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A B S T R A C T   

In near-infrared (NIR) spectroscopy of fresh fruit often the external influences due to differences in physical, 
chemical and environmental conditions lead to model failure. Correction methods are required where standard 
samples are measured covering all different conditions and then remodeling is performed. However, in the real- 
world, it is often difficult to measure standard samples. To deal with this, two different approaches to correct for 
external influences without standard sample measurements i.e., dynamic orthogonalization projection (DOP) and 
domain adaption (DA), are presented, and for the first time are applied to NIR spectroscopy of fresh fruit. Four 
different case studies, chosen based on their importance and their frequency of occurrences in the NIR spec-
troscopy domain, were used for the demonstration. The first case was an adaption to maintain the predictive 
performance of a model when used on a spectra from a second similar instrument. The second case was the 
correction of the temperature effects due to sensor heating. The third and fourth cases were about maintaining 
the model performance for multi-season fruit quality prediction models for mangos and for apples. In all of the 
cases, the aim was to solve the challenges without resorting to new measurement of standards. The results 
showed that for all the cases, both DOP and DA improved model performances. Up to 31% increase in R2

p, and 
98% and 66% reduction in prediction bias and root mean squared error (RMSE) of prediction were noted, 
respectively. The main benefit of the DOP and DA techniques in NIR spectroscopy is the limited need for standard 
measurements, providing general-purpose tools to complement the NIR spectroscopy and make the models 
scalable, transferable, and reusable.   

1. Introduction 

NIR spectroscopy is a rapid, non-destructive sensing technique that is 
widely used for predicting the physicochemical properties in fresh fruit 
(Lin and Ying, 2009; Subedi and Walsh, 2009; Wang et al., 2015; Saeys 
et al., 2019; Walsh et al., 2020;). Applications of NIR spectroscopy can 
range from agriculture to highly controlled pharmaceutical domains as a 
process analytical tool (PAT) (Pasquini, 2018). Unlike other analytical 
techniques such as nuclear magnetic resonance and chromatography 
which can directly provide the concentration of the analytes, NIR 
spectroscopy usually requires a multivariate calibration step before it 
can be used for any application (Saeys et al., 2019; Walsh et al., 2020). 
The calibration of NIR data is often easy and can be done with latent 

variable extraction techniques such as partial least-squares regression 
(PLSR) (Wold et al., 2001). In some more complex cases, non-linear 
techniques can be used. As well, different pre-processing combinations 
are always explored in order to have an optimal final model (Rinnan 
et al., 2009; Engel et al., 2013; Roger et al., 2020). 

A major complaint from NIR spectroscopy users is that the developed 
model often has limitations. Models often need to be updated over time 
as the quality of the sensor deteriorates, a need for model recalibration 
when the light source is changed, the perturbing effects of temperature 
on samples and sensors limiting the usefulness of the model, the model 
developed on one sensor not being applicable with another sensor, the 
model not performing well when used on a new batch of materials, bad 
model performance when tested on multi-season experiments related to 
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agri-food materials, and many more (Nicolai et al., 2007; Saeys et al., 
2019). Many of these problems have been dealt with, mainly by model 
updating and by calibration transfer between instruments. Model 
updating is very common practice in the pharmaceutical domain where 
NIRS is often implemented as a PAT tool. A common practice for model 
updating is by the measurement of some new extra samples and reca-
libration of the previously developed model by incorporating the new 
samples. Calibration transfer is also a widely explored domain in NIR 
spectroscopy where a model developed on one instrument needs to be 
transferred to a different instrument (Fearn, 2001; Feudale et al., 2002; 
Nicolai et al., 2007; Saeys et al., 2019). The aim of calibration transfer is 
to save the cost and time by reusing the former calibration data. A 
common approach to do that is by the measurement of standard samples 
on both instruments and then estimating a transfer function which can 
be used to adapt the model to the new instrument (Workman, 2017). 
Several methods for calibration transfer are available such as direct 
standardization (DS), piece-wise direct standardization (PDS), transfer 
by orthogonal projection (TOP) (Fearn, 2001; Feudale et al., 2002; 
Workman, 2017). In summary, several approaches are available in the 
NIR spectroscopy domain, but they mostly require the measurement of 
standard samples or new samples, which is a time consuming, costly and 
appears unattractive to users which may limit the implementation of 
NIR spectroscopy. The need for standard-free procedures led to the 
development of the dynamic orthogonal projection (DOP) method 
which instead of standard samples requires some extra measurements on 
the new experimental setup (Zeaiter et al., 2006). Standard sample 
measurements are the measurements under different conditions using 
the same samples to model the difference between conditions. The extra 
measurements are the measurements that are performed only in the new 
condition. DOP removes the detrimental subspace from the calibration 
dataset by using orthogonal projections within the framework of 
external parameter orthogonalization (EPO) (Roger et al., 2003). 
Detrimental subspace can be understood as the subspacesthat capture 
the differences between two instruments in case of calibration transfer, 
differences between season in the case of multi-season fruit experiments, 
and the differences due to the effect of temperature on the NIR spectra 
for multi-temperature experiments. After removal of the detrimental 
subspace, the model can be recalibrated and used with improved pre-
dictive performance (Zeaiter et al., 2006; Roger, 2016; Roger et al., 
2018). 

