Golgins, which are long 214 

coiled-coil proteins located at the surface of Golgi stacks. Six Golgin homologs were 215 

identified in the Arabidopsis genome and at least one, GC5, shares homology with 216 

the yeast Sgm1p and was shown to interact with RabH1b and RabH1c 217 

(Latijnhouwers et al., 2007).  218 

Other well-described effectors of Rabs are phosphoinositide kinases and 219 

phosphatases. Indeed, the PI4KBeta1 and beta2 localise at the TGN and interact 220 

with the constitutively active form of RabA4b, Q68L, but not the dominant-negative 221 
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T22N form. This interaction contributes to the polarised secretion of cell wall 222 

components in tip-growing cells, but is also important in biotic interactions (Preuss et 223 

al., 2006; Kang et al., 2011; Antignani et al., 2015).  224 

All five members of the Rab clade E were shown to interact with the 225 

phosphatidylinositol-4-phosphate 5-kinase 2 (PIP5K2). In addition, it was shown that 226 

PIP5K2 has a greater affinity for the GTP locked form of Rabs. Therefore, it seems 227 

that RabE may be able to regulate PIP5K2, most likely through protein retargeting 228 

(Camacho et al., 2009). It was also shown that the PI4P phosphatase Root Hair 229 

Defective 4 (RHD4) is required for the proper localisation of the RabA4b (Thole et al., 230 

2008). Therefore, PI4P regulation at the tip of growing cells is a direct target of Rab 231 

GTPases and illustrates that the function of Rab effectors is not restricted to tethering 232 

factors involved in vesicle fusion.   233 

 234 

FUNCTIONAL ROLE OF RAB PROTEINS IN PLANTS 235 

In plants, Rabs are divided into 8 clades based on their sequence homology, which 236 

correlates to some extent to their subcellular localisation and function (Vernoud et al., 237 

2003) (Figure 2). 238 

Rabs in ER-Golgi / Golgi-ER Trafficking 239 

ER-Golgi trafficking mostly involves Rabs from the clades B1 and D. Specifically in 240 

Arabidopsis, ER-Golgi trafficking is thought to involve at least three isoforms of 241 

RabB1. Indeed, some of the plant Rab1 isoforms were shown to complement the 242 

yeast Rab1 homolog, Ypt1 (Park et al., 1994). Furthermore, the expression of a 243 

dominant-negative version of RabB1b in tobacco leaves slows down the recovery of 244 

Golgi fluorescence, in BFA (brefeldin A) treated cells. This indicates a role for the 245 
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Rab clade B1 in ER-Golgi anterograde transport (Saint-Jore et al., 2002). RabDs are 246 

Golgi localized and Arabidopsis loss-of-function mutants of the three isoforms show a 247 

bushy phenotype and low fertility. Interestingly, by using a dominant-negative 248 

approach it was possible to show that RabD1 and D2 are both needed for protein 249 

targeting, but most likely function in two independent pathways (Pinheiro et al., 250 

2009).   251 

The Rab clade H is also involved in ER-Golgi trafficking. Members of the Rab clade H 252 

are homologous to Rab6 andYpt6, identified in animal and yeast cells respectively. 253 

RabHs are typically cis-Golgi resident and are described as being involved in Golgi to 254 

ER retrograde transport. There is some evidence of a conservation in protein function 255 

of RabHs across different phyla as RabH1b can functionally complement the yeast 256 

homolog Ypt6 (Bednarek et al., 1994). RabH1b and c were also reported to localise 257 

to the Golgi and to interact with Golgins, putative Golgi tether proteins (Latijnhouwers 258 

et al., 2007; Johansen et al., 2009). RabH1b was also shown to participate in an 259 

anterograde trafficking route from the Golgi, as its expression was necessary for 260 

CESA6 localisation at the PM (He et al., 2018). Identification of the exact role of Rab 261 

clade H in retrograde trafficking in plants warrants further investigation. 262 

 263 

Rabs in post-Golgi Trafficking to the PM and Cell Plate 264 

In plants, Rab proteins from clade E regulate trafficking at or after the Golgi. The 265 

expression of a dominant-negative inactive form of RabE1d (N128I) results in an 266 

accumulation of sec-GFP in the ER and Golgi; and induces the re-localisation of the 267 

sec-GFP signal to the vacuole (Zheng et al., 2005). In this study, the authors also 268 

demonstrate that RabE1d is acting downstream of RabD2. YFP-tagged RabE1d was 269 

shown to localise at the Golgi in a prenylation and nucleotide-dependent mechanism 270 
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(Zheng et al., 2005). Interestingly, the RabE1c was also shown to regulate the 271 

localisation and function of the peroxisome receptor PEX7, demonstrating that Rabs 272 

from the same clade can have extended functions in plants (Cui et al., 2013). In 273 

Arabidopsis, RabA constitutes the biggest clade and contains almost half of the 274 

known Rab isoforms. The remarkable expansion of this clade is one of the most 275 

striking features of plant Rab GTPases. RabAs are classically associated with post-276 

Golgi secretion. The subgroup A1 contains 9 members and clear homologs have not 277 

been identified in either yeast or animals. RabA1a, A1b, and A1c are thought to be 278 

linked to auxin signaling. RabA1a loss of function mutants show a deficit in auxin 279 

response (Koh et al., 2009). When functionally linked to TRAPPII, RabA1c was 280 

shown to accumulate in a VHa1 positive TGN compartment (Qi and Zheng, 2011). Its 281 

correct localisation is sensitive to the specific inhibitor endosin1 and determines PM 282 

targeting of PIN2 and AUX1 (Qi and Zheng, 2013). BEX5/Rab1b, which was 283 

identified in a reverse genetic screen for enhanced susceptibility to BFA, participates 284 

in both exocytosis and transcytosis of PM proteins including PIN1 and PIN2 (Feraru 285 

et al., 2012). 286 

Other Rabs identified in clade A were demonstrated to have a role in cell plate 287 

formation. Though RabA1d and 1e typically localize to the TGN, during cell plate 288 

formation both instead localise to the cell plate, albeit in a different zone to RabA2a 289 

(Berson et al., 2014). Interestingly, RabA1e was also identified as being upregulated 290 

in response to salt stress in Arabidopsis roots. This is suggestive of a potential role 291 

for this specific isoform during stress acclimation (Geng et al., 2013). In other plant 292 

species, the NtRab11b has been demonstrated to play a key role in pollen tube 293 

growth. It localizes to the apical clear zone of the elongating pollen tubes and is 294 
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required for secretion and endocytosis at the tip of the pollen tubes (de Graaf et al., 295 

