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and bioinformatics analyses
Aoxing Liu1*  , Mogens Sandø Lund1, Didier Boichard2, Emre Karaman1, Bernt Guldbrandtsen1, 
Sebastien Fritz2,6, Gert Pedersen Aamand3, Ulrik Sander Nielsen4, Goutam Sahana1, Yachun Wang5 
and Guosheng Su1

Abstract 

Background:  Sequencing data enable the detection of causal loci or single nucleotide polymorphisms (SNPs) highly 
linked to causal loci to improve genomic prediction. However, until now, studies on integrating such SNPs using a 
single-step genomic best linear unbiased prediction (ssGBLUP) model are scarce. We investigated the integration of 
sequencing SNPs selected by association (1262 SNPs) and bioinformatics (2359 SNPs) analyses into the currently used 
54K-SNP chip, using three ssGBLUP models which make different assumptions on the distribution of SNP effects: a 
basic ssGBLUP model, a so-called featured ssGBLUP (ssFGBLUP) model that considered selected sequencing SNPs as 
a feature genetic component, and a weighted ssGBLUP (ssWGBLUP) model in which the genomic relationship matrix 
was weighted by the SNP variances estimated from a Bayesian whole-genome regression model, with every 1, 30, 
or 100 adjacent SNPs within a chromosome region sharing the same variance. We used data on milk production and 
female fertility in Danish Jersey. In total, 15,823 genotyped and 528,981‬ non-genotyped females born between 1990 
and 2013 were used as reference population and 7415 genotyped females and 33,040 non-genotyped females born 
between 2014 and 2016 were used as validation population.

Results:  With basic ssGBLUP, integrating SNPs selected from sequencing data improved prediction reliabilities for 
milk and protein yields, but resulted in limited or no improvement for fat yield and female fertility. Model perfor-
mances depended on the SNP set used. When using ssWGBLUP with the 54K SNPs, reliabilities for milk and protein 
yields improved by 0.028 for genotyped animals and by 0.006 for non-genotyped animals compared with ssGBLUP. 
However, with the SNP set that included SNPs selected from sequencing data, no statistically significant difference in 
prediction reliability was observed between the three ssGBLUP models.

Conclusions:  In summary, when using 54K SNPs, a ssWGBLUP model with a common weight on the SNPs in a given 
region is a feasible approach for single-trait genetic evaluation. Integrating relevant SNPs selected from sequencing 
data into the standard SNP chip can improve the reliability of genomic prediction. Based on such SNP data, a basic 
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Background
A large number of causal loci or single nucleotide poly-
morphisms (SNPs) highly linked to causal loci have been 
discovered from sequencing data through association 
analyses [1, 2] and bioinformatics analyses [3, 4]. How-
ever, many of these SNPs are not part of the standard 
SNP chips that are commonly used in routine genomic 
evaluation, e.g. the Illumina Bovine SNP50 chip. By com-
bining SNPs selected from sequencing data with those on 
the 54K bovine chip, improved reliabilities of genomic 
predictions for genotyped animals have been reported 
in various dairy cattle populations, such as Nordic Hol-
steins [5], Nordic Red [6], and Danish Jersey [7]. Simula-
tions [8] showed that the accuracy of genomic prediction 
with a single-step genomic best linear unbiased predic-
tion (ssGBLUP) model increased from 0.49 to 0.53 after 
integrating all the causal variants (i.e., simulated QTL), 
which were not included in the basic 60,000-SNP panel. 
In US Holsteins, with a ssGBLUP model, the prediction 
reliability for stature increased from 0.753 to 0.760 after 
integrating 16,648 SNPs selected from sequencing data 
by association analyses for 33 traits into the 54K-SNP 
chip [9].

One of the critical factors that impacts the perfor-
mance of genomic prediction is the statistical model 
used. The GBLUP and ssGBLUP models assume that all 
SNPs have effects, which are drawn from a normal dis-
tribution assuming they all have the same variance [10–
12], whereas Bayesian alphabet models assume that SNP 
effects are drawn from more or less complex mixture dis-
tributions and therefore can better accommodate SNPs 
with large effects [13–15]. Bayesian alphabet models 
usually outperform or are as good as the GBLUP model. 
However, the GBLUP model is still used in routine 
genomic evaluation because of its lower computational 
cost and simpler parameterization compared to Bayesian 
alphabet models. One strategy to achieve the strengths 
of both Bayesian alphabet and GBLUP models is to place 
emphasis on the most relevant markers that are discov-
ered with Bayesian alphabet models when constructing 
the G matrix for GBLUP models, therefore, each trait can 
have its specific G matrix [16]. Many efforts have been 
put to find the optimal weighting strategy for construct-
ing the weighted G matrix. For example, Su et  al. [17] 
compared different weighting strategies for GBLUP mod-
els and suggested the use of the posterior SNP variance 
from the Bayesian R model [15] as the weighting factor 
and a common weight shared by a group of 30 adjacent 

SNPs when using the 54K-SNP chip. Similarly, Zhang 
et  al. [18] compared different weighting strategies for 
ssGBLUP models using simulated datasets and reported 
that a common weight for a group of 20 adjacent SNPs 
achieved the highest reliability among all weighting 
strategies.

Integrating SNPs selected from sequencing data into 
the currently used 54K-SNP chip has the potential to 
include causal loci or SNPs in high linkage disequilibrium 
with causal loci. Therefore, a model that allows the inclu-
sion of some SNPs with larger effects would be closer to 
the real distribution of SNP effects. For protein content 
in French dairy goats, which is a quantitative trait influ-
enced by a major gene (explaining 40% of the genetic 
variance), the increase in accuracy was up to 6 percent-
age points from using a weighted ssGBLUP model com-
pared to a basic ssGBLUP model when integrating the 
genotypes of the major gene into the genotype data of 
the 54K-SNP chip [19]. For stature in US Holsteins, 
when integrating 16,648 SNPs selected from sequenc-
ing data by association analyses, the prediction reliabil-
ity decreased slightly from using a weighted ssGBLUP 
model with weights derived from the squared SNP effects 
compared to using a basic ssGBLUP model [9]. However, 
to date, for SNPs preselected from sequencing data by 
bioinformatics analyses (e.g., functional annotation), no 
comparison between a basic ssGBLUP and a weighted 
ssGBLUP model has been reported. In addition, plac-
ing emphasis on SNPs selected from sequencing data in 
genomic prediction models could be achieved by consid-
ering SNPs on the standard SNP chip and SNPs selected 
from sequencing data as two separate genetic compo-
nents, i.e. a so-called featured GBLUP/ssGBLUP model. 
Results from a previous study on genotyped Danish Jer-
sey animals showed that such a featured GBLUP model 
outperformed a basic GBLUP model for milk yield when 
integrating SNPs selected from sequencing data by asso-
ciation analyses and bioinformatics analyses, but no dif-
ference was observed between the two models for fat and 
protein yields, mastitis, and female fertility index [7]. To 
date, there is no study on genomic prediction using such 
a featured ssGBLUP model.

Our primary objective was to investigate the effects 
of integrating SNPs selected from sequencing data in 
genomic prediction of Danish Jersey cattle using ssG-
BLUP models. In addition, we compared a basic ssGB-
LUP model with alternative weighted/featured ssGBLUP 
models. Furthermore, for the ssWGBLUP model, we 

ssGBLUP model was suggested since no significant improvement was observed from using alternative models such 
as ssWGBLUP and ssFGBLUP.



Page 3 of 17Liu et al. Genet Sel Evol           (2020) 52:48 	

investigated the optimal region size for selecting region-
specific weights.

Methods
Data
SNPs selected from sequencing data
In this study, we used two sets of SNPs selected from 
sequencing data included in the EuroGenomics custom-
ized Illumina Bovine low-density chip (customized LD, 
Illumina, Inc.) [20]. One SNP set included 1443 trait-
associated SNPs selected from association analyses based 
on imputed full-sequencing information in bulls of three 
major dairy breeds of Denmark-Finland-Sweden (DFS) 
[6]. The other SNP set included 2618 SNPs selected from 
association analyses and bioinformatics analyses (within 
genes with a strong effect predicted from the Variant 
Effect Predictor (VEP) [21], within regulatory regions 
of genes, and breakpoints of structural variants) in five 
major dairy breeds from France (FRA) [20]. Details 
on the selection of DFS and FRA SNPs are in Boichard 
et al. [20] and Liu et al. [7]. For both DFS and FRA SNPs, 
the discovery populations used to preselect SNPs from 
sequencing data were not used in genomic prediction to 
avoid a false positive conclusion.