The challenge of sensor calibration and model updating is not limited 
to the NIR spectroscopy domain as it is frequently encountered in other 
fields such as computer vision (Kouw and Loog, 2019). Often, object 
classification and detection algorithms trained on the images acquired 
with one camera are to be used on images from another. Furthermore, 
the models need to be adapted to work in different scenes and lighting 
conditions. To deal with such problems, a family of methods called 
Domain Adaption (DA) or Transfer Learning has recently emerged 
(Kouw and Loog, 2018). DA is useful when the distributions of the 
measurements, coming from different instruments or samples collected 
under different condition, are not the same. In the NIR spectroscopy 
domain, this is analogue to the calibration transfer problems when the 
model made on one instrument need to be used with another instrument 
and/or the measurements are made under different temperature con-
ditions. One of the commonly used DA techniques is transfer compo-
nents analysis (TCA) which assumes that if two domains are related to 
each other then there may exist several common components (or latent 
variables (LVs)) underlying them but masked due to the differences in 
the domains (different instruments, temperatures and season condi-
tions) (Pan et al., 2011). TCA aims to learn a set of common components 
underlying both domains such that the differences in distributions of 
data in the different domains when projected onto this subspace, can be 
dramatically reduced (Pan et al., 2011). Then, standard machine 
learning methods can be used in this subspace to train models that work 
across measurement conditions. 

The aim of the present work is to demonstrate the use of DOP and DA 

with TCA for dealing with different challenges regarding the imple-
mentation of NIRS spectroscopy. Both methods (DOP and TCA) have 
been used in two very different domains i.e. chemometrics and computer 
vision. However, they have never been used on fresh fruit analysis for 
correction of external influences related to different instruments, tem-
peratures and for season corrections. Both DOP and TCA aim to achieve 
improved model performance, but by different means. The DOP 
approach aims to remove the effect of the influence factor to make the 
data as independent as possible of that perturbations. DOP does this by 
modelling the subspace of the influence factors and then removing it 
from the data by orthogonal projections (Zeaiter et al., 2006). TCA, on 
the other hand, aims to retain the common information which is present 
in the datasets irrespective of the influence factors (Pan et al., 2011). 

2. Materials and Methods 

2.1. Datasets 

In all of the cases, NIR spectroscopy was used for the prediction of 
dry matter (DM) as reference property in individual fruit. All the spectra 
were 2nd derivative pre-processed to reveal the underlying peaks 
related to moisture. Outlying samples were removed based on the use of 
inner relation plots from PLS decomposition. A summary of datasets 
used is provided in Table 1. More details about the datasets can be found 
in Sun et al. (2020a,2020b), Anderson et al. (2020), and Teh et al. 
(2020). 

Olive fruit instrument transfer. The olive fruit dataset consists of 
olive fruit measured with two identical portable Felix spectrometers. 
The original dataset consisted of NIR spectroscopy measurement on two 
sides of each olive fruit and a single DM value. The two spectra from 
each fruit were averaged in this analysis. The dataset was used to 
demonstrate the model transfer from one instrument to the other. 

Mango fruit temperature correction. The mango fruit temperature 
dataset consisted of mango fruit measured at two different sensor tem-
perature levels of the Felix NIR spectroscopy instrument. The original 
dataset has three temperature levels, low (~15 ◦C), medium (~25 ◦C) 
and high (~30 ◦C). However, for this demonstration, only the low and 
medium temperature levels were used. 

Mango fruit season correction. Mango fruit season data consisted 
of multi-year mango fruit NIR spectroscopy data (2015–2019) measured 
with the Felix NIR spectroscopy instrument. For this demonstration, the 
data from 2016 and 2019 were used. As well, due to the large number of 
samples, 1/3 of the measurements were used. The samples were 
randomly selected. 