2005).  296 

Subsequently, the role of the tomato Rab11a in secretion has been investigated in 297 

tobacco protoplasts. Rehman et al. have suggested that Rab11a can regulate the 298 

anterograde transport from the TGN to the PM in a SYP122-dependent manner, and 299 

did not involve SYP121, supporting the hypothesis that SYP121 and SYP122 may 300 

function in independent secretory events (Rehman et al., 2008). Secretome 301 

proteomic analysis of the culture medium surrounding tobacco protoplasts expressing 302 

dominant-negative transgenes thereafter revealed a potential specific relationship 303 

between Rab11 and SYP122 (Rehman et al., 2011).  304 

The Rab subgroup A2 is somewhat similar to both the mammalian Rab11 and the 305 

yeast Ypt31/32. RabA2a, alongside the single Rab isoform of the subclade A3, 306 

shows a partial co-localization with both a VHA-a1 positive compartment and the 307 

PVC (Chow et al., 2008). Interestingly, RabA2a and RabA3 both also localize at the 308 

cell plate, suggesting a putative role in polarized secretion. Interestingly, an 309 

additional role for RabA2a in establishing apical polarity in Arabidopsis root tips was 310 

recently established through chemical genetic approaches (Li et al., 2017). Subgroup 311 

A4 also seems to be involved in polarized secretion. In support of this, Rab4b is 312 

found to localize at the tip of root hairs, but only during their growth (Preuss et al., 313 

2004). Its TGN localization was shown to be dependent on actin polymerization and 314 

the RabA4b compartment does not co-fractionate with the Qa-SNARE AtSYP41 and 315 

the Qc-SNARE AtSYP51, both TGN markers (Preuss et al., 2004). This result 316 

underlines that the TGN is a structure composed of a multitude of different 317 

membrane types with potentially diverse functions. RabA4b is also tightly associated 318 

with PIP2 homeostasis through interactions with several PI4K isoforms and co-319 
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localises with the PI4P phosphatase (Thole et al., 2008; Kang et al., 2011). The role 320 

of RabA4 in tip growth cells is further exemplified by the requirement for functional 321 

RabA4d for pollen tube growth (Szumlanski and Nielsen, 2009).  322 

In general, the clade RabA fine-tunes polarised secretion and defines specific 323 

membrane subregions for vesicle delivery. RabA5c probably best illustrates this role 324 

of the RabA clade. This Rab was found to accumulate just below the PM at each of 325 

the 8 corners of plant cells (Kirchhelle et al., 2016). Specific inhibition of RabA5c 326 

induces perturbations in the cell geometry of the developing lateral organs (Kirchhelle 327 

et al., 2016). This default in anisotropic growth and cytokinesis occurs without 328 

disrupting default membrane trafficking.  Recently, the same group further 329 

demonstrated by genetic, modelling, and pharmacological approaches that 330 

microtubules and cellulose anisotropy react to the loss of functional RabA5c in plant 331 

cells (Kirchhelle et al., 2019). Finally, we can speculate as to a more general role for 332 

Rabs in the regulation of cell wall deposition as many Rabs from the clade A show 333 

defects cell wall composition (Lunn et al., 2013).  334 

 335 

SNARE PROTEINS 336 

SNARE HISTORY AND DEFINITION 337 

SNAP25 (synaptosomal-associated protein of 25kDa) was the first SNARE protein 338 

discovered (Oyler et al., 1989) and during the intervening years the concept of 339 

SNAREs was established and developed by Rothman et al. The N-ethylmaleimide-340 

sensitive fusion protein (NSF) factor was identified first, followed by the soluble NSF 341 

attachment proteins (SNAPs) which are characterized as critical components of 342 

intracellular membrane fusion. Finally, an affinity purification procedure isolated the 343 
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first SNAP receptors (SNAREs) from bovine brain cells (Söllner et al., 1993) and the 344 

era of SNAREs had begun!   345 

Initially, the concept of SNARE-mediated transport was centered on the concept that 346 

one SNARE was present at the transport vesicle (v-SNARE, v for vesicles) and one 347 

at the acceptor membrane (t-SNARE, t for target). SNAREs were then further divided 348 

according to the amino acids present in the hydrophobic heptad repeats in the center 349 

of the SNARE domain that engaged in membrane fusion. Using these criteria 350 

SNAREs were divided into four groups: Qa- (similar to syntaxin 1), Qb- (similar to the 351 

N-terminal half of SNAP25), Qc- (similar to the C-terminal half of SNAP25), and R-352 

SNAREs. A functional SNARE complex for membrane fusion was determined to be 353 

generally formed from a Qa-Qb-Qc cis-SNARE complex on the target membrane and 354 

a R-SNARE (v-SNARE) on the transport vesicle to produce the functional fusion 355 

trans-SNARE complex (Fasshauer et al., 1998; Bock et al., 2001; Sutter et al., 2006) 356 

but this organization may not be the only one which can function in membrane fusion.  357 

The first SNAREs discovered in plants were the syntaxin homologue of a yeast 358 

pep12 mutant (Bassham et al., 1995) and the syntaxin-related Qa-SNARE AtSYP111 359 

(KNOLLE) gene product involved in cytokinesis (Lukowitz et al., 1996). Since then, a 360 

huge number of plant SNAREs have been discovered and found to be critical players 361 

in numerous cellular trafficking pathways. To date, 65 SNAREs have been reported 362 

in Arabidopsis (Sanderfoot, 2007; Saito and Ueda, 2009; Kim and Brandizzi, 2012). 363 

This high number of SNAREs in Arabidopsis and plants in general, compared to the 364 

relatively smaller number (only 21) reported in mammalian cells, highlights the 365 

complexity and evolution of the endomembrane trafficking system in plants 366 

(Sanderfoot, 2007; Barlow and Dacks, 2018). The following chapters will cover 367 

SNAREs as key actors in many cellular processes of plant development. 368 
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The Concept of i-SNAREs 369 

A very interesting concept for SNARE regulation emerged from the work of Rothman 370 

et al. A novel potential function of SNAREs, called i-SNAREs (for inhibitory or 371 

interfering SNAREs) was first described by Varlamov et al.  (2004). The principle is 372 

that an i-SNARE will inhibit a fusion process by substituting for, or binding to, a 373 

subunit of a fusogenic SNARE complex to produce a non-fusogenic complex. 374 

Varlamov et al. discovered that certain subunits of the cis-Golgi SNARE complex 375 

function as i-SNAREs to inhibit fusion mediated by trans-Golgi SNARE complexes, 376 

and reciprocally (Varlamov et al., 2004).  377 

In plants, the first possibility of such a regulatory function of SNAREs was suggested 378 

by Foresti and coworkers (2006), they observed that the trafficking from the PVC to 379 

the lytic vacuole was inhibited by the overexpression of the syntaxin AtSYP21. 380 

Subsequently, De Benedictis et al. (2013) demonstrated that the Qc-SNAREs 381 

AtSYP51 and AtSYP52 localize to both the TGN and the tonoplast, and further 382 

established that they act either as t-SNAREs for membrane fusion when present in 383 

the TGN/PVC compartments or as i-SNAREs when accumulated at the tonoplast. A 384 

review detailing the main aspects of the i-SNARE concept has been published on 385 

plants (Di Sansebastiano, 2013).  Recently, Chung et al. (2018) showed that 386 

AtMEMB12 overexpression resulted in the accumulation of the antimicrobial protein 387 

