C. Spiess, Q. Zhai, and P. J. Carter, Alternative molecular formats and therapeutic applications for bispecific antibodies, Mol. Immunol, vol.67, pp.95-106, 2015.

U. Brinkmann and R. E. Kontermann, The making of bispecific antibodies, MAbs, vol.9, pp.182-212, 2017.

M. L. Chiu, D. R. Goulet, A. Teplyakov, and G. L. Gilliland, Antibody Structure and Function: The Basis for Engineering Therapeutics, Antibodies, vol.8, p.55, 2019.

P. Holliger and P. J. Hudson, Engineered antibody fragments and the rise of single domains, Nat. Biotechnol, vol.23, pp.1126-1136, 2005.

A. El-sayed, W. Bernhard, K. Barreto, C. Gonzalez, W. Hill et al., Evaluation of antibody fragment properties for near-infrared fluorescence imaging of HER3-positive cancer xenografts, Theranostics, vol.8, pp.4856-4869, 2018.

S. J. Wu, J. Luo, K. T. O'neil, J. Kang, E. R. Lacy et al., Structure-based engineering of a monoclonal antibody for improved solubility, Protein Eng. Des. Sel, vol.23, pp.643-651, 2010.

C. C. Lee, J. M. Perchiacca, and P. M. Tessier, Toward aggregation-resistant antibodies by design, Trends Biotechnol, vol.31, pp.612-620, 2013.

Z. Lakhrif, M. Pugnière, C. Henriquet, A. Di-tommaso, I. Dimier-poisson et al., A method to confer Protein L binding ability to any antibody fragment, MAbs, vol.8, pp.379-388, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02297085

K. Lebozec, M. Jandrot-perrus, G. Avenard, O. Favre-bulle, and P. Billiald, Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development, New Biotechnol, vol.44, pp.31-40, 2018.

Q. Wang, Y. Chen, J. Park, X. Liu, Y. Hu et al., Design and Production of Bispecific Antibodies, Antibodies, vol.8, p.43, 2019.

P. Carter, L. Presta, C. M. Gorman, J. B. Ridgway, D. Henner et al., Humanization of an anti-p185HER2 antibody for human cancer therapy, Proc. Natl. Acad. Sci, vol.89, pp.4285-4289, 1992.

F. Ducancel and B. H. Muller, Molecular engineering of antibodies for therapeutic and diagnostic purposes, MAbs, vol.4, pp.445-457, 2012.

Y. Choi, C. Hua, C. L. Sentman, M. E. Ackerman, and C. Bailey-kellogg, Antibody humanization by structure-based computational protein design, MAbs, vol.7, pp.1045-1057, 2015.

X. He, C. F. Duan, Y. H. Qi, J. Dong, G. N. Wang et al., Virtual mutation and directional evolution of anti-amoxicillin ScFv antibody for immunoassay of penicillins in milk, Anal. Biochem, vol.523, pp.44-45, 2017.

K. Lebozec, M. Jandrot-perrus, G. Avenard, O. Favre-bulle, and P. Billiald, Design, development and characterization of ACT017, a humanized Fab that blocks platelet's glycoprotein VI function without causing bleeding risks, MAbs, vol.9, pp.945-958, 2017.

Y. F. Zhang and M. Ho, Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples, vol.9, pp.419-429, 2017.

A. Yui, H. Akiba, S. Kudo, M. Nakakido, S. Nagatoishi et al., Thermodynamic analyses of amino acid residues at the interface of an antibody B2212A and its antigen roundabout homolog 1, J. Biochem, vol.162, pp.255-258, 2017.

W. Sun, Z. Yang, H. Lin, M. Liu, C. Zhao et al., Improvement in affinity and thermostability of a fully human antibody against interleukin-17A by yeast-display technology and CDR grafting, Acta Pharm. Sin. B, vol.9, pp.960-972, 2019.

C. Tu, V. Terraube, A. S. Tam, W. Stochaj, B. J. Fennell et al., A combination of structural and empirical analyses delineates the key contacts mediating stability and affinity increases in an optimized biotherapeutmrtic single-chain Fv (scFv), J. Biol. Chem, vol.291, pp.1267-1276, 2016.

B. R. Miller, S. J. Demarest, A. Lugovskoy, F. Huang, X. Wu et al., Stability engineering of scFvs for the development of bispecific and multivalent antibodies, Protein Eng. Des. Sel, vol.23, pp.549-557, 2010.

T. Unkauf, M. Hust, and A. Frenzel, Antibody Affinity and Stability Maturation by Error-Prone PCR, In Methods in Molecular Biology, vol.1701, pp.393-407, 2018.

H. J. Hsu, K. H. Lee, J. W. Jian, H. J. Chang, C. M. Yu et al., Antibody variable domain interface and framework sequence requirements for stability and function by high-throughput experiments, Structure, vol.22, pp.22-34, 2014.

E. R. Rodríguez-rodríguez, L. M. Ledezma-candanoza, L. G. Contreras-ferrat, T. Olamendi-portugal, L. D. Possani et al., A single mutation in framework 2 of the heavy variable domain improves the properties of a diabody and a related single-chain antibody, J. Mol. Biol, vol.423, pp.337-350, 2012.

V. Quintero-hernández, L. Del-pozo-yauner, M. Pedraza-escalona, V. R. Juárez-gonzález, I. Alcántara-recillas et al., Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: Neutralization capacity versus thermodynamic stability, Immunol. Lett, vol.143, pp.152-160, 2012.