Apple fruit season correction.The apple fruit multi-season dataset 
consisted of NIR spectroscopy measurements on individual apple ac-
quired using the Felix NIR spectroscopy instrument. The two seasons 
were from 2015 and 2016. 

2.2. Data analysis 

Two approaches, i.e., dynamic orthogonal projection (DOP) and 
transfer component analysis (TCA) were used to correct the effects of 
perturbations on the NIR spectroscopy data. All the data analyses were 
performed using MATLAB 2017b, Natick, MA, USA. 

2.2.1. Dynamic orthogonal projections 
DOP is a model maintenance method developed to deal with the 

physical, chemical and environmental affects in the spectroscopic 
modelling (Zeaiter et al., 2006). The approach is based on the correction 
of the calibration dataset based on the new reference measurements 
performed in different physical, chemical and environmental condi-
tions. The correction is performed using orthogonal projections based on 
the subspace defined by the difference between the calibration spectra 
and the spectra under new conditions. Let R be a set of samples 
measured in the new conditions. Let Yr be the reference values and Xr 
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the measured spectra of this samples. The DOP method starts by esti-
mating virtual standards, i.e. the spectra Xr* that should have been 
measured in correspondence with Yr, if the calibration conditions were 
maintained. This is done by means of linear combinations of the original 
calibration data matrix, using kernels centered on Yr values. Once the 
virtual standards are prepared then the difference spectra between Xr 
and Xr* are calculated. The orthogonal basis for the difference spectra is 
estimated by principal components analysis, and finally, the calibration 
spectra are projected orthogonally to that basis. Models calibrated on 
these data become insensitive to the differences (physical, chemical and 
environmental conditions). 

To explain the case for a two-batch scenario related to NIR spec-
troscopy of fruit, let us consider that the spectral data acquired for 
Batch1 is given by X1 and the corresponding reference values by Y1. The 
spectral data acquired as Batch2 (under different physical, chemical and 
environmental conditions) be given by X2, without reference measure-
ments. Consider a small set of measurements performed on batch 2 for 
which spectra can be given as Xr and the corresponding reference 
measurements as Yr. 

The step of DOP includes (Zeaiter et al., 2006):  

1 Virtual spectral standards are created by estimating Xr as a linear 
combination of X1. This linear combination is provided by the kernel 
functions centered on the elements of Yr and applied to Y1.  

X̂r = AX1                                                                                       (1) 

Where A ¼ F(Y1), where F is the kernel function centered on Yr  

2 The difference spectra D are computed as the difference between Xˆr 
and Xr  

D = Xˆr-Xr                                                                                    (2)  

3 An orthonormal basis P of the space spanned by D is estimated by a 
principal component analysis (PCA)  

D = TPT + E                                                                                 (3) 

where T and P are the first k scores and loadings of the PCA, and E is the 
residuals  

4 The spectra from Batch 1 (X1) are corrected by orthogonal projection 
as  

X*1 = X1 (I-PPT)                                                                            (4) 

where I is the identity matrix and PPT is the product of P by PT. Doing 
such an operation removes the differences between two batches and the 
new calibration can be done with X*1 and Y1 and then the model can be 
applied directly to the X2. The number of dimensions removed (k) must 
be tuned, e.g. by examining how the proximity between the two batches 
improves with increasing k. The external parameter orthogonalization 
(EPO) components were optimized using the validation procedure by 
choosing the number of components corresponding to lowest error for a 

tuning set. 

2.2.2. Domain adaption with Transfer Component Analysis 
TCA is a common DA technique but new to the chemometrics 

domain. TCA applies when there are differences between data sets which 
are expected to have identical variations. In (Pan et al., 2011) the term 
distribution is used to characterize these variations. TCA assumes that 
there exist differences in the data distributions for data from different 
domains. In the case of NIRS, it can be assumed that the variance – 
covariance matrix between two instruments, two temperature condi-
tions and two seasons is different. Some of the latent space captures the 
intrinsic structure underlying the data while the rest just carries non 
useful information (Pan et al., 2011). The latent space used by a model, 
e.g. the one spanned by the loadings of a PLS, may correspond to the 
differences between domains, or to the similarities between domains. 
TCA finds a latent feature space that minimizes the distributional dif-
ference of the domains by the calculation of transfer components across 
domains in a Reproducing Kernel Hilbert Space (RKHS) using Maximum 
Mean Discrepancy (MMD) (Pan et al., 2011). MMD is a non-parametric 
distance measure for data distributions in RKHS. RKHS is the Hilbert 
space of functions in which point evaluation is a continuous linear 
functional. 