PR1 (Pathogenesis-Related Gene 1) in intracellular membranes, consistent with 388 

AtMEMB12 knockout mutants demonstrating increased resistance to the bacterial 389 

pathogen Pst (Pseudomonas syringae pv. tomato), as the absence of AtMEMB12 390 

stimulates the exocytosis of PR1 (Zhang et al., 2011; Chung et al., 2018). This is in 391 

agreement with the suggestion that AtMEMB12 may be a negative regulator for PR1 392 

secretion. It was proposed that AtMEMB12 could be involved in retrograde trafficking 393 
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from the Golgi back to the ER, and therefore PR1 could be recycled to the ER and 394 

not be secreted (Zhang et al., 2011). Chung et al. have then demonstrated that 395 

AtBET12 interacts with AtMEMB12 (Chung et al., 2018).  396 

The effect of SNAREs overexpression on PR1 may result either from the titration of 397 

critical SNARE partners disrupting SNARE machinery homeostasis or from 398 

overexpressed SNAREs acting as an i-SNARE in the early secretory pathway and 399 

therefore preventing the secretion of PR1-containing vesicles. Also, the general 400 

anterograde transport pathway was not perturbed by AtBET12, suggesting a 401 

potential role of AtBET12 in « specifically » regulating pathogenesis-related protein 402 

secretion and plant immunity.  403 

Further work will be required to characterize further i-SNARE activity in plants, and 404 

determine whether the targeting of non-fusogenic SNAREs to specific compartments 405 

could tightly regulate protein trafficking in response to various environmental and 406 

stress conditions. 407 

 408 

SNARES IN THE SECRETORY PATHWAY  409 

The involvement of SNAREs at different steps of the secretory pathway (ER-Golgi 410 

interface and anterograde/retrograde trafficking, TGN and post-Golgi trafficking, the 411 

plasma membrane and cytokinesis) will be discussed alongside new roles and 412 

concepts concerning their functions and regulation.  413 

A non-exhaustive distribution of SNAREs in the various compartments of the 414 

secretory pathway is given in Figure 3. 415 

 416 

SNAREs in Anterograde ER to Golgi Trafficking 417 
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Compared to other protein families that function within the plant transport machinery, 418 

relatively little is known about the involvement of SNAREs at the ER-Golgi interface.  419 

The first studies detailing the role of SNAREs in the anterograde transport from the 420 

ER to the Golgi were developed through a collaboration between the teams of Dr. P. 421 

Moreau and Professor C. Hawes (Chatre et al., 2005). By the heterologous 422 

expression of Arabidopsis SNARE proteins in tobacco leaf epidermal cells, the 423 

ER/Golgi localisation of the R-SNARE AtSec22 and the Golgi localisation of the Qa-424 

SNARE AtSYP31 (~AtSed5), the Qb-SNARE AtMemb11 and the Qc-SNARE 425 

AtBET11 (~AtBS14a) were identified. Overexpression of these SNAREs and 426 

especially the R-SNARE AtSec22 and the Qb-SNARE AtMemb11, resulted in both a 427 

Golgi membrane marker (ERD2) and a secretory soluble marker (secYFP) becoming 428 

retained in the ER network (Chatre et al., 2005), indicating their involvement in the 429 

ER-Golgi anterograde transport. Bubeck et al. (2008) also demonstrated that 430 

overexpression of the Qa-SNARE AtSYP31 and the Qb-SNARE AtMemb11 impaired 431 

ER to Golgi trafficking. The overexpression-dependent inhibition of the ER to Golgi 432 

trafficking of several markers was either due to the titration/trapping of partners of 433 

these SNAREs or was a consequence of i-SNARE activity as discussed above.  434 

The co-localization of AtSec22 and the GTPase Sar1 at punctae on the ER 435 

membrane is indicative of partial localization of these proteins to ER-export sites 436 

(Chatre et al., 2005). Subsequently, it was demonstrated that the loss of the function 437 

of AtSec22 leads to the fragmentation of the Golgi in pollen and impaired 438 

gametophyte development, and retention in the ER of the plasma membrane 439 

syntaxin AtSYP124, demonstrating the critical role of AtSec22 in ER-Golgi trafficking 440 

(El-Kasmi et al., 2011).  441 
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Furthermore, expressing an ER-blocked version of AtSYP31 in transgenic tobacco 442 

plants affected plant growth (Melser et al., 2009). Finally, the Qc-SNAREs AtBET11 443 

and AtBET12 could also be required for the polar elongation of pollen tubes and 444 

embryo development (Bolaños-Villegas et al., 2015). 445 

 446 

The concept of 'Golgi entry core compartment' (GECCO) 447 

Many questions remain about the dynamics of the ER-Golgi interface and 448 

interactions between the ER-export sites and the cis-Golgi, how the stacked 449 

cisternae of the Golgi are formed and maintained, and which molecular mechanisms 450 

are involved.  451 

In tobacco BY-2 cells treated with BFA, the formation of small punctate structures 452 

loaded with proteins originating from the cis-most cisternae of the Golgi were 453 

observed. These structures were found adjacent to the ER-export sites, and act as 454 

scaffolds for Golgi regeneration after BFA washout (Ito et al., 2012). Then, using 455 

SCLIM 3D time-lapse observations (super-resolution confocal live imaging 456 

microscopy), it was found that a trans-Golgi marker was transported through this 457 

compartment during Golgi regeneration, indicating that the cis-most cisternae of the 458 

Golgi receive cargo directly from the ER and likely the ER export sites. This 459 

compartment was termed the 'Golgi entry core compartment' (GECCO), and is 460 

formed independently of the COPII and COPI machinery, and interestingly resembles 461 

the ERGIC (ER-Golgi Intermediate Compartment) identified in mammalian cells (Ito 462 

et al., 2018a). In addition, it was found that the Qa-SNARE AtSYP31, a cis-Golgi 463 

marker that localises to GECCO upon BFA treatment, is normally resident of the cis-464 

most cisternae of the Golgi (Ito et al., 2018b). Therefore, as this SNARE was found to 465 

play a role in ER to Golgi trafficking (Chatre et al., 2005; Bubeck et al., 2008), it may 466 
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be possible that its function at the ER-Golgi interface is linked to the molecular 467 

mechanisms required for the de novo formation of the first Golgi cisternae. 468 

In the future, as discussed above for the SNARE complexes, it would be of interest to 469 

determine which other SNAREs and partners are present in the GECCO to 470 

understand further membrane dynamics and cargo trafficking at the ER-Golgi 471 

interface. 472 

 473 

SNAREs in Retrograde Golgi to ER Trafficking  474 

Even less is known of the role of SNAREs in retrograde Golgi to ER trafficking. The 475 

overexpression of the Qa-SNARE AtSYP81 was found to inhibit both anterograde 476 

and retrograde transport between the ER and the Golgi, and its localisation to the 477 

subdomains of the ER physically separated from the Golgi suggested that they may 478 

correspond to ER import sites (Bubeck et al., 2008).  479 

Furthermore, the Qc-SNARE AtSYP72 is located at punctae in the ER, suggesting a 480 

localization that is compatible with a role in retrograde transport (Lerich et al., 2012). 481 

