
HAL Id: hal-02968443
https://hal.inrae.fr/hal-02968443

Submitted on 16 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact method approaches for the differential harvest
problem

Gabriel Volte, Eric Bourreau, Rodolphe Giroudeau, Olivier Naud

To cite this version:
Gabriel Volte, Eric Bourreau, Rodolphe Giroudeau, Olivier Naud. Exact method approaches for the
differential harvest problem. CPAIOR 2020 - 17th International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, Sep 2020, Vienna, Austria.
pp.492-510, �10.1007/978-3-030-58942-4_32�. �hal-02968443�

https://hal.inrae.fr/hal-02968443
https://hal.archives-ouvertes.fr

Exact method approaches for the differential
harvest problem?

Gabriel Volte1, Eric Bourreau1, Rodolphe Giroudeau1, and Olivier Naud2

1 LIRMM, University of Montpellier, CNRS, Montpellier, France
{volte,bourreau,giroudeau}@lirmm.fr

2 ITAP, Irstea, Montpellier SupAgro, University of Montpellier, Montpellier, France
olivier.naud@irstea.com

Abstract. The trend towards a precise, numerical, and data-intensive
agriculture brings forward the need to design and combine optimization
techniques to obtain decision support methodologies that are efficient,
interactive, robust and adaptable. In this paper, we consider the Differen-
tial Harvest Problem (DHP) in precision viticulture. To tackle this prob-
lem, we dedicated a specific column generation approach with enumer-
ation techniques and a constraint programming model. Therefore, a set
of simulated instances (which differ in field shape, zone shape, and size)
was created to perform a parametric study on our different approaches.
The specific column generation approach presented in this paper is pre-
liminary work in the development path of more sophisticated resolution
methods such as robust optimization and column generation/constraint
programming hybridization.

Keywords: Column generation · Enumeration technique · Constraints
programming · Exact method · Precision agriculture.

1 Problem description

The Differential Harvest Problem, introduced by [5], consists of optimizing har-
vests of different grape qualities in vineyards so that we obtain a certain quantity,
denoted by Rmin, of good quality grapes. In the problem, there are only two
types of grape quality: A-grapes and B-grapes (let us assume that A-grapes are
of better quality than B-grapes).

Thanks to agronomic information obtained a priori, it is possible to map
(see Figure 1) a vineyard by distinguishing areas according to the quality of the
grapes. Meanwhile, geolocated harvesting machines equipped with two hoppers
(harvest tanks with a maximum load of CapaMax) are able to use such a map.
When one of the two hoppers is full, both must be emptied into a bin located
at the edge of the plot. These machines have two harvesting modes, that can
be changed only when they are emptying the hoppers at the bin, the selective

? Supported by organization French National Research Agency under the Investments
for the Future Program, referred as ANR-16-CONV-0004.

2 G. Volte et al.

mode, and the non-selective mode. The selective mode corresponds to sorting
good grapes quality in one hopper and other grapes in the second hopper. When
the Rmin quantity of A-grapes is harvested in the selective mode the machine
can change to the non-selective mode where the loading capacity is perfectly
handled (cf. Figure 2).

Fig. 1. Illustration of the agronomic map with different zones of grapes quality (real
data from the Gruissan vineyard).

B A

A-hopper B-hopper

A,BA,B A,BA,B

B A

A-hopper B-hopper

A A,BA,B

a) non-selective mode b) selective mode

Fig. 2. Illustration of the different harvesting modes.

There is a technical issue with the harvesting machine which is related to
the longitudinal size of its picking head of the harvester. This size is almost the
length of wheelbase, approximately 5 meters. This problem occurs during zone
changes and more particularly during the change from a zone with B-grapes to
a zone with A-grapes, let us note this change BA (AB for the change from zone
A to B).

When a BA transition occurs, three cases can be isolated (see Figure 3):

– case a), the machine head has just entered zone A. The harvesting hopper
(which is hopper B) cannot be changed to hopper A because it is still har-
vesting B-grapes and therefore hopper A would be corrupted with B-grapes.

– In case b), the grape picker is overlapping both zones. The reasoning is the
same as in case a) because we are still harvesting B-grapes.

Exact method approaches for the differential harvest problem 3

– In case c), the harvester is completely in zone A, we no longer harvest B-
grapes. The harvesting hopper can, therefore, be changed from hopper B to
hopper A to harvest the A-grapes in hopper A.

When changing from AB, the harvesting hopper is changed from hopper A
to hopper B as soon as the area transition has occurred, avoiding the corruption
of A-grapes with B-grapes.

Any row r is composed with a succession of BA and AB transitions, this
leads to these four following row representations (consecutive A or B can be
merged):

– r = (AB)∗ and its symmetric r = (BA)∗. One can observe that in this
row composition the difference between the number of BA transition when
harvesting in the different directions is exactly one.

– r = (AB)∗A and its symmetric r = (BA)∗B. In this configuration, the
number of BA-transitions is the same in either direction.

Depending on the row configuration and the row direction the latency causes an
asymmetry in the harvested quantities, therefore in the optimization part, we
will need to determine the direction of each row to obtain the Rmin quantity.
For the sake of simplicity, the vineyard rows extremities are oriented upper to
bottom, the upper extremity can be chosen arbitrarily.

direction

B A B A B A

a) b) c)

Fig. 3. Latency illustration.