As before, the aim is to predict the Y2 from X2 with the calibration 
developed on X1 and Y1. The TCA presented in (Pan et al., 2011) as-
sumes that the marginal distribution of X1 and X2 are not equal (P(X1) ≈
P(X2)), but that there exists however a transformation φ such that P 
(φ(X1)) ≈ P(φ(X2)) and P(Y1 /φ(X1)) ≈ P(Y2 /φ(X2)), where P denotes 
the marginal distribution. Once the transformation is done with the φ, 
models on φ(X1) and Y1 can be developed and applied to φ(X2). How-
ever, the key challenge is to find the φ as there is no Y2 available, so the φ 
cannot be learned by minimizing the distance between P(Y1 / φ(X1)) ≈ P 
(Y2 / φ(X2)). The TCA as presented in (Pan et al., 2011) proposes to learn 
φ such that the distance between the marginal distributions P(φ(X1)) 
and P(φ(X2)) is small, and, the φ(X1) and φ(X2) preserve important 
properties of X1 and X2. 

The steps of TCA include:  

1 Construction of kernel matrix K from X1 and X2 as defined by the 
Gram matrices for Batch1(KX1,1), Batch2 (KX2,2) and cross-batch 
(KX1,X2) 

K =

[
KX1,1 KX1,2

KX2,1 KX2,2

]

where the kernel matrix is defined on all the data by minimizing the 
distance (MMD) between the Batch1 and Batch2 while maximizing the 
embedded data variance. With the kernel trick, the MMD distance can be 
estimated as tr(KL), where K = [φ(xi)

Tφ(xj) ], and Lij = 1/
n1

2 if xi,

xj ∈ X1, else Lij = 1/
n2

2 if xi,xj ∈ X2, otherwise, Lij = − (1/n1n2
)

2 The objective function thus becomes: 

Table 1 
Summary of datasets used.  

Data set Spectral range 
(nm) 

Training (samples ×
wavelengths) 

Optimizing DOP (samples 
× wavelengths) 

Testing DOP/TCA 
(samples × wavelengths) 

Reference 
measurement 

Literature 

Olive fruit instrument 
transfer 

705–1115 186 × 135 31 × 135 65 × 135 DM (%) (Sun et al., 2020a) 

Mango fruit 
temperature 
correction 

705–1128 10003 × 142 196 × 142 800 × 142 DM (%) (Anderson et al., 2020;  
Sun et al., 2020a,2020b) 

Mango fruit season 
correction 

705–1115 455 × 135 133 × 135 350 × 135 DM (%) (Anderson et al., 2020;  
Sun et al., 2020a,2020b) 

Apple fruit season 
correction 

729–975 1219 × 83 207 × 83 800 × 83 DM (%) (Teh et al., 2020)  
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max
K≥0

{trace(KL) − λ trace(K) } subject to contraints on K  

where the first term in the objective minimizes the distance between 
distributions, while the second term maximizes the variance in the 
feature space, and λ ≥ 0 is a trade-off parameter  

3 After dealing with the problem as a trace optimization problem as 
presented in (Pan et al., 2011), the final step leads to an eigen 
decomposition problem and selection of m leading eigenvectors as 

W = eig
(
(KLK + μI)− 1KHK

)

where, I is the identity matrix, μ > 0 is a trade-off parameter, H is the 
centering matrix H = In1+n2 − (1/n1 + n2

)11T, where 1 is the column 

vector of all 1’s and In1+n2 is the identity matrix and W are the leading 
eigenvectors which can be used for the data transformation  

4 Finally, both the Batch1 and Batch2 data can be transformed as 

X∗
1 = X1W and X∗

2 = X2W    

5 The new calibration on X∗
1 and Y1 can be developed and directly 

applied on X∗
2 

2.2.3. Partial least-squares regression 
To compare the improvements using DOP and TCA, PLSR was used. 

PLSR is a common chemometric technique used for the calibration of 
NIR spectroscopy data of fresh fruit (Saeys et al., 2019; Walsh et al., 
2020). PLSR works by extracting the LVs which explain the variance in 
both the explanatory and response variables (Wold et al., 2001). The LVs 
are used for estimating the scores for the original data matrix and these 
scores are used for performing the multi-linear regression. By doing so, 
PLSR avoids the collinearity problem in the regression and leads to 
optimal models. In the present work, the number of LVs (selected cor-
responding to error stabilization point) for the PLSR was optimized with 
a 10-fold venetian-blind cross-validation. The model performance was 
quantified as root mean squared error of prediction (RMSEP), prediction 
bias and prediction R2. 