Genotype imputation
In total, 5480 Danish Jersey bulls, 1161 US Jersey bulls, 
and 48,039 Danish Jersey cows were genotyped with ver-
sions 1, 2, or 3 of the Illumina Bovine SNP50 chip (54K, 
Illumina, Inc.), the standard Bovine low-density Chip 
(standard LD, Illumina, Inc.) [22], or the EuroGenomics 
customized LD chip [20]. The number of animals geno-
typed with each of these SNP panels is in Table 1. Ani-
mals genotyped with different versions of SNP chips were 
imputed to 54K + DFS + FRA SNPs directly [23], using a 
family- and population-based approach implemented in 
the FImpute software [24]. The imputation accuracies of 
the DFS and FRA SNPs were assessed by randomly mask-
ing 10% of the animals genotyped with the customized 
LD chip to the standard LD chip, while the accuracy for 
the imputation from the standard LD chip to the 54K-
SNP chip was assessed by randomly masking 10% of the 

animals genotyped with the 54K-SNP chip to the stand-
ard LD chip. The SNP-wise imputation accuracy was 
measured as the Pearson correlation between imputed 
and observed genotypes (coded as 0, 1, or 2) and the pro-
portion of correctly imputed genotypes to all imputed 
genotypes (i.e., concordance rate). Only autosomal SNPs 
with a minor allele frequency higher than 0.01 and an 
imputation accuracy with both correlation and con-
cordance rate higher than 0.8 were retained for genomic 
prediction. Ultimately, 37,074 SNPs from the 54K-SNP 
chip, 1262 DFS SNPs, and 2359 FRA SNPs were used 
for genomic prediction, with 28 SNPs shared by the DFS 
and FRA SNP sets. Regarding the imputation accuracy 
of these 40,667 SNPs, correlations between imputed and 
observed genotypes were 96.4% for the FRA SNPs, 96.6% 
for the DFS SNPs, and 97.0% for the imputation from the 
standard LD chip to the 54K SNPs, whereas concordance 
rates were 98.0% for the FRA SNPs, 98.3% for the DFS 
SNPs, and 98.4% for the imputation from the standard 
LD chip to the 54K SNPs.

Phenotype
In order to investigate traits with various genetic archi-
tectures, three milk production traits including milk, fat, 
and protein yields and three female fertility traits includ-
ing the interval from first to last insemination in heifers 
(IFLh) and cows (IFLc), and the interval from calving 
to first insemination (ICF) were analysed. Phenotypic 
data were provided by Nordic Cattle Genetic Evaluation 
(Aarhus, Denmark). For milk, fat, and protein yields, cor-
rected 305-day yields [25], which were compiled from the 
data used in routine test-day evaluations of Nordic dairy 
cattle [26], were available for the first three lactations. 
For IFLh, raw field records were available for heifers. For 
IFLc and ICF, raw field records were available for the first 
three lactations. Details on trait definitions and data edit-
ing for the female fertility traits are in the report on rou-
tine genetic evaluation of Nordic Dairy cattle [26].

Model
Breeding values were predicted by using single-trait 
models, including a pedigree-based BLUP (PBLUP) 

Table 1  Number of animals genotyped with each SNP panel

SNP panel Danish bulls Danish cows US bulls Total

Standard low-density chip 7 14,012 – 14,019

EuroGenomics customized low-density chip 1824 33,027 – 34,851

54K-SNP chip 3490 998 1161 4488

54K-SNP chip and EuroGenomics customized low-density 
chip

159 2 – 161

Total 5480 48,039 1161 –
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model, a basic single-step genomic BLUP (ssGBLUP) 
model, a so-called featured ssGBLUP (ssFGBLUP) model, 
and a weighted ssGBLUP (ssWGBLUP) model.

PBLUP
In the PBLUP model, the relationship matrix for the 
mixed model equation [27] was constructed using only 
pedigree information.

The model for IFLh is:

and the model for milk, fat, and protein yields, IFLc, 
and ICF is:

where y is the vector of response variables (corrected 
305-day yield for milk production traits, and raw pheno-
types for female fertility traits); β is the vector of fixed 
effects, including herd, year-season of insemination (for 
IFLh and IFLc), or year-season of calving (for milk, fat, 
and protein yields, and ICF), calving age expressed in 
months (for milk production traits) or age at first insemi-
nation expressed in months (for female fertility traits), 
and parity (for all traits except for IFLh); a is the vector of 
additive genetic effects; pe is the vector of permanent 
environmental effects; hys is the vector of random effects 
of herd-year-season of insemination (for IFLh and IFLc) 
or herd-year-season of calving (for milk, fat, protein, and 
ICF); e is the vector of random residual effects; and X , Za , 
Zpe , and Zhys are incidence matrices relating β , a , pe and 
hys to y . It is assumed that a ∼ N (0,Aσ2a) , 
pe ∼ N (0, Iσ2pe) , hys ∼ N (0, Iσ2hys) , and e ∼ N (0, Iσ2e ) . A 
is an additive relationship matrix that considers inbreed-
ing, based on a pedigree (without genetic group) includ-
ing 9595 males and 656,389 females, which was 
constructed by tracing the animals with phenotypes three 
generations back. The estimation of the variance compo-
nents, and the prediction of breeding values with the 
PBLUP models were performed using the DMU software 
[28].

ssGBLUP
In the ssGBLUP model, the relationship matrix for the 
mixed model equation was constructed using both pedi-
gree (without genetic group) and genomic information. 
The pedigree used for the ssGBLUP model was exactly 
the same as that used for the PBLUP model. The effects 
in the ssGBLUP model are also exactly the same as those 
in the above PBLUP model, but this model assumes 

(1)y = Xβ+ Zaa + Zhyshys+ e,

(2)y = Xβ+ Zaa + Zpepe+ Zhyshys+ e,

a ∼ N (0,Hσ2a) , where H is a unified genetic relationship 
matrix with H−1 constructed as [10, 11]:

where A is the pedigree-based relationship matrix for 
both genotyped and non-genotyped animals, G is the 
genomic relationship matrix adjusted to the same scale as 
A22 , and A22 is a subset of A for genotyped animals. Here, 
inbreeding was considered in all the relationship matri-
ces. G was defined as:

where ωa is the fraction of the genetic variance not cap-
tured by SNPs and Ga is the adjusted genomic relation-
ship matrix. In this study, ωa was set to 0.2 based on [29]. 
The Ga matrix was adjusted for the differences in scale 
between the original genomic relationship matrix Gm and 
the pedigree-based relationship matrix A22 as previously 
described [30].

where α and β are derived from the following equations:

Furthermore, Gm was constructed using the following 
method [12]:

where M is a matrix with the elements in column j being 
0− 2pj , 1− 2pj , or 2− 2pj for genotypes A1A1 , A1A2 , or 
A2A2 respectively, pj is the allele frequency of A2 at locus 
j computed from all genotyped animals in the model, and 
D is an identity matrix. Prediction of breeding values with 
the ssGBLUP models was performed using the DMU 
software [28], but because of the extensive computational 
cost, this software cannot estimate variance components 
directly from the ssGBLUP models. Instead, the variance 
components estimated from the above PBLUP models 
that included both genotyped and non-genotyped refer-
ence animals (see Additional file 1: Table S1) were used 
to predict the breeding values with the ssGBLUP models. 
Thanks to this strategy, the variance components of a trait 
were the same for analyses using different SNP sets. Four 
SNP sets were used to construct the relationship matri-
ces: (i) 54K (37,074 SNPs), (ii) 54K + DFS (38,336 SNPs), 
(iii) 54K + FRA (39,433 SNPs), or (iv) 54K + DFS + FRA 
(40,667 SNPs).