 482 

What about SNARE Complexes at the ER-Golgi interface? 483 

Few attempts have been made to identify putative SNARE complexes at the ER-484 

Golgi interface. Tai and Banfield (2001) determined that AtBET11 and AtBET12 could 485 

form different complexes in vitro with the yeast ER (Sec22) and Golgi (Bos1, Gos1, 486 

Sed5 and YKT6) SNAREs. Sec22, Gos1 and Sed5 (AtSYP31 in Arabidopsis) were 487 

the most abundant SNAREs observed in these complexes. However, after attempting 488 

interactomics of Qa-SNAREs after immunoprecipitations performed on transgenic 489 

plants expressing fluorescent constructs, Fujiwara et al. (2014) were unable to detect 490 

SNARE proteins that could interact with the Qa-SNAREs AtSYP31 or AtSYP32, most 491 
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likely due suboptimal expression of the transgenic proteins (Fujiwara et al., 2014). 492 

Therefore, identifying the endogenous SNARE complexes involved in trafficking at 493 

the ER-Golgi interface might prove challenging.  494 

In addition, nothing has yet been published on putative partners of the Qa-SNARE 495 

AtSYP81. SNARE complexes at the ER-Golgi interface require further attention in the 496 

future in order to understand the overall dynamics and regulation of protein trafficking 497 

at this interface. 498 

 499 

ER SNAREs and new aspects of their Regulation and Function  500 

SNAREs (throughout cells, not those solely localized to the ER) are tail-anchored 501 

proteins through their C-terminal hydrophobic domain, and it is only recently that a 502 

SNARE, Qc-SNARE AtSYP72, was shown to be integrated into the ER membrane 503 

via the GET  (Guided Entry of Tail-anchored proteins) system (Srivastava et al., 504 

2017). Xing et al. (2017) have further analyzed some components of the GET 505 

(Guided Entry of Tail-anchor) pathway in Arabidopsis, and reduced root hair 506 

elongation in detected in defective lines, probably corresponding to reduced amounts 507 

of nascent SNAREs, and reduced growth phenotypes in overexpressing lines, 508 

suggesting a strong regulatory role of the GET pathway in SNARE biogenesis and 509 

cellular homeostasis (Xing et al., 2017). 510 

An interesting discovery is the « unexpected » role of a SNARE in ER interaction with 511 

the cytoskeleton. ER streaming and remodelling is highly dependent on membrane-512 

cytoskeleton interactions, Cao et al. (2016) have identified that Qc-SNARE AtSYP73, 513 

bearing actin-binding domains, actively anchors the ER membrane to actin filaments. 514 

Loss of AtSYP73 function affects the morphology of the ER network, ER streaming, 515 

and plant growth, as is observed for myosin-XI mutants (Cao et al., 2016). 516 
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Finally, of the ER-Golgi SNAREs, the Qb-SNARE AtMemb11 was found to interact 517 

with the GDP-bound form of ARF1 in the Golgi (Marais et al., 2015). The disturbance 518 

of the anterograde pathway caused by overexpression of AtMemb11 (Chatre et al., 519 

2005; Bubeck et al., 2008) may be either directly related to the role of AtMemb11 in a 520 

SNARE complex or indirectly as a result of the titration of Arf1. AtMemb11 (mostly 521 

localized at the cis-Golgi cisternae) could, therefore, function both as a SNARE for 522 

membrane fusion and as a regulator of Arf1 for modulating the COPI machinery. 523 

However, it is not known whether AtMemb11 is a member of a SNARE complex at 524 

the cis-Golgi apparatus.  525 

 526 

GOLGI/TGN: SNAREs at the Hub of Protein Sorting 527 

The TGN is a tubular/vesicular organelle that can be considered as the central point 528 

for sorting of secretory and vacuolar cargos. Therefore, membrane trafficking is 529 

strongly regulated at the TGN which is enriched with several families of SNAREs.   530 

Sanderfoot et al. (2001) have identified a functional separation between the Qa-531 

SNAREs of the AtSYP4 family, which reside mainly in the trans-Golgi network, and 532 

the Qa-SNAREs of the AtSYP2 family, found predominantly in the pre-vacuolar 533 

compartment (Sanderfoot et al., 2001). They also found that the Qc-SNARE 534 

AtSYP61 is a resident of the TGN and can form complexes with the Qb-SNARE 535 

AtVTI12 and either of the Qa-SNAREs: AtSYP41 or AtSYP42. Surprisingly, the 536 

interactomics of Qa-SNAREs only revealed the Qa-SNARE AtSYP43 (Fujiwara et al., 537 

2014). In addition, Chen et al. (2005) have determined, by using a liposome fusion 538 

assay, that the Qa-SNARE AtSYP41 and the Qc-SNARE AtSYP61 are likely to 539 

function in independent vesicle fusion reactions with the Qb-SNARE AtVTI12 (Chen 540 

et al., 2005). Chen et al. (2005) also identified that the R-SNARES YKT61 and 541 
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YKT62 are essential for membrane fusion mediated by either the Qa-SNARE 542 

AtSYP41 or the Qc-SNARE AtSYP61, which determined the first SNARE complexes 543 

which could be required for membrane fusion at the TGN. The identification of these 544 

different possible SNARE complexes supports the concept of a sorting station 545 

located in the TGN. 546 

In an extensive study of the AtSYP4 family (using syp42syp43 double mutant, 547 

tracking protein cargos such as secGFP and 12S globulin), Uemura et al. (2012) 548 

demonstrated that the Qa-SNARE members of the AtSYP4 group were involved in 549 

multiple transport pathways (specifically the secretory pathway, vacuolar transport 550 

pathway, and perhaps the retrieval pathway from the late endosomes/pre-vacuolar 551 

compartment to the TGN) (Uemura et al., 2012). 552 

Interestingly, they identified that the polar plasma membrane localization of the auxin 553 

efflux carrier PIN2-GFP was not disturbed but that its vacuolar transport for 554 

degradation was impaired (Uemura et al., 2012). These results provide evidence for 555 

the complexity of regulation of protein transport by SNAREs (and its partners) at both 556 

the level of cargo specificity and transport pathways targeted. 557 

 558 

Breakthrough: Isolation of SYP61 TGN-derived Vesicles 559 

A key development in our understanding of the function of the TGN was the immune-560 

isolation and subsequent proteomic analysis of AtSYP61 TGN-derived vesicles 561 

(Drakakaki et al., 2012). Drakakaki et al. (2012) were able to identify 145 proteins 562 

that were specific to the SYP61 TGN-derived vesicles without contamination by 563 

known pre-vacolar markers   AtSYP21 or AtSYP51. 564 
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Among the proteins identified, analysis of the AtSYP61 proteome identified numerous 565 

proteins that function in cellular transport machinery and cargos of high interest for 566 

further analysis:  567 

- The Qa-SNAREs AtSYP41 and AtSYP43, the Qb SNARE VTI12, corroborating 568 

possible SYP41/SYP61/VTI12 and SYP43/SYP61/VTI12 SNARE complexes at the 569 

TGN as described earlier, but confirmed by interactomics of Qa-SNAREs only for the 570 