3. Results and discussion 

3.1. Data distributions 

Fig. 1 presents the distribution of DM (%) for the four data sets 
presented in Table 1. For all four cases the distribution can be assumed 
to be normally distributed. Such a distribution is commonly encountered 
when estimating properties related to biological samples such as fruit. 

3.2. Olive fruit dry matter copy instrument predictions 

Fig. 2 presents the results of PLSR modelling on the non-transformed 
data (Fig. 2A), the DOP- (Fig. 2B) and the TCA- transformed data 
(Fig. 2C). The samples from instrument 1 are in green and from 

Fig. 1. Distributions of dry matter (DM) in % for calibration and test set. (A) instrument transfer (olive fruit), (B) different temperature (mango fruit), (C) different 
season correction (mango fruit) and (D) different season (apple fruit). The numerical values represent the mean ± 2 standard deviation. 
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instrument 2 in red. In all the cases, the model was calibrated on in-
strument 1 and tested on instrument 2. It can be noted that both DOP 
and TCA improved the model performance, i.e. high R2

p and low RMSEP 
compared to no data transformation. The scores on the first two latent 
variables (LVs) are shown in Fig. 2D-F. The scores plots show that the 
raw data from multiple instruments have differences in distributions 
(Fig. 2D), can be seen for the red (instrument 2) and green (instrument 
1) clusters, which are due to differences between the instruments. 
However, these differences were removed/reduced by the trans-
formations using DOP and TCA. The R2

p was highest for DOP with a total 
11% increase compared to no transformation. DOP also reduced the 
prediction bias by 97% compared to no transformation. The RMSEP with 
the use of DOP was reduced by 66%. The number of LVs were lowest for 
TCA (3 LVs), followed by DOP (4 LVs), then by no transformation (5 
LVs). A summary of all the models is shown in Table 2. 

3.3. Temperature correction for improved prediction 

Fig. 3 presents the results of PLSR modelling on the non-transformed 

data (Fig. 3A), the DOP- (Fig. 3B) and the TCA- transformed data 
(Fig. 3C) for correcting he temperature effect in the NIRS. The samples 
from low temperature are in green and from medium temperature are in 
red. In all the cases, the model was calibrated in low temperature and 
tested on medium temperature. It can be noted that both DOP and TCA 
improved the model performance, i.e. high R2

p and low RMSEP 
compared to no data transformation. The scores on the first two latent 
variables (LVs) are shown in Fig. 3D–F. The R2

p was the highest for TCA 
with a total 12% increase compared to no transformation. TCA also 
reduced the prediction bias by 85% compared to no transformation. The 
RMSEP with the use of TCA was reduced by 29%. The number of LVs 
were the lowest for TCA (3 LVs), followed by DOP (5 LVs), and then by 
no transformation (8 LVs). 

3.4. Correction of seasonal effect in mango fruit 

Fig. 4 presents the results of PLSR modelling on the non-transformed 
data (Fig. 4A), the DOP- (Fig. 4B) and the TCA- transformed data 
(Fig. 4C). The samples from season 1 are in green and from season 2 are 

Fig. 2. Model made on data from instrument 1 and tested data from instrument 2 to predict DM (%) in olive fruit. Data from instrument 1 is presented in green circles 
and instrument 2 in red triangles. (A) Partial least-squares regression (PLSR) calibrated on instrument 1 tested on instrument 2, (B) PLSR after dynamic orthogonal 
projection (DOP) calibrated on instrument 1 tested on instrument 2, (C) PLSR after transfer component analysis (TCA) calibrated on instrument 1 tested on in-
strument 2, (D) scores distribution for instrument 1 and instrument 2 measurements after PLSR, (E) scores distribution for instrument 1 and instrument 2 mea-
surements from PLSR after DOP, and (F) scores distribution for instrument 1 and instrument 2 measurements from PLSR after TCA. LV in the score plots stands for 
latent variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Summary of results from partial least-squares regression (PLSR), dynamic orthogonal projection (DOP) and transfer component analysis (TCA) for dry matter (DM) 
prediction. The best improvements are highlighted in red.  

