Z. S. Baird and V. Oja, Predicting fuel properties using chemometrics: a review and an extension to temperature dependent physical properties by using infrared spectroscopy to predict density, Chemometr. Intell. Lab. Syst, vol.158, pp.41-47, 2016.

B. P. Lovatti, S. R. Silva, N. D. Portela, C. M. Sad, K. P. Rainha et al., Identification of petroleum profiles by infrared spectroscopy and chemometrics, Fuel, vol.254, p.115670, 2019.

R. M. Balabin and R. Z. Safieva, Gasoline classification by source and type based on near infrared (NIR) spectroscopy data, Fuel, vol.87, pp.1096-1101, 2008.

E. M. Paiva, J. J. Rohwedder, C. Pasquini, M. F. Pimentel, and C. F. Pereira, Quantification of biodiesel and adulteration with vegetable oils in diesel/biodiesel blends using portable near-infrared spectrometer, vol.160, pp.57-63, 2015.

F. S. Vieira and C. Pasquini, Determination of the oxidative stability of biodiesel using near infrared emission spectroscopy, Fuel, vol.117, pp.1004-1009, 2014.

R. Sales, N. C. Silva, J. P. Silva, H. H. França, M. F. Pimentel et al., Handheld near-infrared spectrometer for on-line monitoring of biodiesel production in a continuous process, Fuel, vol.254, p.115680, 2019.

C. L. Cunha, A. R. Torres, and A. S. Luna, Multivariate regression models obtained from near-infrared spectroscopy data for prediction of the physical properties of biodiesel and its blends, Fuel, vol.261, p.116344, 2020.

C. Pasquini, Near infrared spectroscopy: a mature analytical technique with new perspectives -a review, Anal. Chim. Acta, vol.1026, pp.8-36, 2018.

H. Martens, J. P. Nielsen, and S. B. Engelsen, Light scattering and light absorbance separated by extended multiplicative signal correction. Application to nearinfrared transmission analysis of powder mixtures, Anal. Chem, vol.75, pp.394-404, 2003.

J. Roger, J. Boulet, M. Zeaiter, and D. N. Rutledge, Pre-processing methods, Comprehensive Chemometrics, vol.3, pp.1-75, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02586307

J. Gerretzen, E. Szyma?ska, J. J. Jansen, J. Bart, H. Van-manen et al., Simple and effective way for data preprocessing selection based on design of experiments, Anal. Chem, vol.87, pp.12096-12103, 2015.

J. Torniainen, I. O. Afara, M. Prakash, J. K. Sarin, L. Stenroth et al., Opensource python module for automated preprocessing of near infrared spectroscopic data, Anal. Chim. Acta, vol.1108, pp.1-9, 2020.

J. Engel, J. Gerretzen, E. Szyma?ska, J. J. Jansen, G. Downey et al., Breaking with trends in pre-processing?, Trac. Trends Anal. Chem, vol.50, pp.96-106, 2013.

P. Mishra, J. M. Roger, D. N. Rutledge, and E. Woltering, SPORT pre-processing can improve near-infrared quality prediction models for fresh fruits and agro-materials, Postharvest Biol. Technol, vol.168, p.111271, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02958878

P. Mishra, New data preprocessing trends based on ensemble of multiple preprocessing techniquesAuthor links open overlay panel, Trends Anal. Chemi, p.116045, 2020.

J. Roger, A. Biancolillo, and F. Marini, Sequential preprocessing through ORThogonalization (SPORT) and its application to near infrared spectroscopy, Chemometr. Intell. Lab. Syst, vol.199, p.103975, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02963019

A. K. Smilde, I. Måge, T. Naes, T. Hankemeier, M. A. Lips et al., Common and distinct components in data fusion, J. Chemometr, vol.31, p.2900, 2017.

A. Biancolillo and T. Naes, The sequential and orthogonalized PLS regression for multiblock regression: theory, examples, and extensions, Data Fusion Methodologies and Applications, Data Handling in Science and Technology, vol.31, pp.157-177, 2019.

J. Zhang, X. Cui, W. Cai, and X. Shao, A variable importance criterion for variable selection in near-infrared spectral analysis, Sci. China Chem, vol.62, pp.271-279, 2019.

Y. Xiong, R. Zhang, F. Zhang, W. Yang, Q. Kang et al., A spectra partition algorithm based on spectral clustering for interval variable selection, Infrared Phys. Technol, vol.105, p.103259, 2020.

W. Jiang, C. Lu, Y. Zhang, W. Ju, J. Wang et al., Movingwindow-improved Monte Carlo uninformative variable elimination combining successive projections algorithm for near-infrared spectroscopy (NIRS), J. Spectrosc, p.3590301, 2020.

D. Ozdemir, Near infrared spectroscopic determination of diesel fuel parameters using genetic multivariate calibration, Petrol. Sci. Technol, vol.26, pp.101-113, 2008.

X. Bian, S. Li, M. Fan, Y. Guo, N. Chang et al., Spectral quantitative analysis of complex samples based on the extreme learning machine, Anal. Lett, vol.8, pp.4674-4679, 2016.

D. Peng, H. Guo, L. Li, Y. Bi, and G. Yang, Using consensus strategy and interval partial least square algorithm in wavelet domain for analysis of near-infrared spectroscopy, Adv. Eng. Res, vol.153, pp.113-119, 2018.

K. Zheng, X. Zhang, P. Tong, Y. Yao, and Y. Du, Pretreating near infrared spectra with fractional order Savitzky-Golay differentiation (FOSGD), Chin. Chem. Lett, vol.26, pp.293-296, 2015.

R. W. Kennard and L. A. Stone, Computer aided design of experiments, Technometrics, vol.11, pp.137-148, 1969.

T. Isaksson and T. Naes, The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy, Appl. Spectrosc, vol.42, pp.1273-1284, 1988.

R. J. Barnes, M. S. Dhanoa, and S. J. Lister, Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra, Appl. Spectrosc, vol.43, pp.772-777, 1989.

G. Rabatel, F. Marini, B. Walczak, and J. Roger, VSN: variable sorting for normalization, J. Chemometr, vol.34, p.3164, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02609665

P. Mishra, J. M. Roger, D. N. Rutledge, A. Biancolillo, F. Marini et al., A chemometric graphical user interface for multi-block data visualisation, regression, classification, variable selection and automated pre-processing, Chemometr. Intell. Lab. Syst, vol.205, p.104139, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02959982

P. Geladi and B. R. Kowalski, Partial least-squares regression: a tutorial, Anal. Chim. Acta, vol.185, pp.1-17, 1986.

W. Saeys, N. N. Trong, R. Van-beers, and B. M. Nicolai, Multivariate calibration of spectroscopic sensors for postharvest quality evaluation: a review, Postharvest Biol. Technol, vol.158, p.110981, 2019.