The article is organized as follows: the first section 1 gives the context of
this work and provides the problem definition. The second section 2 refers to
the previous and related works on the problem. In section 3 we introduce a new
graph model and decide to provide models for two exact methods; first a column
generation approach (see subsection 3.1) then a constraint programming model
(see subsection 3.2). In the section 4 we outline the results obtained with our
different approaches.

2 Related Works

Precision agriculture is a principle of agricultural parcel management that aims
to optimize yields and investments, by seeking to take better account of the vari-
ability of environments. In [18], the authors asserted that precision farming was

4 G. Volte et al.

the future of crop nutrition offering benefits in crop quality, sustainability, food
safety, etc. A few years later, [13] reviewed some precision agriculture advances
and proposed new directions of research. [16] analyzed the adoption of precision
agriculture technologies for several actors in the agricultural industry.

In the last decades, a lot of works was performed in digital and precision agri-
culture using operation research techniques involved in the resolution of vehicle
routing problems, scheduling problems or stochastic problems.

The surveys [2] and [3] assert that most of the agricultural applications in-
volve the motion of machines hence they first classify the agricultural field op-
erations which can be modeled as a vehicle routing problem. They present an
approach to represent the planning and scheduling of moving machines as a
vehicle routing problem with time windows where the machine has to process
deterministic, stochastic or dynamic requests.

VRP-specific optimization methods are addressed in [19] to solve their fleet
routing problem, they have reduced the operating time by at most 17.3% using
their approach rather than a human-made solution.

One can find some works on-field coverage problem [14,7], where the goal is
to cover a field under technical constraints. The purpose of the work presented in
[14] is to reduce the soil compaction. Smaller vehicles are used to cover the fields
but those vehicles have smaller storage capacity. Thus the full field coverage in a
single run is no longer possible and a path planning strategy is used to partially
cover the field under compacted area minimization constraints. In comparison,
the article [7] focuses both on finding minimal operating cost and on balancing
the vehicle’s workload.

The paper [17] explores the consequence of groundwater resource use un-
der climate change scenarios. The problem is modeled as a dynamic stochastic
problem with several temporal decision stages with multiple sources of risk that
should impact farmer decisions.

Investment behavior under different policy and price scenarios was studied
in [21]. They employ a dynamic multi-objective farm-household integer pro-
gramming model on a northern Italy case study application highlighting the
potentialities and the limits of the methodology applied.

A column generation approach is used to solve a crop rotation scheduling
problem to produce a pre-determined demand for crops while respecting some
ecological production constraints, this problem is called the sustainable vegetable
crop demand-supply problem [10].

In few available literature, the DHP has been solved with methods based on
Constraint Programming (CP), first a step model was proposed in [6] where they
were able to optimally solve a 16 rows instance in 6 days, then a precedence model
was introduced [5] which gives better results yet instances with 14 rows reach the
2 hours time limit, and Cost-Optimal Reachability Analysis [23] (CORA, which
is a model-checking techniques branch) finding optimal solution on vineyards
with up to 12 rows in few minutes.

Exact method approaches for the differential harvest problem 5

3 Models

We propose a new graph model of the problem that we call the ”flatten” repre-
sentation of the vineyard (extremities are merged to consider only the rows) in
opposition with the ”physical” representation of the vineyard (rows are split into
two extremities) used by [5] and [23]. Let n be the number of rows, CapaMax
be the hoppers capacity, Rmin the minimum A-grapes quality needed to be
harvested, b be the bin/depot, an undirected weighted complete graph G =
(V,E) with labeled edges, V = {0, . . . , n} ∪ {b} and E = {(i, j, k)|i, j ∈ V 2, k ∈
{0, 1}} (k refers to the row harvest direction see Figure 4). Taking the edge
(i, j, k) means that the vehicle moves from row i to row j harvesting row i with
direction k, if k = 0 the row is harvested from top to bottom, otherwise the row
is harvested from bottom to top. Let say D is the weight of G computed from
a distance matrix. It must be noted that because the vehicle has an important
turning radius, the distance between rows are not exactly euclidean. qA/qB are
the two harvesting functions: (i, k) 7→ N, i ∈ V, k ∈ {0, 1}.

The goal is to find a set of disjoint routes (except for the bin b), respecting
the CapaMax capacity, covering V and minimizing the harvesting time (here
the distance) while harvesting at least Rmin quantity of A-grapes.