Dataset PLSR DOP TCA  

LVs R2
p RMSEP 

(%) 
Bias (%) LVs R2

p RMSEP (% 
DM) 

Bias (% 
DM) 

LVs R2
p RMSEP (% 

DM) 
Bias (% 
DM) 

Olive fruit instrument transfer 5 0.82 2.58 2.28 4 0.91 0.87 − 0.05 3 0.88 1.35 − 0.86 
Mango fruit temperature 

correction 
8 0.76 1.56 0.86 5 0.78 1.26 0.10 3 0.85 1.11 0.39 

Mango fruit season correction 6 0.61 2.25 1.40 7 0.80 1.28 − 0.26 4 0.75 1.49 − 0.54 
Apple fruit season correction 6 0.90 0.74 − 0.44 5 0.91 0.58 0.008 3 0.93 0.59 − 0.29  
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in red. In all the cases, the model was calibrated on season 1 and tested 
on season 2. It can be noted that both DOP and TCA improved the model 
performance, i.e. high R2

p and low RMSEP compared to no data trans-
formation. The scores on the first two latent variables (LVs) are shown in 
Fig. 4D–F. The scores plots show that the raw data from multiple seasons 
have differences in distributions (Fig. 4D), as can be seen from the red 
(season 2) and green (season 1) clusters, which reflect the seasonal ef-
fect. The differences were removed/reduced by the transformation 
performed by DOP and TCA. The R2

p was highest for DOP with a total 
31% increase compared to no transformation. DOP also reduced the 
prediction bias by 80% compared to no transformation. The RMSEP with 
the use of DOP was reduced by 43%. The number of LVs was lowest for 
TCA (4 LVs), followed by no transformation (6 LVs), which was almost 
the same as DOP (7 LVs). 

3.5. Apple fruit multi-season dataset 

Fig. 5 presents the results of PLSR modelling on the non-transformed 
data (Fig. 5A), the DOP (Fig. 5B) and the TCA transformed data 
(Fig. 5C). The samples from season 1 are in green and from season 2 are 
in red. In all the cases, the model was calibrated on season 1 and tested 
on season 2. It can be noted that both DOP and TCA improved the model 
performance, i.e. high R2

p and lower RMSEP compared to no data 
transformation. The scores on the first two latent variables (LVs) are 
shown in Fig. 5D–F. The scores plots show that the raw data from 
multiple seasons have differences in distribution (Fig. 5D), as the red 
(season 2) and green (season 1) clusters show differences due to the 
seasonal effect. The differences were removed/reduced by the trans-
formation performed by DOP and TCA; as well, the distributions are 
more compact compared to no data transformation. The R2

p was highest 
for TCA with a total 1% increase compared to no transformation. DOP 

reduced the prediction bias by 98% compared to no transformation. The 
RMSEP with the use of DOP was reduced by 21% compared to no 
transformation. The number of LVs was the lowest for TCA (3 LVs), 
followed by DOP (5 LVs), and then by no transformation (6 LVs). 

3.6. Effects of changing response distribution on DOP and TCA 
performance 

The apple fruit multi-season data was used for comparison of the 
performances in the situation where the test dataset is not like the 
calibration dataset. Such a problem can be encountered in the real-case 
scenario when first batch has homogenous normal distribution of fruit 
properties, while in the second batch, the fruit are either too raw or too 
ripe i.e. the properties are not normally distributed (Fig. 6A and 6E). 
Such a distribution difference is of critical importance to the perfor-
mance of methods like TCA, which relies on distribution matching. The 
DOP performed better in terms of low prediction bias and RMSEP 
(Fig. 6C and G) compared to both TCA (Fig. 6D and H) and standard 
PLSR (Fig. 6B and F). TCA does not perform as well as like DOP as it 
relies on the distribution matching and resulted in increased bias when 
data distribution was different. However, the prediction R2 was highest 
for TCA as compared to both standard PLSR and DOP with a lower 
number of LVs (only 3 in the case of TCA). 