H−1 = A−1 +

[

0 0

0 G−1 − A−1
22

]

,

G = (1− ωa)Ga + ωaA22,

Ga = βGm + α,

Avg
(

diag(Gm)
)

β+ α = Avg
(

diag(A22)
)

,

Avg(Gm)β+ α = Avg(A22).

Gm =
MDM′

∑

2piqi
,
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ssFGBLUP
In the ssFGBLUP model, two H−1 matrices were con-
structed, i.e. one by combining the 54K-SNP chip and the 
pedigree data, and one by combining the SNPs selected 
from the sequencing data and the pedigree data. When 
constructing the relationship matrices for the ssFGB-
LUP models, three SNP sets were used: (i) 54K + DFS, (ii) 
54K + FRA, or (iii) 54K + (DFS + FRA).

The ssFGBLUP model for IFLh is:

and the ssFGBLUP model for milk, fat, and protein 
yields, IFLc, and ICF is:

where y , X , β , Zhys , hys , and e are the same as for the 
above PBLUP models; a54K is the vector of additive 
genetic effects captured by the 54K SNPs and the pedi-
gree; aseq is the vector of additive genetic effects captured 
by the SNPs selected from sequencing data and the pedi-
gree; and Za is the incidence matrix relating a54K and aseq 
to y . It is assumed that a54K ∼ N (0,H54Kσ

2
a54K

) and 
aseq ∼ N (0,Hseqσ

2
aseq

) , with no covariance being con-
structed between a54K and aseq . The prediction of breed-
ing values with the ssFGBLUP models was performed 
using the DMU software [28], but because of the exten-
sive computational cost, this software [28] cannot esti-
mate variance components directly from the ssFGBLUP 
models. Instead, the total additive genetic variance (the 
sum of σ2a54K and σ2aseq ), σ

2
pe , and σ2ae used to predict breed-

ing values with the ssFGBLUP models were obtained 
from the above PBLUP models (see Additional file  1: 
Table S1), whereas the proportion of additive genetic var-
iance explained by each genetic component was obtained 
from the FGBLUP model using genotyped animals in the 
reference population (see Additional file 1: Table S2).

ssWGBLUP
In the ssWGBLUP model, the genomic relationship 
matrix was weighted by the SNP variances estimated 
from a Bayesian whole-genome regression model, 
which used genotyped animals in the reference popu-
lation. Here, four SNP sets were used to construct 
the relationship matrices: (i) 54K, (ii) 54K + DFS, (iii) 
54K + FRA, or (iv) 54K + DFS + FRA. The effects of 
the ssWGBLUP model were exactly the same as those 
in the above ssGBLUP model, but the j th diagonal ele-
ment of the D matrix (an identity matrix in ssGBLUP) 
used to construct the Gm matrix is the weight on the 
j th SNP. In this study, the weight on the j th SNP is its 

(3)y = Xβ+ Zaa54K + Zaaseq + Zhyshys+ e,

(4)
y = Xβ+ Zaa54K + Zaaseq + Zpepe+ Zhyshys+ e,

posterior variance (standardized by dividing by the 
average posterior variance over all SNPs) obtained from 
a Bayesian model that accounts for region-specific vari-
ances (hereafter, BayesN0) [31], where every 1, 30, or 
100 adjacent SNPs (BayesN0_bin1, BayesN0_bin30, 
or BayesN0_bin100) on a chromosome region were 
assumed to form a region that shared the same vari-
ance. In order to investigate the advantage of a Bayes-
ian model that accounts for region-specific variances 
over a model in which all SNPs share the same variance, 
a BayesN0 model that considers the whole genome as 
one region (BayesN0_WG, equivalent to GBLUP) was 
also used for genomic prediction.

The BayesN0 model used for all traits is:

where y is the vector of yield deviations (YD) for geno-
typed animals in the reference population; 1 is a vector of 
ones; µ is the overall mean; αi is the vector of SNP effects 
in the ith genomic region; Mi is the genotype matrix 
in the i th genomic region; and e is the vector of ran-
dom residual effects. It is assumed that αi|σ

2
i ∼ N (0, σ2i ) 

and σ2i ∼ vαS
2
αχ

−2
vα

 , where σ2i  is the variance of the SNP 
effect for each SNP within the i th genomic region, vα is 
the degree of freedom, and S2α is the scale parameter. It is 
assumed that e ∼ N (0,Rσ2e) , where R is a diagonal matrix 
with elements djj = (1− r2YD)/r

2
YD to account for hetero-

geneous residual variances ( σ2e ) due to different reliabili-
ties of the YD ( r2YD ). In this study, YD, which is defined 
as the sum of the estimated breeding values (EBV) and 
estimated residuals, i.e., the phenotype adjusted for all 
effects in the model other than the additive genetic effect, 
was derived from the above PBLUP model with pheno-
types of animals in both the reference and validation 
populations using the DMU software [28]. Each of the 
BayesN0 models was run as a single Markov chain with 
a total length of 50,000 samples and the first 10,000 sam-
ples discarded as burn-in. Ultimately, every 20th sample 
of the remaining 40,000 samples was saved for the pos-
terior analysis. The analyses with the BayesN0 models 
were performed using in-house scripts written in Julia 
language [32]. The prediction of breeding values with 
the ssWGBLUP models was performed using the DMU 
software [28]. The variance components used for predict-
ing breeding values with the ssWGBLUP models were 
obtained from the above PBLUP models (see Additional 
file 1: Table S1) since the DMU software cannot estimate 
the variance components directly from the ssWGBLUP 
models because of the extensive computational cost.

y = 1µ+
∑

Miαi + e,
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Reliability and bias of prediction
For the prediction of breeding values, 15,823 genotyped 
and 528,981‬ non-genotyped females born between 1990 
and 2013 were used as the reference population. To avoid 
close relationships between reference and validation pop-
ulations, 7415 genotyped females and 33,040 non-geno-
typed females born between 2014 and 2016 that did not 
have any sib or daughter born before 2014 were used as 
the validation population. For each trait, the numbers of 
genotyped and non-genotyped animals in reference and 
validation populations are in Table 2. By using the young 
cows as the validation population, the overlap between 
the validation population and the discovery population 
of DFS SNPs was elaborately avoided since the discov-
ery population of DFS SNPs consisted of bulls only. In 
addition, to avoid using the same information for select-
ing DFS SNPs and investigating them in prediction, the 
genotyped bulls were excluded from the reference popu-
lation in the models used to predict breeding values (the 
PBLUP and three ssGBLUP models) and in the models 
used to derive weights (BayesN0 models) for the ssW-
GBLUP models. From the perspective of phenotypes, 
given that all the daughters with phenotypes, either gen-
otyped or non-genotyped, have already been included, 
adding genotyped bulls will not add information for the 
PBLUP and three ssGBLUP models. However, in prac-
tice, a genetic evaluation based on a ssGBLUP model 
can include the genotypes of bulls when constructing the 
relationship matrix in order to benefit their non-geno-
typed daughters. The number of genotyped animals used 
in genomic prediction was smaller than that involved 
in genotype imputation since some young genotyped 
animals did not have any phenotypic record during the 
period of data collection. However, including these young 
genotyped animals in genotype imputation can benefit 
the imputation of SNPs selected from sequencing data 
for genotyped animals involved in genomic prediction, 
since most of the young animals were genotyped with the 
customized LD chip. The reliability of predictions was 
measured as the squared correlation between EBV and 
YD divided by the average reliability of YD in the valida-
tion population for genotyped and non-genotyped ani-
mals, separately. In the validation population, the average 

reliabilities of YD were consistent for genotyped and 
non-genotyped animals, and equal to 0.421 for milk yield, 
0.308 for fat yield, 0.353 for protein yield, 0.014 for IFLh, 
0.033 for IFLc, and 0.055 for ICF. Reliabilities of YD var-
ied little among the validation animals since they com-
prised young females born between 2014 and 2016, with 
most of them (> 90% for milk production traits and > 70% 
for female fertility traits) having only one lactation record 
until the end of data collection. The bias of prediction 
was measured as the regression coefficient of YD on the 
EBV for genotyped and non-genotyped animals in the 
validation population separately. When calculating reli-
ability and bias, unweighted methods (e.g. unweighted 
regression for bias) were used because of the small varia-
tion in reliability of YD among validation animals. A non-
parametric bootstrapping procedure with 10,000 samples 
as described in Liu et al. [7] was used to test the differ-
ence in genomic prediction between models and between 
SNP sets. The Bonferroni correction was used to control 
the false positive rate resulting from multiple tests.