Qa-SNARE AtSYP43 (Fujiwara et al., 2014). These apparent discrepancies probably 571 

just reveal how difficult it is to visualize these protein complexes as a function of the 572 

technology used and the nature and developmental stage of the material used… 573 

- The plasma membrane SNAREs such as the Qa-SNARE AtSYP121 (PEN1), the 574 

Qb/Qc SNARE AtSNAP33 and the R-SNARE AtVAMP722 were also identified 575 

(SNAREs facilitating the secretion of cell wall components to the plasma membrane 576 

in response to pathogen attack) together with AtVPS45 and several VSRs (VSR3, 577 

VSR4 and VSR7), suggesting that the AtSYP61 compartment is highly involved in 578 

segregating the secretory and vacuolar pathways.   579 

- GTPases such as AtRABD2a and AtRABD2b were abundantly present and two 580 

YIPs (YPT-interacting proteins) were identified in the AtSYP61 proteome. As already 581 

indicated above, YIP4a and YIP4b were demonstrated to be critical trafficking 582 

components in ROP-dependent root hair formation (Gendre et al., 2019). 583 

- The AtSYP61 proteome contained a Trs120 homolog, a member of the TRAPPII 584 

complex possibly involved in cytokinesis. It also included four orthologs of TRAPPI 585 

complex subunits. TRAPPI being associated with ER to Golgi transport, the presence 586 

of components of TRAPPI in AtSYP61 vesicles suggests that plant TRAPPI might be 587 

involved in vesicle fusion at the TGN rather than in ER to Golgi transport, without 588 

excluding the possibility of ER-TGN contacts. 589 
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- Several CESA (Cellulose synthase A) complexes were identified in the SYP61 590 

proteome. The analysis with the specific inhibitor endosidin 1 revealed that trafficking 591 

of CESA complexes can be TGN dependent. Recently, co-localization of CESA3 and 592 

AtSYP61 was found to be enhanced upon CESTRIN (CESA trafficking inhibitors) 593 

treatment, corroborating the requirement of the AtSYP61 compartment in CESA 594 

complexes trafficking (Worden et al., 2015). 595 

- The SYP61 proteome also contained the protein ECHIDNA. It has been shown that 596 

ECHIDNA is required for the TGN-mediated trafficking of the auxin influx carrier 597 

AUX1 to the plasma membrane, whereas its involvement in the transport of the auxin 598 

influx carrier LAX3 or the auxin efflux carrier PIN3 was minor. Trafficking defects of 599 

AUX1 in ech mutants were correlated with perturbation of secretory vesicle formation 600 

at the TGN (Boutté et al., 2013). 601 

This AtSYP61/ECHIDNA compartment of the TGN was also shown to be enriched 602 

with sphingolipids carrying α-hydroxylated acyl-chains of at least 24 carbon atoms, 603 

critical for the polar secretory sorting of the auxin carrier PIN2 to the apical 604 

membrane of Arabidopsis root epithelial cells. A disturbance of the tubulo-vesicular 605 

structure of the TGN was observed, revealing that, together with the specific proteins 606 

identified in the cellular transport machinery, these specific sphingolipids govern the 607 

morphology and dynamics of this TGN-subdomain.  608 

The TGN-localized coiled-coil protein TNO1 is a putative tethering factor that 609 

interacts with the Qa-SNARE SYP41 and is required for TGN localization of the Qc-610 

SNARE SYP61. Interestingly, the TGN was disrupted and vesicle formation from the 611 

Golgi cisternae was affected in a tno1 mutant, and these defects were rescued by 612 

overexpression of either the Qa-SNARE SYP41 or the Qc-SNARE SYP61. These 613 
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results supported the implication of the tethering factor TNO1 in vesicle fusion at the 614 

TGN (Yang et al., 2019). 615 

Finally, SCYL2A/B are clathrin-binding proteins which interact with the Qb-SNAREs 616 

AtVTI11 and AtVTI12, and CHC1, supporting the notion that SCYL2A/B proteins are 617 

involved in clathrin-mediated vesicle trafficking (Jung et al., 2017). Root hair tip-618 

localized proteins such as ROP2, RHD2, RABA4B, SYP123, and CSLD3, are critical 619 

for proper root hair tip growth, but only CSLD3 was mis-localized in the root hairs of 620 

scyl2b mutants, supporting the conclusion that SCYL2B to some extent mediates the 621 

tip localization of CSLD3 (Cellulose synthase-like protein D3) in root hairs. Therefore, 622 

SCYL2B may act as a component of clathrin-mediated vesicle membrane trafficking 623 

that regulates secretory processes mediated by TGN and PVC in the process of root 624 

hair tip growth (Jung et al., 2017).   625 

As highlighted by Renna and Brandizzi (2020), the numerous tools developed 626 

(reverse genetics, proteomics, chemical inhibitors, super-resolution live-cell imaging) 627 

together with lipidomics (Wattelet-Boyer et al., 2016) are now available to unravel the 628 

different functions of the TGN, to determine all the key actors and functional 629 

machineries in the different subdomains involved in cargo sorting and transport, and 630 

finally to investigate the homeostatic regulation of the TGN in various environmental 631 

conditions. 632 

 633 

SNAREs at the Golgi-released independent TGN (GI-TGN) 634 

The Golgi-released independent TGN (GI-TGN) is a TGN-derived compartment, 635 

released from the Golgi-associated TGN (GA-TGN), which has been only described 636 

in plant cells thus far (Kang et al., 2011; Uemura et al., 2014).  637 
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Further work has subsequently revealed a tight association between the GI-TGN and 638 

the secretory R-SNAREs AtVAMP721 and AtVAMP722, but to a lesser extent 639 

AtVAMP727 (vacuolar pathway) was determined (Uemura et al., 2019). The GI-TGNs 640 

were shown to mediate the transport of the R-SNARE AtVAMP721 to the plasma 641 

membrane, and the Qa-SNAREs of the AtSYP4 group may be involved in the 642 

recycling of AtVAMP721 between the plasma membrane and late endosomes, in 643 

addition to the transport from the GA-TGN compartment to the plasma membrane via 644 

the GI-TGN compartment, through undetermined mechanisms (Uemura et al., 2019). 645 