4. Discussion 

The NIR spectroscopy data modelling of fruit suffers from robustness 
problems (Nicolai et al., 2007; Saeys et al., 2019). Often the calibration 
models fail to perform well when tested on new season data or mea-
surements performed under different conditions (Zeaiter et al., 2006). 
There are technical challenges from the point of view of NIR 

Fig. 3. Temperature correction for prediction of DM (%) in mango fruit. Data from low temperature is presented in green circles and medium temperature in red 
triangles. (A) Partial least-squares regression (PLSR) calibrated on low temperature tested on medium temperature measurements, (B) PLSR after dynamic orthogonal 
projection (DOP) calibrated on low temperature tested on medium temperature measurements, (C) PLSR after transfer component analysis (TCA) calibrated on low 
temperature tested on medium temperature measurements, (D) scores distribution for low and medium temperature measurements after PLSR, (E) scores distribution 
for low and medium temperature measurements from PLSR after DOP, and (F) scores distribution for low and medium temperature measurements for PLSR after TCA. 
LV in the score plots stands for latent variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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spectroscopy such as detector sensitivities, differences in light source 
illuminations, temperature of the sensors, which all induce perturbance 
in the signals. However, the modelling approaches used to process NIR 
spectroscopy data do not always consider these perturbations and focus 
mainly on the development of simple PLSR with a combination of either 
exploration of various pre-processing techniques or variable selection. 
Methods such as DOP and TCA to model and remove the influences and 
to identify the underlying common subspace are still not adapted to the 
NIR data analysis of fruit properties. In the present work, both DOP and 
TCA data transformation methods improved model performances (high 
R2

p and low RMSEP and bias) without performing any extra standard 
measurements, when confronted by challenges such as instrument 
transfer, temperature correction and seasonal variations. 

In this study,DOP outperformed all the original results of the in-
strument transfer methods for the olive data (Sun et al., 2020a,2020b) 
by obtaining a R2

p = 0.91 and RMSEP and bias of 0.87% and − 0.05% 
respectively. Furthermore, the TCA obtained results comparable to all 
the classical standard-based instrument transfer methods in an unsu-
pervised approach. In the original work, the results obtained with the 
classical standard-based instrument transfer methods (direct standard-
ization, model updating, spectral space transformation, piecewise direct 
standardization) showed as lowest RMSEP 1.32% (corresponding to 
spectral space transformation) and as bias 0.37% (corresponding to 
piecewise direct standardization), respectively, with R2

p ranging from 
0.73 to 0.85. In the case of the mango fruit dataset used in this study, the 
original work gave as the best R2

p = 0.82 and the lowest RMSEP and bias 
of 1.05% and 0.10%, respectively. In this study, the TCA resulted in a 
higher R2

p = 0.85 without the need of any extra measurements 
compared to the extra samples used to perform EPO in the original 
study. The DOP performed similarly to the original study in terms of 
similar bias. In comparison to the multi-season data set no direct com-
parison can be made with the original studies for mango fruit (Anderson 
et al., 2020), as in this study, we only used data from two seasons data to 

compare the performance of the model developed in one season with 
data taken in a different season. In the original study, global modelling 
was performed with data from multiple seasons for mango fruit. Simi-
larly for apples, (Teh et al., 2020) no direct comparison can be made 
with the study as the original study used samples from both seasons to 
calibrate the original models. However, like the original study both the 
TCA and DOP obtained R2

p = 0.91–0.93 with RMSEP = 0.58–0.59% but 
with the model being based on data from the only one season, 2015. 

DOP and TCA does not require any standard measurements which 
fits well into the framework of portable spectroscopy which require 
sharable models, that are widely deployable among users. However, 
DOP requires a small number of extra measurements performed under 
the new conditions (physical, chemical and environmental condition) to 
design the influence factor subspace for orthogonal projection (Zeaiter 
et al., 2006). TCA is completely unsupervised and does not require any 
reference measurements (Pan et al., 2011). But TCA assumes that the 
datasets of the two batches are similar. If the Y distribution differs be-
tween the two batches, this will decrease the performance of TCA. For 
example, in the case of inter-season transfer for mango fruit, the mean 
value of Y in season 2 is more than 1% higher than in season 1 (see 
Fig. 1C). Therefore, there is by nature, a difference in the mean spectra 
of the two seasons, which is contrary to the assumptions of TCA. The 
correction made by TCA therefore has the effect of removing this mean 
spectrum from the latent space, thus eroding the useful subspace. Thus, 
the resulting model becomes poorer compared to DOP. On the contrary, 
DOP, using reference values of Y, can take this difference into account. 
Therefore, DOP works better on this example, as shown in Fig. 4(B) and 
(C) and therefore, in all examples, the bias was the lower for the DOP 
transformation compared to TCA. 