This problem can be seen as a Heterogeneous Vehicle Routing Problem [20]
with two resource constraints (the grapes quality, A and B) and two vehicle types
(one selective and the other non-selective) with different capacities. If the vehicle
is selective the harvested grapes are sorted according to their quality, thus the
vehicle has two hoppers each with a capacity equal to CapaMax, otherwise both
grapes quality are mixed in both hoppers, therefore, the vehicle hoppers can be
merged into only one hopper with a capacity 2∗CapaMax. Let us consider γ the
number of selective vehicles and λ the total number of vehicles. The following
bounds are easy to verify:⌈

Rmin

CapaMax

⌉
≤ γ ≤ n and

⌈
Qtot

2 ∗ CapaMax

⌉
≤ λ ≤ n

Qtot refers to the total amount of grapes presents in the vineyard.
Previous works on the problem tackled it with constraint programming and

model checking. We would like to investigate integer linear programming and
more precisely column generation to observe the effectiveness of these techniques
on the DHP. As early preliminary work, we tried to solve this problem with in-
teger linear programming models and out-of-the-box solving methods. Because
this was unsuccessful, we concluded that column generation techniques should
be used here. The following subsection 3.1 explains the use of these techniques
on the DHP. We identified that the principal weakness of the constraint pro-
gramming approach used previously was to introduce a new global constraint
that specifically fits the DHP. To avoid this, we decided to focus on designing
constraint programming models and decision strategies that suit the most to
our problem while using state-of-the-art generic constraints. We dedicate the
subsection 3.2 to highlight our constraint programming approaches.

6 G. Volte et al.

depot

1 2 3 4 5

Fig. 4. The flatten graph representation of the vineyard, solid edges correspond to
direction 0 and dashed edges refer to direction 1, dotted edges are direction free edges.

3.1 The column generation approach

We use Dantzig-Wolfe decomposition [9] on the DHP to obtain a set partitioning
master problem with a side constraint which is the Rmin constraint and an
elementary shortest path with resource constraints pricing problem.

Let us denote Ω the set of all feasible routes. The master problem selects
routes in Ω to obtain at least the Rmin quantity. For the sake of memory usage,
only solving the master problem, restricted to a subset R of Ω, is worth consid-
ering because the number of routes in Ω grows exponentially with the number
of rows. Assume R ⊂ Ω is the set of feasible routes R = (Rs ∪ Rs), with Rs

be the set of non-selective routes and Rs be the set of selective routes. Selective
routes must be generated independently of the non-selective routes, they use
vehicle types with different capacities and resources consumption, therefore two
pricing problems will be needed, one to generate selective routes and the other
to generate non-selective routes.

Despite the classical branch-and-price scheme to VRP, we decided to opt
for an enumeration technique [1]. There are several works on enumeration (see
[22,15,1,8] for more details). The enumeration technique operates as follows.
First, the relaxation of the restricted master problem is solved, like if we were
solving the root node with branch-and-price, to obtain the linear relaxation
optimal value z∗MP . With the last solved master problem special dual costs are
obtained, denoted by CR∗. Then any integer solution gives an upper bound
zIP . These bounds and the dual costs are provided to a specific pricing problem
which will generate all columns with a reduced cost of 0 < zIP − z∗MP = ε. If we
solve the new restricted master problem, this time without the linear relaxation,
the solution obtained is optimal for the restricted master problem and thus
for the master problem. The principal drawback of this technique is that too
many columns may be generated if the linear relaxation of the restricted master
problem is of poor quality, the gap with any integer solution would be too large.

Let us define the restricted master problem decision variables:

∀r ∈ Rs, ysr =

{
1 if non-selective route r is used
0 otherwise

Exact method approaches for the differential harvest problem 7

∀r ∈ Rs, ysr =

{
1 if selective route r is used
0 otherwise

Note air = 1 if row i is harvested in the route r, 0 otherwise. Let qtr be
the quantity of t-grapes collected in the route r and cr the cost of the route r
(total traveled distance computed from the weight matrix D). The route cost is
the total traveled distance on the route. A non-selective route does not harvest
A-grapes, all grapes are mixed in B-grapes.

Model M1: Restricted Master Problem

Min
∑
r∈R

(ysr + ysr)cr (1)∑
r∈R

(ysr + ysr)air = 1 ∀i ∈ V [πi] (2)∑
r∈Rs

qAr y
s
r ≥ Rmin [θ] (3)

ysr ∈ {0, 1} ∀r ∈ Rs (4)

ysr ∈ {0, 1} ∀r ∈ Rs (5)

The aim is to minimize the cost of each route (1) while the entire field is
harvested (2). The constraint (3) verifies that at least the Rmin quantity of
good quality grapes is harvested. And finally, the constraints (4) and (5) ensure
the integrality of the y variables.

Pricing sub-Problem The pricing problem generates improving routes for the
master problem based on the value of the constraints in the dual solution of the
restricted master problem.

We solve the pricing problem, a shortest path problems with resource con-
straints, with dynamic programming using a labeling algorithm, introduced first
by [12], enhanced by [11]. We adjusted this algorithm to our two pricing prob-
lems. Because extension and dominance rules are straightforward from the orig-
inal, we decided not to reintroduce them in this paper. The only originality in
our label algorithm is that two labels lists are used. One list, L0, for labels with
direction 0 and the other, L1, for labels with direction 1. Therefore as the di-
rection changes for every row in a route, the label obtained from the extension
of the label L0 in the labels list with direction 0 is added to the labels list with
direction 1.