The GI-TGN is proposed to function as a transit compartment between the Golgi and 646 

the plasma membrane, and in this model, the GA-TGN could mature into the GI-TGN 647 

and then into secretory vesicles through the increase of the concentration of 648 

AtVAMP721-dependent components of the secretory pathway (Uemura et al., 2019). 649 

 650 

SNAREs in Plasma Membrane Biogenesis, Cytokinesis, and Symbiosis 651 

A tremendous amount of research has been performed recently, focused on post-652 

Golgi trafficking to the plasma membrane and the implication of SNAREs. These 653 

studies have revealed the multitude of SNARE complexes that can be formed and 654 

attempts to identify the features linked to the specificity of SNARE functions in 655 

constitutive exocytosis, cytokinesis, or innate immunity were reached. As discussed 656 

earlier, the possibility that SYP121 and SYP122 drive independent secretory events 657 

were proposed (Rehman et al., 2008). Then, Professor G. Jürgens et al. 658 

demonstrated that the Qa-SNAREs AtSYP111 and AtSYP121 are not switchable in 659 

their respective functions in cytokinesis and innate immunity (Reichardt et al., 2011). 660 

In addition, they determined that the Qa-SNARE AtSYP132 could replace the Qa-661 

SNARE AtSYP111, indicating that AtSYP132 could be more related to membrane 662 
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fusion in constitutive exocytosis. The strict specificity observed between the Qa-663 

SNAREs AtSYP111 and AtSYP121 may suggest the involvement of different 664 

(specific) SNARE complexes. In a recent interactomic study of Qa-SNAREs, Fujiwara 665 

et al (2014) identified the Qc-SNARE AtSYP71 and the R-SNARE AtVAMP721 as 666 

partners of the Qa-SNARE AtSYP121 but unfortunately were not able to elucidate a 667 

SNARE interactant for the Qa-SNARE AtSYP111 (Fujiwara et al., 2014). This may be 668 

explained by the insufficient expression of this SNARE linked to its normally specific 669 

expression during cytokinesis. In addition, they identified several SNAREs for the Qa-670 

SNARE AtSYP132 (the Qb-SNAREs AtNPSN11 and AtNPSN13, and again the Qc-671 

SNARE AtSYP71 and the R-SNARE AtVAMP721). Using this approach, Fujiwara et 672 

al. also determined that the Qa-SNARE AtSYP122 could interact with the same 673 

SNAREs interacting with the Qa-SNARE AtSYP132.  674 

Further studies devoted to understanding the requirement of SNARE complexes and 675 

their regulation in cytokinesis revealed several critical points: (i) two distinct 676 

complexes (Qa-SNARE AtSYP111/Qb,c-SNARE AtSNAP33/R-SNARE 677 

AtVAMP721,722 and Qa-SNARE AtSYP111/Qb-SNARE AtNPSN11/Qc-SNARE 678 

SYP71/AtVAMP721,722) were found to associate to drive membrane fusion (El 679 

Kasmi et al., 2013); (ii) cytokinesis still occurs in Qa-SNARE AtSYP111 mutant 680 

embryos. Park et al (2018) identified cytokinesis defects in a Qa-SNARE AtSYP132 681 

mutant and defined an additional SNARE complex involving the Qa-SNARE 682 

AtSYP132 and the same partners shared with the Qa-SNARE AtSYP111, with 683 

overlapping and non-overlapping functions of these two complexes (Park et al., 684 

2018); (iii) Karnahl et al (2018) have evidenced that the Sec1/Munc18 (SM) 685 

regulatory proteins of SNARE complexes AtSEC11/KEULE (Karnik et al., 2015; 686 

Karnahl et al., 2018; Zhang et al., 2019) and its paralog AtSEC1B are respectively 687 
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predominantly involved in cytokinesis and secretion regulation; (iv) Interestingly, it 688 

was determined that after stopping vesicle formation at the TGN, cis-SNARE 689 

complexes were found to accumulate in the early secretory pathway, strongly 690 

suggesting that these inactive cis-SNARE complexes are already formed in the ER 691 

and transferred as such to the plasma membrane for better efficiency of cytokinesis 692 

and directional growth (Karnahl et al., 2017). 693 

Pollen tube growth requires the action of several SNAREs. Three Qa-SNAREs 694 

(AtSYP124, AtSYP125 and AtSYP131) are considered as pollen-specific. Slane et al 695 

(2017) have shown that they can have overlapping functions in pollen development 696 

since only the triple mutant presented a strong gametophytic defect (Slane et al., 697 

2017). This result supports a functional redundancy within members of a given 698 

SNARE gene family but a functional specificity of its members has not to been ruled-699 

out. Although Silva et al (2010) determined that syntaxins alone do not provide the 700 

level of specificity required for apical growth, they have identified a specific 701 

distribution of SYP124 mediating an exocytic flow occurring in the flanks of the pollen 702 

tube apex and that the syntaxins of the SYP1 family have a different distribution in 703 

the pollen tube. 704 

Interestingly, Li et al (2019) have discovered a Tomosyn protein that can bind, 705 

through its C-terminal R-SNARE like motif several Qa-SNAREs, and act as a 706 

negative regulator of secretion to control pollen development (Li et al., 2019). 707 

Lastly, Pan et al (2016) have discovered an unexpected maturation of the gene of the 708 

Qa-SNARE SYP132 in Medicago trunculata (Pan et al., 2016). Effectively, it has 709 

been shown that it undergoes alternative cleavage and polyadenylation during the 710 

transcription process, which produces two isoforms of the SNARE: MtSYP132A (A 711 

for alternative) and MtSYP132C (C for canonical). MtSYP132A is localised to the 712 
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symbiosome membrane and participates in the maturation of symbiosomes, whereas 713 

MtSYP132C is the major form in non-nodulated roots and is involved in classical 714 

secretory functions, unrelated to symbiosis. They concluded that the presence of 715 

SYP132A in angiosperms strongly correlates with the establishment of arbuscular 716 

mycorrhizal symbiosis. 717 

SNAREs and other protein families are largely involved in plant cell-microbe 718 

interactions (Nathalie Leborgne-Castel and Bouhidel, 2014). A massive remodeling of 719 

the host cell PM is required for the formation, and maintenance, of a perimicrobial 720 

membrane which will have a unique protein composition and therefore identity. 721 

Challenges for the future will be to identify the trafficking pathways and machineries 722 

involved in the different types of interactions, and to determine how pathogens affect 723 

the protein composition of the host cell PM and consequently plant defense/immunity 724 

(Nathalie Leborgne-Castel and Bouhidel, 2014). 725 

 726 

SNAREs in Ion Transport Regulation  727 

Years ago, Professor M. Blatt et al. established a link between the Qa-SNARE 728 

AtSYP121, the plasma membrane KAT1 K+-channel activity, and stomatal control 729 

(Eisenach et al., 2012). Grefen et al (2015) have further evidenced that the Qa-730 