Results
With the BayesN0_WG model (equivalent to GBLUP) 
(see Additional file  1: Table  S3), reliabilities increased 
significantly after integrating all the SNPs selected from 
sequencing data compared to the use of the 54K SNP set 
only, for milk yield (0.045) and protein yield (0.023), but 
not for fat yield and female fertility traits. However, with 
the Bayesian models other than the BayesN0_WG model, 
no significant difference was observed between using the 
54K SNP set and a set combining the 54K SNPs and the 
SNPs selected from sequencing data, except when the 
BayesN0_bin100 model was used for milk yield. Overall, 
reliabilities did not differ significantly between the three 
SNP sets that included SNPs selected from sequenc-
ing data, except the reliability obtained by using the 
54K + DFS + FRA SNP set, which was 0.006 higher than 
that of the 54K + FRA SNP set averaged over three milk 
production traits using the BayesN0_WG model. Overall, 
reliabilities were the same for all region sizes, except for 
protein yield, for which a region size of 30 SNPs achieved 
higher reliability than a region size of 1 or 100 SNPs.

Table 2  Number of genotyped and non-genotyped animals in reference and validation populations

IFLh the interval from first to last insemination in heifers, IFLc the interval from first to last insemination in cows, ICF the interval from calving to first insemination

Reference/validation Population Milk, fat, and protein IFLh IFLc ICF

Reference Genotyped 14,645 9803 12,868 12,831

Non-genotyped 413,727 216,532 405,057 405,121

Validation Genotyped 4099 3749 3050 2833

Non-genotyped 20,883 15,425 15,030 14,114
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Figures 1 and 2 present the weights (standardized SNP 
variances) for the 54K and 54K + DFS + FRA SNP sets 
obtained by using a BayesN0_bin1 model. The average 
weight was equal to 1 for each analysis due to the stand-
ardization process. For milk production traits, the largest 
weight when using the 54K SNP set (1260 for milk yield, 
119 for fat yield, and 977 for protein yield) was greater 
than that obtained when using the 54K + DFS + FRA SNP 
set (993 for milk yield, 62 for fat yield, and 380 for protein 
yield). For female fertility traits, the largest weight when 
using the 54K SNP set (3 for IFLh, 4 for IFLc, and 6 for 
ICF) was similar to that when using the 54K + DFS + FRA 

SNP set (3 for IFLh, 4 for IFLc, and 4 for ICF). Generally, 
a large proportion of the top SNPs for milk and protein 
yields were SNPs selected from sequencing data, whereas 
this was much less clear for fat yield and female fertility 
traits. 

Reliabilities from the PBLUP and various ssGBLUP 
models for both genotyped and non-genotyped animals 
are in Tables 3 and 4. For all traits, ssGBLUP models out-
performed PBLUP models. With the 54K  SNP set, reli-
abilities improved from 0.156 with the PBLUP model 
to 0.366 with a basic ssGBLUP model for genotyped 
animals, and from 0.127 to 0.153 for non-genotyped 

Fig. 1  Weights generated from a BayesN0_bin1 model for milk, fat, and protein yields, using the 54K (left) and 54K + DFS + FRA (right) SNP sets. The 
SNPs from the DFS + FRA SNP set are highlighted with green colour
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animals, averaged over all traits. In addition, for geno-
typed animals, all ssGBLUP models outperformed the 
corresponding Bayesian models with the same bin size, 
due to the inclusion of performance information from 
non-genotyped females. The improvements of reliabili-
ties ranged from 0.006 for protein yield to 0.112 for IFLh, 
averaged over all SNP sets. 

With the ssGBLUP models, the integration of SNPs 
selected from sequencing data resulted in statistically 
significant improvements of the prediction reliabilities 

for milk yield (0.039 for genotyped animals and 0.007 
for non-genotyped animals) and protein yield (0.019 for 
genotyped animals and 0.003 for non-genotyped ani-
mals), a small improvement for fat yield (0.004 for gen-
otyped animals and 0.001 for non-genotyped animals), 
but no improvement for female fertility traits. For milk 
and protein yields, the different SNP sets including 
SNPs selected from sequencing data had similar per-
formances in terms of reliability. For example, for geno-
typed animals, the improvements of reliabilities from 
integrating SNPs selected from sequencing data ranged 

Fig. 2  Weights generated from a BayesN0_bin1 model for the interval from first to last insemination in heifers (IFLh) and cows (IFLc), and the 
interval from calving to first insemination (ICF), using the 54K (left) and 54K + DFS + FRA (right) SNP sets. The SNPs from the DFS + FRA SNP set are 
highlighted with green colour
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from 0.026 with the 54K + FRA SNP set to 0.032 with 
the 54K + DFS + FRA SNP set.

When using the 54K  SNP sets, different single-step 
genomic prediction models yielded significant differences 

in reliabilities for milk and protein yields, but no significant 
difference for fat yield and female fertility traits. When 
using the 54K + DFS + FRA SNP set, no significant differ-
ence in reliability was observed between all the ssGBLUP 

Table 3  Reliabilities from a pedigree-based BLUP (PBLUP) model and different ssGBLUP models using different SNP sets 
for milk production traits

ssGBLUP models = a single-step genomic BLUP (ssGBLUP) model, a featured ssGBLUP (ssFGBLUP) model, and weighted ssGBLUP models with a region size of 1 
(ssWGBLUP_bin1), 30 (ssWGBLUP_bin30), or 100 SNPs (ssWGBLUP_bin100)

SNP sets = SNPs on the 54K-SNP chip (54K), SNPs on the 54K-SNP chip together with sequencing SNPs selected by Denmark-Finland-Sweden (54K + DFS), SNPs on 
the 54K-SNP chip together with sequencing SNPs selected by France (54K + FRA), and SNPs on the 54K-SNP chip together with both sets of selected sequencing SNPs 
(54K + DFS + FRA)

a,b,csubscript letters to the left are for comparisons among models using the same SNP set, and superscript letters to the right are for comparisons among SNP sets 
using the same model. Reliabilities with no common letter differ significantly (P < 0.05)