For each constraint (2), we obtain a dual cost πi and each constraint (3) gives
the θ dual cost. Using these dual costs we compute a reduced cost ĉr for any

8 G. Volte et al.

route r in the master problem. This reduced cost depends on whether the route is
selective, thus let ĉsr = cr−

∑
i∈r airπi+qArθ be the reduced cost of the selective

route r and ĉr = cr −
∑

i∈r airπi for the non-selective route. It also important
when generating new selective routes to take the θ dual cost into account at each
label extension to avoid interesting routes from being dominated:

ĉsr = cr −
∑
i∈r

airπi + qArθ = cr −
∑
i∈r

air(πi + qAiθ)

In the column generation part, routes with positive reduced cost can be dis-
carded because they cannot belong to any optimal solution. Nevertheless, in the
enumeration procedure, a new pricing problem is solved which brings out the
routes with a reduced cost strictly less than ε.

3.2 Constraint Programming

We introduce in this section our constraint programming approach (CP). First,
we describe a classical precedence model mainly used in VRP (partially used by
[5], fully explained in [4]) enhanced by specific bin packing capacity constraints.
Finally, a constructive search strategy is detailed.

Let V be the set of at most n vehicles(|V | = n). For each vehicle, two dummy
depots are created: an initial depot and a final depot. Note V d (resp. V f) the
set of initial (resp. final) depots. The set of nodes N in the graph, such that
|N | = n + 2 ∗ |V | (one node per row and two nodes per vehicle), is ordered as
follows:

N = {
rows︷ ︸︸ ︷

1, . . . , n,

V d︷ ︸︸ ︷
n+ 1, . . . , n+ |V |,

V f︷ ︸︸ ︷
n+ |V |+ 1, . . . , n+ 2 ∗ |V |}

Let us define the decision variables (see Figure 5 and Table 1, the distance
matrix are displayed in the Figure 11 and Figure 12):

– ∀i ∈ N, successori ∈ N (resp. predecessori ∈ N) variables giving the suc-
cessor (resp. predecessor) of the row i in the route.

– ∀i ∈ N, positioni ∈ N, variables providing the position of the row i in the
route, initial depots are in position 0.

– ∀i ∈ N, assignmenti ∈ V variables indicating the vehicle assignment of the
row i.

– ∀i ∈ N, directioni ∈ {0, 1}, variables showing the direction of row i.

– ∀v ∈ V, selectivev ∈ {0, 1}, variables indicating whether a vehicle is selective.

– ∀i ∈ N∀u ∈ {A,B}, CapaSumqui ∈ [0, CapaMax], variables measuring the
cumulative sum of the harvested u-grapes quantity before harvesting row i.

– Obj is the objective variable which computes the total traveled distance.

Exact method approaches for the differential harvest problem 9

1 2 3 4 5 6 7 8

{d1, d2, d3}
{f1, f2, f3}

Fig. 5. Illustration of the optimal solution obtained with constraints programming for
an instance with 8 rows. Plain arcs (resp. dotted and dashed arcs) representing vehicle
one (resp. two and three), for the sake of clarity only the used vehicles are represented.

Node 1 2 3 4 5 6 7 8 d1 d2 d3 f1 f2 f3
qA 87 75 62 50 37 25 12 0 0 0 0 0 0 0

qB 13 25 38 50 63 75 88 100 0 0 0 0 0 0

successor f2 4 1 f1 7 f3 8 6 2 3 5 d1 d2 d3
position 2 1 1 2 1 4 2 3 0 0 0 3 3 5

assignment 2 1 2 1 3 3 3 3 1 2 3 1 2 3

direction 0 1 1 0 1 0 0 1 0 0 0 1 1 1

selective 1 1 1 1 0 0 0 0 1 1 0 1 1 0

CapaSumqA 57 0 0 70 0 150 50 100 0 0 0 120 144 200

CapaSumqB 43 0 0 30 0 150 50 100 0 0 0 80 56 200
Table 1. Variables affectation for an eight rows instance, CapaMax is set to 200 and
Rmin to 174, illustrated in Figure 5. The harvesting quantity qA/qB is displayed for
the direction 1, but for the opposite direction, the harvesting quantity is computed by
adding 5 (the latency) to qB and to subtract 5 to qA.

10 G. Volte et al.

Model M2: Constraint Programming

∀fi ∈ V f successorfi = n+ i (6)

∀di ∈ V d assignmentdi
= i (7)

∀fi ∈ V f assignmentfi = i (8)

∀i ∈ V d positioni = 0 (9)

AllDifferent(successor1, . . . , successor|N |)
(10)

∀i ∈ N directionsuccessori = 1− directioni (11)

∀i ∈ N positionsuccessori = 1 + positioni (12)

∀i ∈ N assignmentsuccessori = assignmenti (13)∑
i∈[1,n]

(qAi ∗ selectiveassignmenti) ≥ Rmin (14)

∀i ∈ N CapaSumqAsuccessori = CapaSumqAi +QA
i

(15)

∀i ∈ N CapaSumqBsuccessori = CapaSumqBi +QB
i

(16)

∀di ∈ V d sdi
< sdi+1

(17)

∀i ∈ N predecessork = i⇔ successori = k (18)

∀u ∈ {A,B} diffN(assignment, CapaSumqu, (1, . . . , 1)T , Qu)
(19)

Obj =
∑
i∈N

Di,successori,directioni
(20)

minObj (21)

Constraints (6), (7), (8) and (9) assign the successor of a final depot to the
corresponding initial depot, the same vehicle is affected to initial and final depot
and initial depots are in position 0. The AllDifferent constraint (10) ensures
that routes are disjointed and that they cover all the rows, every successor is
distinct implies that a row is taken exactly once (there are n values for n vari-
ables). The direction, position and assignment variables are updated depending
on their successors (11),(12) and (13). Constraint (14) ensures that the Rmin
A-grapes quantity is collected. The cumulative amount of already harvested A-
grapes (resp. B-grapes) is computed with (15) (resp. (16)), these constraints
ensure that no vehicle exceeds its hoppers loading due to the maximum value of

Exact method approaches for the differential harvest problem 11

the CapaSum domain. The constraints (20) and (21) minimize the total traveled
distance.