K. Proba, A. Wörn, A. Honegger, and A. Plückthun, Antibody scFv fragments without disulfide bonds made by molecular evolution, J. Mol. Biol, vol.275, pp.245-253, 1998.

L. Montoliu-gaya, J. Murciano-calles, J. C. Martinez, and S. Villegas, Towards the improvement in stability of an anti-A? single-chain variable fragment, scFv-h3D6, as a way to enhance its therapeutic potential, vol.24, pp.167-175, 2017.

A. E. Miklos, C. Kluwe, B. S. Der, S. Pai, A. Sircar et al., Brief Communication Structure-Based Design of Supercharged, Highly Thermoresistant Antibodies, Chem. Biol, vol.19, pp.449-455, 2012.

J. M. Perchiacca, C. C. Lee, and P. M. Tessier, Optimal charged mutations in the complementarity-determining regions that prevent domain antibody aggregation are dependent on the antibody scaffold, Protein Eng. Des. Sel, vol.27, pp.29-39, 2014.

J. I. Austerberry, R. Dajani, S. Panova, D. Roberts, A. P. Golovanov et al., The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment, Eur. J. Pharm. Biopharm, vol.115, pp.18-30, 2017.

L. I. Sakhnini, P. J. Greisen, C. Wiberg, Z. Bozoky, S. Lund et al., Improving the Developability of an Antigen Binding Fragment by Aspartate Substitutions, Biochemistry, vol.58, pp.2750-2759, 2019.

D. Seeliger, P. Schulz, T. Litzenburger, J. Spitz, S. Hoerer et al., Boosting antibody developability through rational sequence optimization, MAbs, vol.7, pp.505-515, 2015.

M. Graille, E. A. Stura, M. Bossus, B. H. Muller, O. Letourneur et al., Crystal Structure of the Complex between the Monomeric Form of Toxoplasma gondii Surface Antigen 1 (SAG1) and a Monoclonal Antibody that Mimics the Human Immune Response, J. Mol. Biol, vol.354, pp.447-458, 2005.

E. Hannachi, A. Bouratbine, and M. Mousli, Enhancing the detection of Toxoplasma gondii via an anti-SAG1 scFv-alkaline phosphatase immunoconjugate, Biotechnol. Rep, vol.23, 2019.

F. Ehrenmann, Q. Kaas, and M. P. Lefranc, IMGT/3dstructure-DB and IMGT/domaingapalign: A database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MHcSF, Nucleic Acids Res, vol.38, pp.301-307, 2009.

J. Muzard, S. Adi-bessalem, M. Juste, F. Laraba-djebari, N. Aubrey et al., Grafting of protein L-binding activity onto recombinant antibody fragments, Anal. Biochem, vol.388, pp.331-338, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02664330

M. Zahid, S. Loyau, M. Bouabdelli, N. Aubrey, M. Jandrot-perrus et al., Design and reshaping of an scFv directed against human platelet glycoprotein VI with diagnostic potential, Anal. Biochem, vol.417, pp.274-282, 2011.

A. Di-tommaso, M. O. Juste, M. Martin-eauclaire, I. Dimier-poisson, P. Billiald et al., Diabody mixture providing full protection against experimental scorpion envenoming with crude Androctonus australis venom, J. Biol. Chem, vol.287, pp.14149-14156, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00701164

G. Rodrigo, M. Gruvegård, and J. Van-alstine, Antibody Fragments and Their Purification by Protein L Affinity Chromatography, Antibodies, vol.4, pp.259-277, 2015.

R. D. Puligedda, V. Vigdorovich, D. Kouiavskaia, D. N. Sather, and S. K. Dessain, Human IgA Monoclonal Antibodies That Neutralize Poliovirus, Produced by Hybridomas and Recombinant Expression, Antibodies, vol.2020, issue.5

C. Pommié, S. Levadoux, R. Sabatier, G. Lefranc, and M. P. Lefranc, IMGT standardized criteria for statistical analysis of immunoglobulin V-Region amino acid properties, J. Mol. Recognit, vol.17, pp.17-32, 2004.

J. Lee, M. Kim, Y. Seo, Y. Lee, H. Park et al., The catalytic activity of a recombinant single chain variable fragment nucleic acid-hydrolysing antibody varies with fusion tag and expression host, Arch. Biochem. Biophys, vol.633, pp.110-117, 2017.

K. Zhang, M. L. Geddie, N. Kohli, T. Kornaga, D. B. Kirpotin et al., Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle, MAbs, vol.0862, pp.42-52, 2015.

E. E. Weatherill, K. L. Cain, S. P. Heywood, J. E. Compson, J. T. Heads et al., Towards a universal disulphide stabilised single chain Fv format: Importance of interchain disulphide bond location and vLvH orientation, Protein Eng. Des. Sel, vol.25, pp.321-329, 2012.

T. J. Egan, D. Diem, R. Weldon, T. Neumann, S. Meyer et al., Novel multispecific heterodimeric antibody format allowing modular assembly of variable domain fragments, MAbs, vol.9, pp.68-84, 2017.

K. D. Miller, J. Weaver-feldhaus, S. A. Gray, R. W. Siegel, and M. J. Feldhaus, Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli, Protein Expr. Purif, vol.42, pp.255-267, 2005.

N. Aubrey, C. Devaux, P. Y. Sizaret, H. Rochat, M. Goyffon et al., Design and evaluation of a diabody to improve protection against a potent scorpion neurotoxin, Cell. Mol. Life Sci, vol.60, pp.617-628, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02671196