Trait Population Model Pedigree SNP

54K 54K + DFS 54K + FRA 54K + DFS + FRA

Milk Genotyped PBLUP 0.225 – – – –

ssGBLUP – c0.595c
b0.633ab

b0.631b
a0.637a

ssFGBLUP – – ab0.641a
ab0.630a

a0.637a

ssWGBLUP_bin1 – a0.641a
ab0.645a

ab0.642a
a0.645a

ssWGBLUP_bin30 – a0.640b
a0.648a

a0.644ab
a0.645ab

ssWGBLUP_bin100 – b0.627b
ab0.641a

ab0.639a
a0.640a

Non-genotyped PBLUP 0.200 – – – –

ssGBLUP – b0.240b
b0.247a

a0.247a
a0.248a

ssFGBLUP – – ab0.248a
a0.247a

a0.247a

ssWGBLUP_bin1 – a0.249a
a0.250a

a0.250a
a0.250a

ssWGBLUP_bin30 – a0.248a
ab0.249a

a0.249a
a0.249a

ssWGBLUP_bin100 – a0.247b
ab0.249a

a0.248ab
a0.248ab

Fat Genotyped PBLUP 0.125 – – – –

ssGBLUP – a0.391 cd
ab0.397ab

a0.391bd
a0.396ac

ssFGBLUP – – a0.405a
a0.387b

a0.398a

ssWGBLUP_bin1 – a0.383a
b0.387a

a0.382a
a0.386a

ssWGBLUP_bin30 – a0.386b
ab0.398a

a0.390ab
a0.396ab

ssWGBLUP_bin100 – a0.389a
ab0.386a

a0.385a
a0.384a

Non-genotyped PBLUP 0.121 – – – –

ssGBLUP – a0.191ab
ab0.192a

ab0.191b
ab0.192ab

ssFGBLUP – – ab0.194a
b0.189c

ab0.191b

ssWGBLUP_bin1 – a0.192b
a0.194a

a0.192b
a0.193ab

ssWGBLUP_bin30 – a0.190b
a0.194a

a0.194a
a0.193a

ssWGBLUP_bin100 – a0.192a
b0.190ab

b0.188c
b0.188bc

Protein Genotyped PBLUP 0.152 – – – –

ssGBLUP – b0.428c
a0.447ab

a0.444b
a0.450a

ssFGBLUP – – a0.457ab
a0.442b

a0.451a

ssWGBLUP_bin1 – a0.449ab
a0.452a

a0.445b
a0.448ab

ssWGBLUP_bin30 – ab0.445b
a0.455a

a0.447ab
a0.452ab

ssWGBLUP_bin100 – ab0.437a
a0.443a

a0.442a
a0.442a

Non-genotyped PBLUP 0.140 – – – –

ssGBLUP – b0.188b
bc0.191a

bc0.190a
b0.191a

ssFGBLUP – – bc0.192a
c0.188b

bc0.189b

ssWGBLUP_bin1 – a0.197a
a0.197a

a0.194b
a0.194b

ssWGBLUP_bin30 – b0.190a
b0.192a

ab0.192a
b0.191a

ssWGBLUP_bin100 – b0.191a
c0.189a

c0.187b
c0.187b
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models for both genotyped and non-genotyped animals, 
except for fat and protein yields for which the ssWGB-
LUP models outperformed the basic ssGBLUP model. The 

average reliabilities over all traits and all SNP sets for the 
ssWGBLUP models with a region size of 1, 30, 100 SNPs, 
or considering the whole genome as one region were equal 

Table 4  Reliabilities from  a  pedigree BLUP (PBLUP) model and  different ssGBLUP models using different SNP sets 
for female fertility traits

ssGBLUP models = a single-step genomic BLUP (ssGBLUP) model, a featured ssGBLUP (ssFGBLUP) model, and weighted ssGBLUP models with a region size of 1 
(ssWGBLUP_bin1), 30 (ssWGBLUP_bin30), or 100 SNPs (ssWGBLUP_bin100)

SNP sets = SNPs on the 54K-SNP chip (54K), SNPs on the 54K-SNP chip together with sequencing SNPs selected by Denmark-Finland-Sweden (54K + DFS), SNPs on 
the 54K-SNP chip together with sequencing SNPs selected by France (54K + FRA), and SNPs on the 54K-SNP chip together with both sets of selected sequencing SNPs 
(54K + DFS + FRA)

IFLh the interval from first to last insemination in heifers, IFLc the interval from first to last insemination in cows, ICF the interval from calving to first insemination

a,b,csubscript letters to the left are for comparisons among models using the same SNP set, and superscript letters to the right are for comparisons among SNP sets 
using the same model. Reliabilities with no common letter differ significantly (P < 0.05)

Trait Population Model Pedigree SNP

54K 54K + DFS 54K + FRA 54K + DFS + FRA

IFLh Genotyped PBLUP 0.318 – – – –

ssGBLUP – a0.407a
a0.398a

a0.404a
a0.395a

ssFGBLUP – – a0.401a
a0.387a

a0.369a

ssWGBLUP_bin1 – a0.406a
a0.398a

a0.405a
a0.396a

ssWGBLUP_bin30 – a0.412a
a0.398a

a0.401a
a0.389a

ssWGBLUP_bin100 – a0.410a
a0.405a

a0.405a
a0.406a

Non-genotyped PBLUP 0.126 – – – –

ssGBLUP – a0.139a
a0.138a

a0.140a
a0.139a

ssFGBLUP – – a0.138a
a0.141a

a0.138a

ssWGBLUP_bin1 – a0.140a
a0.137a

a0.139a
a0.139a

ssWGBLUP_bin30 – a0.138a
a0.136a

a0.139a
a0.139a

ssWGBLUP_bin100 – a0.139a
a0.137a

a0.140a
a0.143a

IFLc Genotyped PBLUP 0.086 – – – –

ssGBLUP – a0.234a
a0.229a

a0.236a
a0.230a

ssFGBLUP – – a0.213a
a0.234a

a0.218a

ssWGBLUP_bin1 – a0.239a
a0.232a

a0.238a
a0.234a

ssWGBLUP_bin30 – a0.245a
a0.239a

a0.247a
a0.236a

ssWGBLUP_bin100 – a0.240a
a0.233a

a0.244a
a0.240a

Non-genotyped PBLUP 0.108 – – – –

ssGBLUP – a0.088a
a0.087a

ab0.090a
a0.089a

ssFGBLUP – – a0.083b
a0.093a

a0.089ab

ssWGBLUP_bin1 – a0.086a
a0.085a

ab0.089a
a0.087a

ssWGBLUP_bin30 – a0.085a
a0.083a

b0.086a
a0.084a

ssWGBLUP_bin100 – a0.084a
a0.083a

ab0.084a
a0.083a

ICF Genotyped PBLUP 0.031 – – – –

ssGBLUP – a0.140a
a0.143a

a0.143a
a0.145a

ssFGBLUP – – a0.147a
a0.149a

a0.153a

ssWGBLUP_bin1 – a0.140a
a0.144a

a0.142a
a0.145a

ssWGBLUP_bin30 – a0.138a
a0.140a

a0.142a
a0.144a

ssWGBLUP_bin100 – a0.140a
a0.141a

a0.142a
a0.144a

Non-genotyped PBLUP 0.069 – – – –

ssGBLUP – a0.069c
a0.070bc

a0.071ab
a0.072a

ssFGBLUP – – a0.073a
a0.076a

a0.078a

ssWGBLUP_bin1 – a0.069b
a0.070ab

a0.071a
a0.072a

ssWGBLUP_bin30 – a0.069b
a0.070b

a0.071ab
a0.072a

ssWGBLUP_bin100 – a0.069b
a0.071ab

a0.072a
a0.073a
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to 0.361, 0.363, 0.360, and 0.358 for genotyped animals, 
and 0.149, 0.148, 0.147, and 0.148 for non-genotyped ani-
mals. Although the differences were very small between 
region sizes, a region size of 30 SNPs was generally optimal 
for the ssWGBLUP models, which was consistent with the 
predictions using a BayesN0 model with different region 
sizes. For the ssFGBLUP models, the three SNP sets that 
included SNPs selected from sequencing data were used 
and compared to the basic ssGBLUP model, no improve-
ment in prediction reliability was observed except for milk 
production traits with the 54K + DFS SNP set, but this 
improvement was not significant.

Regression coefficients from the Bayesian models for 
genotyped animals are in Table S4 (see Additional file 1: 
Table S4). Compared with the BayesN0_WG model, the 
BayesN0 models with a region size of 1, 30, or 100 SNPs 
resulted in less bias (the deviation of regression coeffi-
cient from 1) for fat yield, IFLh, and IFLc, more bias for 
milk yield and ICF, and a similar level of bias for protein 
yield. Regression coefficients obtained by using different 
SNP sets were generally similar in all BayesN0 models. 
Regression coefficients from PBLUP and various ssG-
BLUP models are in Tables 5 and 6. For genotyped ani-
mals, compared to the PBLUP models, the ssGBLUP 
models resulted in less bias for IFLh and ICF, more bias 
for milk, fat, and protein yields, and a similar level of bias 
for IFLc. For non-genotyped animals, compared to the 
PBLUP models, the ssGBLUP models resulted in less bias 
for IFLc, more bias for protein yield and ICF, and a simi-
lar level of bias for milk and fat yields, and IFLh. With the 
ssGBLUP models, for both milk production and female 
fertility traits, less bias was observed for non-genotyped 
animals than for genotyped animals. Differences in 
regression coefficients estimated with the different SNPs 
sets were small when using the ssGBLUP models. Com-
pared to the basic ssGBLUP model, the alternative mod-
els, ssWGBLUP and ssFGBLUP, resulted in a similar level 
of bias or in a significantly increased bias for all SNP sets.