We added redundant constraints to improve the performance of this model:
first, symmetry breaking constraints (17) between vehicles are used then a chan-
neling constraint (18) between successor and predecessor variables. The diffN
constraints (19) are also redundant and handle the vehicle capacity taking ac-
count of the vehicle filling and the object positioning in the vehicle, this po-
sitioning depends on both the X and Y axis (see Figure 6). We create two
objects per row: one indicates the A-grape quantity harvested in the rows and
the other indicates the B-grapes quantity harvested. Objects are affected by
vehicle assignment (X axis) and ordered depending on their position in the
route with the CapaSumqu variables ∀u ∈ {A,B} (Y axis) which link row with
its direct successor. The height of a task, Qu

i ∀u ∈ {A,B} , depends on the
type of the node i ∈ N : qui,selectivei,directioni

for rows, 0 for initial depots and
CapaMax−CapaSumu

vf
for final depots. The height of the final depots thereby

defined is used to make the diffN constraint even more compact, all vehicles
will have their maximum capacity reached due to the height of the final depots
which fill the remaining space (see Figure 6).

v1 v2 v3

CapaSumqA4

CapaSumqA2

qA2 = 70

qA4 = 50

qA3 = 57

qA1 = 87

qA5 = 50

qA7 = 50

qA8 = 50

qA6 = 50
qAf1 = 80 qAf2 = 56

assignment

CapaSumqA

Fig. 6. Representation of the diffN constraint for the A-grapes for the instance shown
in the Figure 5.

The Snake constructive search strategy One of the advantages of constraint
programming is the possibility to choose the search strategy in the decision tree.
The strategy is based on two axes: variable choice and value choice. The variable
choice is a determining factor in a good strategy. Indeed, if the first variables
used have a large domain or are weakly constrained then the decision tree is
larger.

With this in mind, we wanted to create a strategy that mimics a greedy
method, which we call: the Snake. The Snake strategy builds a route and then
constructs entirely the next one and so on. The purpose is to find a good solution
in a few decision nodes. Other strategies (as DomOverWDeg) generally build

12 G. Volte et al.

route fragments, and, at the bottom of the decision tree, try to assemble these
fragments to obtain a feasible route. This assembly is very combinatorial due to
the many possible arrangements of the fragments, see Figure 7.

The Snake strategy works as follows: the first variable is the first available
initial depot. The choice of the new variable is determined by the choice of the
value of the previously instantiated variable. The first available value for the
variable is selected, the values are increasingly sorted (we want to minimize the
total distance). Once a final depot is instantiated, the next variable selected is
the next initial depot. The variables that calculate the distance to the successor
are used. Besides, these variables are sorted so that optimization begins with
selective routes.

•

•
•

•
•

• •

•

•

• •

•

•

•

• •

DomOverWDeg Snake

•
••

•
•

••
•?

• ••
•

. . .

• •

••

•

•

Fig. 7. The Snake strategy vs the DomOverWDeg strategy illustration.

4 Experimental results

In this section, we present the experimental results, first, we introduce the data
sets used for the experimental study, then we outline the results obtained with
our models. For the parametric study, we were focusing on exact methods and
thus on finding optimal solutions.

4.1 Description of data sets

We have tested our models on different instances, some were artificially generated
based on real data observed in a vineyard, at INRA Pech-Rouge (Gruissan),
located in the southern France (cf. Figure 1).

As [5,23] we decompose this instance to create a set of smaller instances,
denoted by G-instances. We create instances with 10 consecutive rows and up

Exact method approaches for the differential harvest problem 13

to 24 rows (the original instances), with a hopper capacity of 900 and 1800 and
the Rmin value takes value in {0, 0.25, 0.5, 0.7, 0.9, 1} of the total A-grapes in
the vineyard.

Artificial instances were generated based on two vineyard shapes, the square
instances (S-instances) and the triangle instances (T -instances) see Figure 10,
that seems to be theoretically interesting. We assume that the triangle instances
must be the worst-case instances because everything is symmetric. The square
instances were determined to see the influence of the increase of the Rmin value
on the objective function.

The same construction as the original instance is used to construct artificial
instances. The Table 2 summarizes the parameters variation of each instance
type.

#rows CapaMax Rmin Total

G-instances {10, 11, . . . , 24} {900, 1800} {0, 0.25, 0.5, 0.7, 0.9, 1} 1140
T -instances {10, 11, . . . , 24} {100, 200, . . . , 500} {0, 0.25, 0.5, 0.7, 0.9, 1} 540
S-instances {10, 11, . . . , 24} {100, 200, . . . , 500} {0, 0.25, 0.5, 0.7, 0.9, 1} 540

Table 2. Parameters variation for each data set.