SNARE AtSYP121 interacts with a specific domain of KAT1 (the voltage sensor 731 

domain) which confers a voltage-dependent control of secretion (Grefen et al., 2015). 732 

In addition, Zhang et al (2015, 2017) discovered that the R-SNARE AtVAMP721 also 733 

interacts with KAT1 but also with another K+-channel, KC1, indicating a tight 734 

regulation between the K+-channels and the AtSYP121/AtVAMP721 SNARE complex 735 

(Zhang et al., 2015; Zhang et al., 2017). Finally, Waghmare et al (2019) determined 736 

that the Qb,c-SNARE AtSNAP33 stabilizes the AtSYP121/AtVAMP721 SNARE 737 
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complex after priming of the Qa-SNARE AtSYP121, through its interaction with K+-738 

channel (Waghmare et al., 2019). It was suggested that this binding could 739 

correspond to a primary state for the initiation of the secretory/fusion machinery for 740 

exocytosis. 741 

Although the single mutants of AtSYP121 and AtSYP122 did not show any 742 

phenotype, revealing a high redundancy, Waghmare et al (2018) have identified 743 

some cargos specific for both SNAREs through a proteomic approach, suggesting 744 

that each Qa-SNARE may be engaged to some extent in different pathways 745 

according to the nature of some cargos (Waghmare et al., 2018). It has been 746 

demonstrated previously that the Qa-SNARE AtSYP121 is involved in the delivery of 747 

the aquaporin PIP2;5 in maize and the aquaporin PIP2;7 in Arabidopsis to the 748 

plasma membrane, implying this SNARE functions in the regulation of plasma 749 

membrane water permeability and cell osmotic homeostasis (Besserer et al., 2012; 750 

Hachez et al., 2014). Water and nutrient uptake in root hairs has been shown to 751 

involve the Qa-SNAREs AtSYP123 and AtSYP132 which interact with the R-SNAREs 752 

AtVAMP721,722,724 at the tip (Ichikawa et al., 2014). The Qa-SNARE AtSYP132 753 

was also found to regulate the transport of and as a consequence the activity of H+-754 

ATPase at the plasma membrane and this in an auxin-dependent manner (Xia et al., 755 

2019). Modulation of plasma membrane H+-ATPases AHA1 and AHA2 activities were 756 

found to involve the R-SNARE AtVAMP711 during drought stress since its deletion 757 

increased H+-ATPase activity and slowed down stomatal closure in response to both 758 

abscisic acid and drought treatments (Xue et al., 2018). 759 

 760 
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Another interesting feature is how pathogens differently take over the host early 762 

secretory pathway for their own purposes, as illustrated by the following examples.  763 

The pathogen Colletotrichum orbiculare develops hyphae inside the host cucumber 764 

(Cucumis sativus) by using the CsSec22-dependent secretory pathway to secrete 765 

biotrophy effectors toward the interface between the pathogen and the host (Irieda et 766 

al., 2014). On the contrary, during the infection of tobacco (Nicotiana benthamiana) 767 

by the Turnip mosaic virus, overexpression of the R-SNARE NbSec22 blocked the 768 

early secretory pathway but enhanced the movement of replication vesicles, 769 

indicating that these vesicles bypassed the Golgi and used an alternative route (pre-770 

vacuolar/multi-vesicular bodies) for virus propagation (Cabanillas et al., 2018).  771 

Recently, Sasvary et al (2018) have studied the replication of the Tomato bushy stunt 772 

virus (TBSV) in tobacco and yeast (Sasvari et al., 2018). They have found in yeast 773 

that the viral replication protein p33 can interact with Use1p, the syntaxin Ufe1p and 774 

its plant ortholog AtSyp81. In tobacco, the replication of TBSV RNA had an efficiency 775 

of only 25% in the NbSYP81 knockdown plants whereas that of the Tobacco mosaic 776 

virus had an efficiency of 70%, suggesting that SYP81 (required for retrograde 777 

protein transport in plants) was to some extent specifically required for tombusvirus 778 

RNA replication and accumulation in plants, but the retrograde transport pathway 779 

was shown not to be required in yeast. 780 

Finally, they could propose in yeast a model on an assembly hub role of the yeast 781 

Ufe1 and Use1 SNARE proteins at specific subdomains of the ER for the formation of 782 

the TBSV replication compartment (Sasvari et al., 2018). Such a model with SYP81 783 

and other SNAREs/partners may also be functional in plant cells.  784 

Through investigation of the powdery mildew fungus pathogen Blumeria graminis f. 785 

sp. hordei, and after reconstruction of 3-D images, Uemura et al. (2019) showed that 786 
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the Qa-SNARE AtSYP43 and the R-SNARE AtVAMP721 accumulated at specific 787 

sites of fungal ingress. It was also shown that the Qa-SNAREs of AtSYP4 group and 788 

the R-SNARE VAMP721 are involved in the secretion of cell wall-modification 789 

enzymes, which are known to be crucial for plant growth and pathogen defense. 790 

Plasma membrane SNAREs are also known to be critical for pathogen defense. The 791 

Qa-SNARE AtSYP121 (PEN1), the Qb/Qc SNARE AtSNAP33 and the R-SNARE 792 

AtVAMP721/722 are involved in the response to ascomycete and oomycete 793 

pathogens. Yun et al (2013) have shown that the infected plant prioritizes the use of 794 

the R-SNARE AtVAMP721/722 and partners for secretion linked to the defense 795 

pathway instead of secretion linked to plant growth (Yun et al., 2013). Kim et al 796 

(2014) have shown that the powdery mildew resistance protein RPW8.2 is 797 

transported to the plant-fungal interface through AtVAMP721 vesicles and that 798 

defense is highly decreased in the absence of this R-SNARE (Kim et al., 2014).  799 

It was then shown that synaptotagmin 1 deletion increased the resistance to the 800 

pathogen Golovinomyces orontii, and that the fungus induced interactions between 801 

the Qa-SNARE AtSYP121 and synaptotagmin 1 and inhibition of the formation of the 802 

AtSYP121 SNARE complex (Kim et al., 2016). 803 

Brassinosteroid-induced genes control several aspects of plant development and 804 

especially stress and pathogen response. It was proposed that the SNARE complex 805 

containing the Qa-SNARE AtSYP22 and the R-SNARE AtVAMP727 drives the 806 

transport to the plasma membrane of the brassinosteroid receptor BRI1 (Zhang et al 807 