Discussion
Most previous studies that investigated the impact of 
integrating SNPs selected from sequencing data on 
genomic prediction focused on genotyped animals only 
[5–7, 33]. In this study, we investigated the effects of 
integrating such SNPs for both genotyped and non-gen-
otyped animals using ssGBLUP models that make dif-
ferent assumptions on SNP effects. The improvement in 
prediction reliability from integrating SNPs selected from 
sequencing data varied according to trait, and the best 
model also varied according to SNP set and trait.

Integrating SNPs selected from sequencing data 
improved reliabilities for milk production traits, which 
have heritabilities of about 0.37 but not for female 

fertility traits, which have heritabilities lower than 0.05. 
This is in line with a previous study for genotyped Danish 
Jersey animals [7], which reported improvements of relia-
bilities from integrating DFS and FRA SNPs for milk, fat, 
and protein yields but not for the female fertility index. 
In Danish Jersey, the selected DFS + FRA SNPs contained 
more top SNPs for milk production traits than for female 
fertility traits. For example, among the top 20 SNPs 
from the 54K + DFS + FRA SNP set for each trait using 
the BayesN0_bin1 model, nine DFS + FRA SNPs were 
found for milk yield, four for fat yield, and eight for pro-
tein yield, but only one for IFLh, three for IFLc, and one 
for ICF. Among the three milk production traits, for fat 
yield there were fewer top SNPs among the SNPs selected 
from sequencing data and, accordingly, improvement in 
its reliability from integrating these SNPs was relatively 
small in Danish Jersey, which was also observed in a pre-
vious study [7]. This result could be due to the fact that 
Jersey cattle are characterized by an extremely high level 
of fat percentage and have large differences in fat pro-
file compared to other breeds (e.g. Holsteins [34]). Since 
the SNPs selected from sequencing data were obtained 
from multiple breeds, they probably have limited effects 
on fat yield in Danish Jersey, especially when the effect 
of the DGAT1 (diacylglycerol O-acyltransferase 1) gene 
is already well-accounted for by the 54K-SNP chip (ARS-
BFGL-NGS-4939 is the top SNP for fat yield in the 54K-
SNP chip and is located within the DGAT1 gene). For 
milk production traits, the magnitude of improvement in 
reliability from integrating SNPs selected from sequenc-
ing data was smaller in our study than that reported in 
[7]. One explanation is that, since the reference popula-
tion size was larger, the improvement from using an addi-
tional source of information, such as integrating SNPs 
selected from sequencing data, was smaller [7, 35]. In 
addition, compared with a GBLUP model, the use of ped-
igree information for both non-genotyped animals and 
genotyped animals ( ωa = 0.2 ) in a ssGBLUP model may 
dilute the impact of integrating SNPs selected from the 
sequencing data. Compared to the milk production traits, 
for female fertility traits, the power of QTL detection 
was expected to be lower due to much lower heritabili-
ties, and the number of SNPs being selected was smaller 
because of the relatively lower economic importance [7]. 
For IFLh, we observed slight decreases in reliabilities for 
genotyped animals after integrating SNPs selected from 
sequencing data, which could be due to sampling errors 
resulting from the extremely low heritability of this trait 
and the relatively small sample size of the validation pop-
ulation (3749 genotyped females with a reliability of YD 
as low as 0.014). As expected, by using the multiple t-test, 
none of the decreases in reliability reached the signifi-
cance threshold. By using a ssGBLUP model, the impact 
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of integrating SNPs selected from sequencing data could 
be investigated for non-genotyped animals as well. 
Similar to that observed for genotyped animals, inte-
grating SNPs selected from sequencing data improved 

reliabilities for milk and protein yields, although the 
magnitude of improvement was much smaller than that 
observed for genotyped animals.

Table 5  Regression coefficients of  yield deviation (YD) on  prediction from  a  pedigree-based BLUP (PBLUP) model 
and different ssGBLUP models using different SNP sets for milk production traits

ssGBLUP models = a single-step genomic BLUP (ssGBLUP) model, a featured ssGBLUP (ssFGBLUP) model, and weighted ssGBLUP models with a region size of 1 
(ssWGBLUP_bin1), 30 (ssWGBLUP_bin30), or 100 SNPs (ssWGBLUP_bin100)

SNP sets = SNPs on the 54K-SNP chip (54K), SNPs on the 54K-SNP chip together with sequencing SNPs selected by Denmark-Finland-Sweden (54K + DFS), SNPs on 
the 54K-SNP chip together with sequencing SNPs selected by France (54K + FRA), and SNPs on the 54K-SNP chip together with both sets of selected sequencing SNPs 
(54K + DFS + FRA)

a,b,csubscript letters to the left are for comparisons among models using the same SNP set, and superscript letters to the right are for comparisons among SNP sets 
using the same model. Regression coefficients with no common letter differ significantly (P < 0.05)

Trait Population Model Pedigree SNP

54K 54K + DFS 54K + FRA 54K + DFS + FRA

Milk Genotyped PBLUP 0.89 – – – –

ssGBLUP – a0.84a
a0.83a

a0.83a
a0.83a

ssFGBLUP – – a0.83a
b0.81a

a0.82a

ssWGBLUP_bin1 – c0.80a
b0.80a

c0.79a
b0.80a

ssWGBLUP_bin30 – b0.81a
b0.80b

bc0.80b
b0.80b

ssWGBLUP_bin100 – b0.81a
b0.81ab

c0.80b
b0.80b

Non-genotyped PBLUP 0.87 – – – –

ssGBLUP – a0.87a
a0.87a

a0.86a
a0.86a

ssFGBLUP – – ab0.87a
a0.86b

a0.86ab

ssWGBLUP_bin1 – b0.85a
c0.85a

b0.84a
b0.85a

ssWGBLUP_bin30 – ab0.85a
c0.85a

b0.85a
b0.85a

ssWGBLUP_bin100 – a0.86a
bc0.86a ab0.85ab

b0.85b

Fat Genotyped PBLUP 0.77 – – – –

ssGBLUP – a0.74a
a0.74a

a0.73a
a0.73a

ssFGBLUP – – a0.75a
a0.72b

a0.73b

ssWGBLUP_bin1 – b0.68a
b0.68a

b0.68a
b0.68a

ssWGBLUP_bin30 – b0.69a
b0.70a

b0.69a
b0.70a

ssWGBLUP_bin100 – b0.70a
b0.69a

b0.69a
b0.68a

Non-genotyped PBLUP 0.77 – – – –

ssGBLUP – a0.78a
a0.78a

a0.77b
a0.77b

ssFGBLUP – – a0.79a
ab0.77b

a0.77b

ssWGBLUP_bin1 – b0.76a
b0.76a

bc0.76a
b0.76a

ssWGBLUP_bin30 – b0.76b
b0.77a

ab0.77a
ab0.76ab

ssWGBLUP_bin100 – b0.76a
b0.76ab

c0.75bc
c0.74c

Protein Genotyped PBLUP 0.81 – – – –

ssGBLUP – a0.76a
a0.77a

a0.76a
a0.76a

ssFGBLUP – – a0.78a
a0.75b

a0.76b

ssWGBLUP_bin1 – b0.73a
b0.73a

b0.72a
b0.72a

ssWGBLUP_bin30 – b0.73a
b0.74a

b0.72a
b0.73a

ssWGBLUP_bin100 – b0.74a
b0.73ab

b0.72ab
b0.72b

Non-genotyped PBLUP 0.80 – – – –

ssGBLUP – a0.77a
ab0.77a

a0.77a
a0.77a

ssFGBLUP – – a0.78a
ab0.76b

a0.77ab

ssWGBLUP_bin1 – a0.77ab
ab0.77a

ab0.76ab
ab0.76b

ssWGBLUP_bin30 – a0.76a
b0.76a

ab0.76a
a0.76a

ssWGBLUP_bin100 – a0.77a
b0.76ab

b0.75bc
b0.75c
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The strategy used to select SNPs from sequencing data 
can highly impact their role in genomic prediction. The 
DFS and FRA SNPs were selected by association analyses 

and bioinformatics analyses [6, 20]. The benefits of inte-
grating sequencing SNPs selected by association analy-
ses have been verified in various populations, such as 