4.2 Results

In this section, we will detail the results obtained for our approaches. The results
were performed on an Optiplex 5055 computer with an AMD RYZEN 7 Pro
1700 (8 cores/4 Mo/16 Threads/3 GHz) processor. For the column generation
approach, we use CPLEX 12.8.0.0 and for the constraint programming, we use
Choco 4.10.1.

Results for the column generation methods The time limit for all the
instance was fixed to 10 minutes, except for the original instance with 24 rows
where the time limit was 1 hour, due to the number of instances that has to be
solved.

To the best of our knowledge, we are the first who were able to solve the
real instance with 24 rows, see Figure 1, in 2210 seconds and almost all the
computation time is used to generated routes and to find an integer solution,
the enumeration technique took less than a few minutes and generates only 18
columns.

In the Table 5, a comparison is made between the results obtained with the
variation of the CapaMax parameter for the S and T instances and the same
results for the G instances are shown in the Table 3. The results displayed are the
average computation time and the average integrality gap of the Rmin values
for every row’s number and CapaMax value. When the CapaMax parameter
increases there is a huge increase in the computation time since the pricing

14 G. Volte et al.

problem is more difficult to solve (the number of non-dominated routes generated
is larger). For the G instances, the gap is really small (less than 0.002 %) however
almost all the large instances reach the time limit.

CapaMax

900 1800

#rows CPU(s) gap(%) CPU(s) gap(%)

10 1.87 ∼ 0 10.71 ∼ 0
11 5.98 ∼ 0 38.43 0.016
12 6.35 ∼ 0 81.78 ∼ 0
13 118.84 ∼ 0 344.90 0.01
14 6.46 ∼ 0 217.08 0
15 85.04 ∼ 0 462.85 0.02
16 11.15 ∼ 0 429.40 ∼ 0
17 227.66 ∼ 0 538.73 0.02
18 19.27 ∼ 0 536.99 0.0003
19 313.19 ∼ 0 535.27 ∼ 0
20 97.11 ∼ 0 534.45 ∼ 0
21 331.28 ∼ 0 528.05 0.03
22 165.95 ∼ 0 539.18 0.04
23 545.24 ∼ 0 530.19 0.08

Table 3. Results for the G instances with the variation of the CapaMax parameter.

The Figure 8 and Figure 9 indicate the results obtained for the G instances
according to the Rmin parameter variation and each point represents the aver-
age value of the CapaMax values. One can see that the objective value and the
computation time appear not to increase from 0% to 90% Rmin but when de-
manding to harvest all the A-grapes the objective value grows due to the latency,
all the rows have to be harvested in the direction that maximizes the A-grapes
harvested, yet the computation time is low even for the biggest instances.

Results for the constraint programming approaches Precedent works
using constraint programming to solve the DHP were able to solve optimally a
16 rows instances in 6 days, then optimally solve 10 and 12 rows instances with a
2 hours time limit. We propose to compare our approach to its ability to obtain
a good feasible solution in a short time.

With this in mind, we only show the results for a few instances (one with 10
rows, 13 rows, and 16 rows), with a 10 minutes time limit. The results for the
constraint programming approach are summarized in the Table 4, we are looking
for statistics for the first, the best solution (whether the optimal solution is found
according to the column generation solution) and for optimality proof. For the
10 rows instance, with the DomOverWDeg strategy a poor quality first solution
has been found. Moreover, the last solution is not improving so much the first
solution (4379 to 4358). Meanwhile, the Snake strategy gives a good first solution
in a few decision nodes (27 nodes). This solution is improved to optimality in
under 2 minutes. The diffN constraint adds some reasoning to the model because

Exact method approaches for the differential harvest problem 15

the nodes number decreases but the total time to compute an optimal solution
is higher.

For the instance with 13 rows, the analysis is even worse for the DomOver-
WDeg strategy cannot find any solution within the 10 minutes time limit even
with the diffN constraint. Nevertheless with the Snake strategy a solution is
found in less than 1 second but at the end of the time limit, no optimal solu-
tion has been proved. For the 16 rows instance, the Snake strategy also finds a
solution in less than 1 second but is not able to improve it to optimality in less
than 10 minutes.

These results are interesting for a hybridization approach because the feasible
solution found by the constraint programming in less than a few minutes can be
used in the enumeration part for the column generation approach.

10 rows 13 rows 16 rows
V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4

DOWDeg D D D D D D
diffN D D D D D D
Snake D D D D D D

First Sol
obj 4379 4370 4222 4222 ∅ ∅ 5241 5241 ∅ ∅ 6603 6603

Nodes 1669 1306 27 27 \ \ 31 31 \ \ 39 39
CPU(s) 3 2 0 0 \ \ 0 0 \ \ 0 0

Best Sol

obj ∅ ∅ 4066 4066 ∅ ∅ 5234 5234 ∅ ∅ ∅ ∅
Nodes \ \ 91k 81k \ \ 466k 452k \ \ \ \

CPU(s) \ \ 26 36 \ \ 159 231 \ \ \ \
#sol \ \ 10 10 \ \ 6 6 \ \ \ \

Proof
obj 4358 4 206 4066 4066 ∅ ∅ 5234 5234 ∅ ∅ 6447 6447

Nodes 547k 525k 398k 339k 492k 433k 1767k 1171k 399k 308k 2033k 1281k
CPU(s) 600 600 115 148 600 600 600 600 600 600 600 600

Table 4. Constraint programming results for the instance with 10, 13 and 16 rows
with a 600 seconds time limit.