As well, TCA assumes that the distributions of the spectral data are 
the same for the batches. This will not be the case if the spectra measured 
on the batches do not refer to the same Y distributions, i.e. at least with 
similar means and standard deviations. The example of the simulated 

Fig. 4. Season correction for prediction of DM (%) in mango fruit. Data from season 1 is presented in green circles and from season 2 in red triangles. (A) Partial least- 
squares regression (PLSR) calibrated on season 1 tested on season 2 measurements, (B) PLSR after dynamic orthogonal projection (DOP) calibrated on season 1 tested 
on season 2 measurements, (C) PLSR after transfer component analysis (TCA) calibrated on season 1 tested on season 2 measurements, (D) scores distribution for 
season 1 and season 2 measurements after PLSR, (E) scores distribution for season 1 and season 2 measurements from PLSR after DOP, and (F) scores distribution for 
season 1 and season 2 measurements from PLSR after TCA. LV in the score plots stands for latent variables. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

P. Mishra et al.                                                                                                                                                                                                                                  



Postharvest Biology and Technology 170 (2020) 111326

8

Fig. 5. Season correction for prediction of DM (%) in apple fruit. Data from season 1 is presented in green circles and from season 2 in red triangles. (A) Partial least- 
squares regression (PLSR) calibrated on season 1 tested on season 2 measurements, (B) PLSR after dynamic orthogonal projection (DOP) calibrated on season 1 tested 
on season 2 measurements, (C) PLSR after transfer component analysis (TCA) calibrated on season 1 tested on season 2 measurements, (D) scores distribution for 
season 1 and season 2 measurements after PLSR, (E) scores distribution for season 1 and season 2 measurements from PLSR after DOP, and (F) scores distribution for 
season 1 and season 2 measurements from PLSR after TCA. LV in the score plots stands for latent variables. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 6. Comparison of partial least-squares regression (PLSR), dynamic orthogonal projection (DOP) and transfer component analysis (TCA) for different test dis-
tributions. The dataset used was the apple fruit multi-season dataset. In regression analysis plots, data from season 1 is presented in green circles and from season 2 in 
red triangles. (A) Histogram explaining season 1 and reduced season 2 data (low dry matter), (B) PLSR calibrated on season 1 tested on season 2 measurements, (C) 
PLSR after DOP calibrated on season 1 tested on season 2 measurements, (D) PLSR after TCA calibrated on season 1 tested on season 2 measurements, (E) histogram 
explaining season 1 and reduced season 2 data (high dry matter), (F) PLSR calibrated on season 1 tested on season 2 measurements, (G) PLSR after DOP PLSR 
calibrated on season 1 tested on season 2 measurements, and (H) PLSR after TCA PLSR calibrated on season 1 tested on season 2 measurements. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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differences in the apple fruit multi-season data showed that when the 
test set distributions are very different from the calibration set, the TCA 
performance is poorer compared to that of DOP (Fig. 6). TCA will 
perform better in those cases where the chemical properties are identi-
cally distributed for the different situations. This favorable situation 
seems to be encountered often in the case of fruit quality predictions, as 
in all four real-life cases presented here, the distributions from the 
different batches were similar. 

Another important point is the selection of optimal EPO dimensions 
for the DOP correction. There are many ways of doing it (Roger and 
Boulet, 2018). In the present work, due to the availability of the test set, 
the validation approach, based on tuning samples was used. In those 
cases where no extra test set is available, non-objective criteria 
explaining the effect of EPO on the decrease of the detrimental effect can 
be used. One such approach is to visualize the evolution of the variance 
of the corrected batch and the second batch, where the inflection point 
may indicate the optimal number of EPO dimensions (Roger and Boulet, 
2018). TCA does not require any such tuning. 

5. Conclusions 

Multiple physical, chemical and environmental factors affect the NIR 
spectroscopy models related to fruit quality prediction. In the present 
work, DOP and TCA were successfully implemented to correct for these 
effects leading to higher R2

p and lower bias and RMSEP. The main 
benefit of DOP and the TCA is limiting the need of new standard mea-
surements for model updating and calibration transfer. The bias was 
lower in the case of DOP compared to the TCA. Up to 31% increase in 
R2

p, and 98% and 66% reductions in prediction bias and root mean 
squared error of prediction, respectively were noted. In addition, the 
number of LVs was lower for TCA in all the datasets compared to DOP, 
indicating that TCA captures the underlying subspaces more efficiently 
than does DOP. This study also shows that the use of TCA requires 
precautions to be taken concerning the distributions of the responses in 
the different datasets. 
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