Table 6  Regression coefficients of  yield deviation (YD) on  prediction from  a  pedigree-based BLUP (PBLUP) model 
and different ssGBLUP models using different SNP sets for female fertility traits

ssGBLUP models = a single-step genomic BLUP (ssGBLUP) model, a featured ssGBLUP (ssFGBLUP) model, and weighted ssGBLUP models with a region size of 1 
(ssWGBLUP_bin1), 30 (ssWGBLUP_bin30), or 100 SNPs (ssWGBLUP_bin100)

SNP sets = SNPs in the 54K-SNP chip (54K), SNPs in the 54K-SNP chip together with sequencing SNPs selected by Denmark–Finland–Sweden (54K + DFS), SNPs in the 
54K-SNP chip together with sequencing SNPs selected by France (54K + FRA), and SNPs in the 54K-SNP chip together with both sets of selected sequencing SNPs 
(54K + DFS + FRA)

IFLh the interval from first to last insemination in heifers, IFLc the interval from first to last insemination in cows, ICF the interval from calving to first insemination

a,b,csubscript letters to the left are for comparisons among models using the same SNP set, and superscript letters to the right are for comparisons among SNP sets 
using the same model. Regression coefficients with no common letter differ significantly (P < 0.05)

Trait Population Model Pedigree SNP

54K 54K + DFS 54K + FRA 54K + DFS + FRA

IFLh Genotyped PBLUP 1.64 – – – –

ssGBLUP – a1.56a
a1.54a

a1.55a
a1.53a

ssFGBLUP – – a1.55a
a1.49a

a1.46a

ssWGBLUP_bin1 – a1.55a
a1.54a

a1.55a
a1.53a

ssWGBLUP_bin30 – a1.55a
a1.53a

a1.53a
a1.51a

ssWGBLUP_bin100 – a1.54a
a1.53a

a1.52a
a1.53a

Non-genotyped PBLUP 1.08 – – – –

ssGBLUP – a1.10a
a1.10a

a1.10a
a1.10a

ssFGBLUP – – a1.02a
a1.09a

a1.05a

ssWGBLUP_bin1 – a1.10a
a1.09a

a1.10a
a1.10a

ssWGBLUP_bin30 – a1.10a
a1.09a

a1.10a
a1.10a

ssWGBLUP_bin100 – a1.10a
a1.09a

a1.10a
a1.11a

IFLc Genotyped PBLUP 1.17 – – – –

ssGBLUP – a1.18a
a1.17a

a1.20a
a1.18a

ssFGBLUP – – a1.11a
a1.20a

a1.14a

ssWGBLUP_bin1 – a1.18a
a1.16a

a1.19a
a1.17a

ssWGBLUP_bin30 – a1.18a
a1.16a

a1.19a
a1.16a

ssWGBLUP_bin100 – a1.17a
a1.15a

a1.18a
a1.17a

Non-genotyped PBLUP 1.32 – – – –

ssGBLUP – a1.03bc
a1.02c

a1.05a
a1.04ab

ssFGBLUP – – b0.99c
a1.07a

ab1.04b

ssWGBLUP_bin1 – b1.02b
ab1.01b

b1.04a
b1.02ab

ssWGBLUP_bin30 – b1.00a
b0.99a

c1.01a
c1.00a

ssWGBLUP_bin100 – b1.00a
b0.99a

bc1.00a
bc0.99a

ICF Genotyped PBLUP 0.57 – – – –

ssGBLUP – a0.66a
a0.67a

a0.67a
a0.67a

ssFGBLUP – – a0.67a
a0.67a

a0.68a

ssWGBLUP_bin1 – a0.66a
a0.67a

a0.66a
a0.67a

ssWGBLUP_bin30 – a0.65a
a0.66a

a0.66a
a0.67a

ssWGBLUP_bin100 – a0.65a
a0.66a

a0.66a
a0.66a

Non-genotyped PBLUP 0.89 – – – –

ssGBLUP – a0.71b
a0.72ab

a0.73a
a0.73a

ssFGBLUP – – a0.74a
a0.75a

a0.76a

ssWGBLUP_bin1 – a0.71b
a0.72ab

a0.73ab
a0.73a

ssWGBLUP_bin30 – a0.71b
a0.72ab

a0.73ab
a0.73a

ssWGBLUP_bin100 – a0.71b
a0.72ab

a0.73a
a0.73a
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Nordic Holsteins [5], Nordic Red [6], and Danish Jersey 
[7]. However, very few studies have examined the effect 
of sequencing SNPs selected by bioinformatics analy-
ses. Fang et  al. [36] showed that reliabilities of genomic 
prediction improved by constructing a model including 
an additional feature genetic component based on SNPs 
associated with specific biologically significant Gene 
Ontology (GO) terms [37], compared to the use of a basic 
GBLUP model, especially in an across-breed prediction. 
VanRaden et  al. [38] compared strategies of selecting 
sequencing variants using the sequencing data from the 
1000 Bull Genomes project and showed that reliabilities 
increased slightly (by 0.004) when both 481,904 candi-
date SNPs selected from association analyses and 249,966 
insertions-deletions were integrated into the genotype 
data of the HD chip. In our study, by integrating the DFS 
and FRA SNPs that were selected based on sequenc-
ing data in multiple breeds, the information from the 
breeds with large reference population sizes allowed us 
to improve genomic prediction of Danish Jersey, which is 
a numerically small population. The importance of using 
SNPs selected from sequencing data in multiple breeds 
was previously suggested in a study on Holstein–Frie-
sian bulls [33], which showed that the use of sequenc-
ing SNPs selected from single-breed association analyses 
decreased the prediction reliability and increased the bias 
for protein yield, somatic cell score, and IFL, because it 
is difficult to select top SNPs when extended linkage dis-
equilibrium exists within a single breed.

The performance in terms of genomic prediction mod-
els depends on the assumptions made about the effects of 
SNPs, the genetic architecture of the trait, and the SNP 
set used. In our study, when we used the 54K SNP set, the 
ssWGBLUP model outperformed the ssGBLUP model 
for milk and protein yields but not for fat yield and three 
female fertility traits. This is in line with a previous study 
that also used the 54K SNP set on genotyped Danish Jer-
sey animals, which showed that a Bayesian R model [15] 
outperformed the GBLUP model for milk and protein 
yields, but not for fat yield, mastitis and the female fer-
tility index [7]. Similarly, in French dairy goats, using a 
54K-SNP chip, weighted ssGBLUP models outperformed 
basic ssGBLUP models for traits with identified QTL 
but not for the traits without known QTL [39]. A similar 
conclusion was given by Zhang et al. [16] in a simulation 
study. Tiezzi and Maltecca [40] investigated weighted G 
matrices for traits with different genetic architectures in 
US Holsteins and showed that predictive performances 
increased and bias decreased for traits with moderate to 
high heritabilities, such as fat and protein percentages. 
They also showed that, even for lowly heritable traits 
such as calving ease, gain in reliability was achieved when 
using the weighted G matrix. Other studies reported that 

the benefit on reliability from using models that prior-
itize, select, or weight SNPs is greater for small datasets 
[5, 7]. Compared with the previous study on genotyped 
Danish Jersey animals [7] that used the 54K  SNP set, 
for genotyped animals, we observed that the benefit on 
reliability from weighting SNPs decreased for milk and 
protein yields when a large number of non-genotyped 
animals were included.

When SNPs selected from sequencing data were inte-
grated in the SNP set, the reliability reached by the best 
ssWGBLUP model was slightly higher than that from the 
basic ssGBLUP model for milk and protein yields, but 
the difference was not statistically significant. In other 
words, adding SNPs selected from sequencing data to the 
54K-SNP chip increased prediction reliability, but no fur-
ther improvement was obtained by using the weighting 
strategy. This result does not agree with that of the sim-
ulation study by [8], which showed an increase in accu-
racy by adding causal variants to the standard SNP chip, 
and a further increase when QTL and SNPs received 
weights from GWAS. It is possible that the signals of 
added sequencing SNPs were stolen by the nearby 54K 
SNPs [38]. In other words, even when the basic ssGB-
LUP model is used, more weight could be automatically 
given to the QTL regions for which the marker density 
is increased by adding SNPs selected from sequenc-
ing data. Similar results were also observed in previous 
studies. In the study on genotyped Danish Jersey animals 
of [7], the superiority of a Bayesian R model [15] over a 
GBLUP model was found to decrease after integrating 
SNPs selected from sequencing data. In another study on 
eggshell strength, feed intake, and laying rate in a com-
mercial brown layer line using a HD chip and sequencing 
data, Ni et al. [41] reported that although the highest pre-
dictive ability was achieved when using sequencing SNPs 
that are located in or around a gene, reliability did not 
increase with a ssWGBLUP model compared to a basic 
ssGBLUP model. A similar conclusion was drawn by 
Fragomeni et al. [9], who reported that a basic ssGBLUP 
model slightly outperformed a ssWGBLUP model for 
stature in US Holsteins when sequencing SNPs selected 
by association analyses were integrated in the SNP set.