5 Conclusion

In this paper, we have proposed both a column generation, with enumeration
technique, approach based on a new graph representation of the DHP and a
constraint programming model using global constraints. We have performed a
parametric study on various instance sets, some based on real data and other
purposely generated. The main difficulty is that computing the improving routes
in the pricing problem may be awful with the growth of the CapaMax parameter.
The small integrality gap obtained gives us good hope to solve larger instances
with a bigger time limit, and validate the efficiency of the column generation
approach to tackle the DHP, the real instance with 24 rows was optimally solved.
The constraint programming results are promising for a hybridization approach,
computing all the ε-improving routes with the constraint programming integer
solution (found in a few minutes) for the enumeration part.

Acknowledgements

This work was supported by the French National Research Agency under the
Investments for the Future Program, referred as ANR-16-CONV-0004

16 G. Volte et al.

Appendix

Fig. 8. The evolution of the objective function value when the Rmin parameters in-
crease for the G instances.

Exact method approaches for the differential harvest problem 17

Fig. 9. The evolution of the computation time when the Rmin parameters increase for
the G instances.

A
B 100

latency

A

B
100

Fig. 10. Vineyard shape representation of the square instances (left side) and the
triangle instances (right side).

18 G. Volte et al.

T S T S

#rows CapaMax CPU(s) gap(%) CPU(s) gap(%) #rows CapaMax CPU(s) gap(%) CPU(s) gap(%)

10

100 0.29 4.25 0.2 3.37 100 0.82 0.13 47.66 3.70
200 0.49 0.11 0.94 0.41 200 16.52 4.55 216.75 5.25
300 2.36 0.04 2.64 0.64 17 300 529.01 5.12 603.39 5.72
400 6.52 0.41 9.05 0.87 400 521.21 1.77 525.95 2.48
500 9.40 1.10 16.40 1.67 500 542.55 1.80 624.74 4.15

11

100 1.32 4.95 0.15 2.26 100 0.71 0.99 2.78 3.94
200 14.96 7.03 0.91 8.16 200 6.55 0.22 7.11 0.54
300 48.99 7.28 79.15 8.45 18 300 441.58 0.52 512.01 1.04
400 87.25 7.30 52.64 8.24 400 518.07 1.59 549.86 0.27
500 59.52 7.53 98.07 8.35 500 559.98 2.15 620.04 3.87

12

100 0.23 1.22 0.24 2.56 100 0.55 1.67 0.08 0.64
200 0.90 0.58 0.93 0.50 200 310.40 3.79 311.51 4.63
300 8.96 0.38 10.50 0.27 19 300 521.54 4.20 522.08 4.93
400 15.42 0.68 20.34 0.58 400 517.21 4.35 626.03 7.15
500 42.56 0.50 26.88 1.12 500 512.78 2.23 613.55 3.85

13

100 1.35 3.46 2.34 3.32 100 0.047 0 106.80 1.91
200 20.37 6.07 159.77 7.017 200 10.36 0.26 16.08 0.31
300 318.57 5.95 419.87 7.16 20 300 500.71 0.53 513.86 0.73
400 523.88 6.56 518.98 7.51 400 504.41 0.76 620.26 2.10
500 455.87 6.83 267.43 7.39 500 512.33 2.53 607.29 3.03

14

100 0.52 1.93 0.33 2.73 100 0.14 1.67 0.08 0.53
200 2.87 0.82 3.09 0.48 200 415.4 3.71 515.31 4.24
300 21.14 1.07 25.82 0.75 21 300 520.53 3.83 623.61 4.34
400 125.38 0.44 92.45 0.60 400 506.63 3.95 608.38 4.78
500 249.35 0.65 245.66 0.39 500 519.92 2.30 607.89 3.07

15

100 1.97 2.19 0.591 2.04 100 1.08 2.04 0.18 1.09
200 307.76 4.83 454.34 5.88 200 48.26 0.87 38.33 0.58
300 428.17 5.32 524.62 6.29 22 300 515.78 2.96 522.21 1.34
400 526.90 5.54 545.35 6.36 400 519.62 0.70 626.18 2.26
500 515.87 3.29 530.25 6.18 500 549.81 2.48 640.07 2.57

16

100 0.36 1.10 0.21 0.36 100 0.22 0.98 0.10 1.34
200 3.65 1.34 7.00 0.77 200 418.62 3.47 418.97 3.78
300 156.90 0.24 136.39 1.07 23 300 515.7 2.51 542.45 4.02
400 526.57 0.44 513.76 0.26 400 524.80 2.57 621.25 4.65
500 517.73 0.99 550.97 2.74 500 521.29 2.32 621.82 2.63

Table 5. Results for T and S instance type with the variation of the CapaMax pa-
rameter.