2019), and regulates plant resistance to pathogens by controlling the amount of BRI1 808 

reaching/accumulating at the plasma membrane (Zhu et al., 2019). Cao et al (2019) 809 

have also shown in rice that the Qa-SNARE OsSYP121 accumulates at pathogen 810 

penetration sites can interact with the Qb,c-SNARE OsSNAP32 and the R-SNARE 811 
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OsVAMP714/724 and contributes to host resistance to rice blast induced by the 812 

fungal pathogen Magnaporthe oryzae (Cao et al., 2019).  813 

Finally, lipid signaling through phospholipase D has been found to regulate plant 814 

innate immunity (Xing et al., 2019). Following pathogen attack, it was shown that the 815 

phospholipase Dis secreted viaan AtVAMP721/722-mediated secretory process 816 

and led to a focused production of phosphatidic acid which activates reactive oxygen 817 

species and jasmonic acid signaling pathways (Xing et al., 2019). Therefore, we can 818 

imagine how many molecular interactions and different levels of regulation we still 819 

have to discover to understand all these mechanisms… 820 

 821 

CONCLUSIONS AND EXPECTATIONS FOR THE FUTURE… 822 

A first important conclusion concerning Rabs and SNAREs is the multi-combinatorial 823 

possibilities and specificities which are offered by the number of actors that evolution 824 

produced for both protein families. This originates, of course, from the increased 825 

needs of devoted machineries to many aspects of plant development and plant 826 

responses to their environment.  827 

At the molecular and mechanistic level, this effectively implies a multitude of protein 828 

interactions, of regulation steps, signaling pathways, without excluding the lipid 829 

partners. Regarding SNAREs, more and more interactants are discovered such as 830 

QUIRKY (a member of the MCTP protein family having multiple C2 domains and 831 

transmembrane domains) which has recently been shown to interact with the Qa-832 

SNARE AtSYP121 to sustain florigen transport in Arabidopsis (Liu et al., 2019). 833 

In the case of Rab proteins, the high number of isoforms must be associated with the 834 

complexity of secretion processes in plants and especially regarding post Golgi 835 
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trafficking as it is highlighted in the recent review by Elliott et al. (2020). In addition, 836 

Rabs are also surrounded by many regulating partners. For example, 20 RabGAP 837 

and 19 PRA1 isoforms are present in the Arabidopsis genome. They are respectively 838 

involved in Rab inactivation and Rab membrane targeting. As a consequence, it 839 

would be particularly challenging to describe the combinatorial interactions that must 840 

exist in cells on a one by one basis. New interactomic approaches that rely on 841 

proximity labelling may be used to shed light on this complexity in plants (Del Olmo et 842 

al., 2019; Gillingham et al., 2019).  843 

Furthermore, the development of optogenetic approaches offers new avenues to by-844 

pass the genetic plasticity often observed with Rab knock out or overexpressor lines.  845 

Indeed, optogenetically controlled oligomerisation was used to inactivate Rab 846 

function in cells within minutes (Nguyen et al., 2016). These approaches are 847 

promising for plant Rab biology and will help to further understand their precise 848 

function in development or plant defense (Banerjee and Mitra, 2020).  849 

Moreover, the involvement of many protein families (tethering factors, SNAREs, small 850 

GTPases, adaptor proteins, ECHIDNA and so forth) in Golgi-plasma membrane (and 851 

vacuolar) trafficking pathways highlights the requirement for a multiplicity of GI-TGN 852 

subdomains and derived transport vesicles which must be engaged in numerous 853 

transport pathways for numerous different cargos. A recent example is given by De 854 

Caroli et al. (2020) on CesA6 and PGIP2 trafficking involving distinct subpopulations 855 

of TGN-related endosomes.  856 

The challenge for the future will therefore be to identify the respective protein 857 

assemblies and to decipher the corresponding molecular mechanisms and their 858 

regulation, which are associated with each potential pathway in this huge network of 859 

membranes/organelles exchanges.  860 
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Finally, a new protein family may also deserve our future attention, the proteins which 861 

have been called phytolongins and correspond to non-SNARE longins. Phytolongins 862 

contain a typical SNARE-like longin domain but lack the central SNARE domain (for 863 

membrane fusion) which is replaced by a "PhyL domain" of unknown function, and 864 

the 4 proteins of this family are located along the secretory pathway : Phyl2.1 and 865 

Phy2.2 in the ER, Phyl1.2 in the Golgi, Phyl1.1 at the plasma membrane and to a 866 

lesser extent in post-Golgi compartments (de Marcos Lousa et al., 2016). These 867 

proteins, according to their cellular location and the absence of a « fusion domain », 868 

could regulate the SNARE complexes by interacting through their longin domain, 869 

could be involved in ER and Golgi structure, could participate along the secretory 870 

pathway and at the cell surface to plant responses to various stimuli. 871 
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 891 

Legends to Figures 892 

Figure 1: Schematic diagram of Rab cycle.  893 

(i) Rab becomes prenylated at their C-terminus by an association between the Rab 894 

GeranylGeranyl Transferases (RGGT) and the Rab Escort Protein (REP). Before 895 

reaching the target vesicle, Rab is maintained in the cytoplasm through the action of 896 

REP to mask the Rab geranylgeranyl moiety. (ii) Membrane association is mediated 897 

by GDI displacement factor (GDF) belonging to the family of PRA1/YIP. REP protein 898 

or GDI protein are removed and Rab prenylated tail is inserted into the vesicle 899 

bilayer. (iii) Upon trigger, GDP/GTP exchange factors (GEF) mediate Rab 900 

conformation change. Once activated, Rab interacts with effector proteins such as 901 

tethering factors needed for vesicle docking with acceptor membrane. (iv) Rab 902 

inactivation is achieved by GTPase-activating proteins (GAP). They help Rab to 903 

hydrolyse GTP and turn them back to their inactive conformation. Then, Rab 904 

dissociate from the membrane and form a cytoplasmic complex with GDI proteins. 905 

 906 

Figure 2: Localisation of the different clades of Rab involved in secretion.  907 

Rab B and D are associated with ER to Golgi anterograde trafficking. Rab H 908 

participates to retrograde trafficking. Rab A and E are involved in the post Golgi 909 

trafficking.  910 
ER: Endoplasmic reticulum, ERES: Endoplasmic reticulum exist site, GA-TGN: Golgi 911 
associated trans Golgi network, GI-TGN: Golgi independent trans Golgi network, PM: 912 

plasma membrane. 913 

 914 

Figure 3: Localisation of the different SNAREs involved in secretion or other 915 

functions.  916 

In blue SNAREs exclusively or mainly associated with the ER, in green SNAREs 917 

located in the Golgi and for some of them involved in ER-Golgi exchanges. In orange 918 

SNAREs located at the TGN compartments and are involved in different 919 
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steps/aspects of post Golgi trafficking. In red, SNAREs either present at the plasma 920 
membrane and/or engaged in trafficking to this membrane (SYP71 can have a dual-921 

location between the ER and the PM, Suwastika et al., 2008). 922 
For details on their location and functions, please refer to the text in the different 923 
chapters. 924 

ER: Endoplasmic reticulum, ERES: Endoplasmic reticulum exist site, GA-TGN: Golgi 925 

associated trans Golgi network, GI-TGN: Golgi independent trans Golgi network, PM: 926 

plasma membrane. 927 
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