In the ssWGBLUP models, we used the posterior SNP 
variances estimated from the BayesN0 models to weight 
SNPs in the construction of the G matrices. Previous 
studies have investigated the weights generated from 
various parameters, including SNP variances [16, 17, 19, 
38, 40, 42–44], squared SNP effects [16–18, 41, 45], and 
−log10(P-values) [17, 41, 45]. Su et  al. [17] proved that 
a GBLUP model with a G matrix in which the SNPs are 
weighted by standardized posterior SNP variances esti-
mated from a Bayesian model was theoretically equiva-
lent to a Bayesian model. The superiority of using the 
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posterior variance from Bayesian models compared to 
other parameters was also confirmed by simulations [16] 
and analyses of real data [17].

In our study, the weights on SNPs within each region 
were generated from region-specific variances, which 
were estimated by a BayesN0 model [31] that provides the 
variance of SNPs within each non-overlapping genomic 
region directly. We also applied a ssWGBLUP model in 
which the weight on SNPs within a region was the aver-
age variance of each SNP within the region estimated 
from a Bayesian R model [15]. Estimating SNP variances 
first and then generating the weight for each region based 
on SNP variances is a strategy applied in various stud-
ies [17, 18]. Since the performance of the ssWGBLUP 
model using weights from a Bayesian R model (results 
not shown) was similar to that observed from a ssWG-
BLUP model using weights from a BayesN0 model, we 
present only the results from the latter. By comparing the 
results obtained with different region sizes, we found that 
reliabilities varied little with region size, except for pro-
tein yield for which a 30-SNP region resulted in a slightly 
higher reliability than a 1- or 100-SNP region when SNPs 
selected from sequencing data were integrated. Su et al. 
[17] compared weighted GBLUP models with a region 
size of 1, 5, 10, 30, 50, 70, 100 and 150 SNPs using the 
54K-SNP chip in Nordic Holsteins and suggested that 
a region size of 30 SNPs was optimal, but differences 
between different region sizes were less than 1percent-
age point. Teissier et  al. [19] compared weights from a 
single-marker weighting strategy with a group-marker 
weighting strategy in which the weight was either the 
sum or the maximum of single-marker weights among 
all SNPs within that region, and showed that the group-
marker strategy outperformed the single-marker strat-
egy. The reasoning behind the group-marker strategy was 
that the weight from the estimated parameter of a single 
SNP has a large uncertainty compared with the average 
from a group of SNPs. In addition, many studies applied 
ssWGBLUP models using an iterative process [18, 19, 42] 
in which the solutions of the current ssGBLUP model 
were used to generate quadratic weights (e.g. SNP vari-
ance [19] and squared SNP effects [18]) on SNPs in the 
next run. According to Wang et al. [42] and Teissier et al. 
[19], the second iteration was optimal if the unweighted 
ssGBLUP model was considered as the first iteration, 
since more iterations would cause overweighting of SNPs 
with large effects and underweighting of SNPs with small 
effects. The ssWGBLUP model in our study used the var-
iances estimated from the Bayesian model, which avoids 
the problem with the iterative procedure. Furthermore, 
under a framework of a single-trait evaluation, the ssW-
GBLUP model can take advantage of Bayesian models 
(weights could be lagged for three years based on Su et al. 

[17]) while keeping a similar computational cost to that 
of the basic ssGBLUP model.

Similar to the ssWGBLUP model, the ssFGBLUP 
model, which we introduce for the first time here, was 
allowed to place more emphasis on the SNPs selected 
from sequencing data than on the SNPs of the 54K-SNP 
chip. One difference between the ssFGBLUP and ssWGB-
LUP models is that ssFGBLUP assumes that all the SNPs 
within a same genetic component share the same vari-
ance, whereas ssWGBLUP allows each SNP or each SNP 
region to have its own variance and therefore does not 
prioritize all SNPs selected from sequencing data. In our 
study, no significant difference was found between the 
reliabilities from ssFGBLUP and a basic ssGBLUP model. 
On the one hand, the basic ssGBLUP model automati-
cally places more emphasis on the QTL regions because 
of the increased marker density in QTL regions due 
to the addition of SNPs selected from sequencing data, 
which were more likely to be causal SNPs or highly linked 
to causal SNPs. On the other hand, in the ssFGBLUP 
model, the proportions of variances accounted for by the 
two genetic components (54K SNPs vs. selected sequenc-
ing SNPs) were approximately derived from variance 
components estimated using a FGBLUP model. Such an 
approximation may be not optimal, because FGBLUP 
uses G matrices, which involve only genotyped animals 
whereas ssFGBLUP uses H matrices, which involve both 
genotyped and non-genotyped animals.

Regarding regression coefficients, with the same model, 
there was little difference among different SNP sets for 
both genotyped and non-genotyped animals. This was 
consistent with the finding from a previous study on 
stature in US Holsteins, where no difference in regres-
sion coefficients was observed between 54K and 54K plus 
16,648 selected sequencing SNPs for both basic ssGB-
LUP and ssWGBLUP (with weights derived from squared 
SNP effects) models [9]. In our study, considering both 
the results from regression coefficients and reliabilities, 
the integration of selected sequencing SNPs into the 
standard SNP chip was suggested for predicting breed-
ing values since it could improve the prediction reliabil-
ity without compromising unbiasedness. With the same 
SNP set, we found that the regression coefficients for all 
milk production traits decreased with ssWGBLUP model 
compared to the basic ssGBLUP model. Given that all 
milk production traits had regression coefficients lower 
than 1 for both genotyped and non-genotyped animals, 
the use of the weighting strategy as used in ssWGBLUP 
models increased the inflation of EBV. A previous study 
on stature in US Holsteins [9] reported similar results i.e., 
that for both 54K and 54K plus 16,648 selected sequenc-
ing SNPs, the regression coefficient of ssGBLUP mod-
els decreased from 0.88 to 0.79 after weighting SNPs by 
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squared SNP effects. However, when weighting of the 
SNPs was carried out by a nonlinear method [12] that 
resembled the Bayesian A method, the change in regres-
sion coefficients was limited. In our study, considering 
both the results from regression coefficients and reli-
abilities, a basic ssGBLUP model was suggested when 
integrating SNPs selected from sequencing data since the 
ssWGBLUP model resulted in little improvement in reli-
abilities but could lead to more inflation in EBV. For IFLh 
and ICF, unstable regression coefficients were observed 
for genotyped animals, even when using a PBLUP model 
which did not involve any genomic information. The 
reasons causing the unusual regression coefficients are 
unclear. One possible reason for this could be the con-
sequence of the low heritability of the trait (lower than 
0.05) and a relatively small sample size of the validation 
population (3749 for IFLh and 2833 for ICF), where a 
small change in additive genetic variance resulting from 
a sampling error could lead to a large change on the EBV 
scale. However, this may not be sufficient to account for 
these unusual regression coefficients. There may be some 
underlying mechanisms that are difficult to identify.

Conclusions
In summary, we show that when using the genotype data 
of the 54K-SNP chip, a ssWGBLUP model with a com-
mon weight on the SNPs within a specific region (about 
30 SNPs) can be a feasible approach for routine genomic 
evaluation. Integrating relevant SNPs selected from 
sequencing data by association and bioinformatics analy-
ses into the standard SNP chip slightly improves genomic 
prediction reliability. With such a SNP set, we recom-
mend the use of a basic ssGBLUP model since no sig-
nificant improvement is observed from using alternative 
models such as ssWGBLUP and ssFGBLUP.
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