Exact method approaches for the differential harvest problem 19



0 5 4 6 8 10 12 14 16
5 0 5 4 6 8 10 12 14
4 5 0 5 4 6 8 10 12
6 4 5 0 5 4 6 8 10
8 6 4 5 0 5 4 6 8
10 8 6 4 5 0 5 4 6
12 10 8 6 4 5 0 5 4
14 12 10 8 6 4 5 0 5
16 14 12 10 8 6 4 5 0



Fig. 11. Distance matrix between rows and the depot with direction 0, for the example
instance Figure 5.



0 105 104 106 108 110 112 114 116
105 0 5 4 6 8 10 12 14
104 5 0 5 4 6 8 10 12
106 4 5 0 5 4 6 8 10
108 6 4 5 0 5 4 6 8
110 8 6 4 5 0 5 4 6
112 10 8 6 4 5 0 5 4
114 12 10 8 6 4 5 0 5
116 14 12 10 8 6 4 5 0



Fig. 12. Distance matrix between rows and the depot with direction 1, for the example
instance Figure 5.

20 G. Volte et al.

References

1. R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle
routing problem based on the set partitioning formulation with additional cuts.
Mathematical Programming, 115(2):351–385, 2008.

2. D.D. Bochtis and C. G Sørensen. The vehicle routing problem in field logistics
part i. Biosystems engineering, 104(4):447–457, 2009.

3. D.D. Bochtis and C.G. Sørensen. The vehicle routing problem in field logistics:
Part ii. Biosystems engineering, 105(2):180–188, 2010.

4. E. Bourreau, M. Gondran, P. Lacomme, and M. Vinot. De la Programmation
Linéaire à la Programmation Par Contraintes. 2019.

5. N. Briot, C. Bessiere, and P. Vismara. A constraint-based approach to the differen-
tial harvest problem. In Gilles Pesant, editor, Principles and Practice of Constraint
Programming, pages 541–556, Cham, 2015. Springer International Publishing.

6. Nicolas Briot, Christian Bessiere, Bruno Tisseyre, and Philippe Vismara. Integra-
tion of operational constraints to optimize differential harvest in viticulture. In
Precision agriculture’15, pages 111–129. Wageningen Academic Publishers, 2015.

7. M. Burger, M. Huiskamp, and T. Keviczky. Complete field coverage as a multi-
vehicle routing problem. IFAC Proceedings Volumes, 46(18):97–102, 2013.

8. C. Contardo and R. Martinelli. A new exact algorithm for the multi-depot
vehicle routing problem under capacity and route length constraints. Discrete
Optimization, 12:129–146, 2014.

9. George B Dantzig and Philip Wolfe. Decomposition principle for linear programs.
Operations research, 8(1):101–111, 1960.

10. L. M. R dos Santos, A. M Costa, M. N Arenales, and R. H. S Santos. Sustain-
able vegetable crop supply problem. European Journal of Operational Research,
204(3):639–647, 2010.

11. D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the
elementary shortest path problem with resource constraints: Application to some
vehicle routing problems. Networks, 44(3):216–229, 2004.

12. Stefan Irnich and Guy Desaulniers. Shortest path problems with resource con-
straints. In Column generation, pages 33–65. Springer, 2005.

13. A. McBratney, B. Whelan, T. Ancev, and J. Bouma. Future directions of precision
agriculture. Precision agriculture, 6(1):7–23, 2005.

14. M. Plessen. Partial field coverage based on two path planning patterns. Biosystems
engineering, 171:16–29, 2018.

15. Julie Poullet and Axel Parmentier. Ground staff shift planning under delay uncer-
tainty at air france. arXiv preprint arXiv:1811.00171, 2018.

16. M. Reichardt and Carste. Jürgens. Adoption and future perspective of precision
farming in germany: results of several surveys among different agricultural target
groups. Precision Agriculture, 10(1):73–94, 2009.

17. M. Robert, J.-E. Bergez, and A. Thomas. A stochastic dynamic programming
approach to analyze adaptation to climate change–application to groundwater ir-
rigation in india. European Journal of Operational Research, 265(3):1033–1045,
2018.

18. P. C. Robert. Precision agriculture: a challenge for crop nutrition management.
In Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant
Nutrition Colloquium, pages 143–149. Springer, 2002.

19. Hasan Seyyedhasani and Joseph S Dvorak. Reducing field work time using fleet
routing optimization. Biosystems engineering, 169:1–10, 2018.

Exact method approaches for the differential harvest problem 21

20. Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.
21. D. Viaggi, M. Raggi, and S. y Paloma. An integer programming dynamic farm-

household model to evaluate the impact of agricultural policy reforms on farm
investment behaviour. European Journal of Operational Research, 207(2):1130–
1139, 2010.

22. Laurence A Wolsey and George L Nemhauser. Integer and combinatorial
optimization. John Wiley & Sons, 2014.

23. Rim Saddem Yagoubi, Olivier Naud, Karen Godary Dejean, and Didier Crestani.
New approach for differential harvest problem: The model checking way.
IFAC-PapersOnLine, 51(7):57–63, 2018.

	Exact method approaches for the differential harvest problem

