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1. Introduction

The chemostat refers to a laboratory device used for the growth of micro-organisms in a
culture environment [26, 27], that has been regarded as an idealization of the nature to study
microbial ecosystems in stationary stage [22]. It turned out to be an important investigation
field due to a large number of applications, especially in waste water treatment [16, 25] but also
in ecological and environmental sciences (see [4, 15, 23, 24, 31]).
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It is worth mentioning that the chemostat has been subject to a large number of scientific
publications and books, not only in biology and ecology but also in mathematics. Indeed there
exists a specific research area about the so-called “theory of the chemostat” [20, 34] where many
researchers have been involved in the last years. This interest has been strengthened by the fact
that the chemostat device can be mathematically modeled in a simple way which reproduces
quite faithfully real bio-processes.

Let us recall quickly in what consists the original chemostat device. It is composed of three
tanks, the feed bottle, the culture vessel and the collection vessel, which are interconnected by
pumps (see Figure 1). The substrate is stored in the feed bottle and provided with a given flow
rate to the culture vessel, where interactions between nutrient and microbial biomass take place.
The media from the culture vessel is also withdrawn towards the collection vessel with the same
flow rate, to keep the volume in the culture vessel constant.

Feed Bottle Collection VesselCulture Vessel

Figure 1. The chemostat

The mathematical model of the chemostat is given by the following dynamical system

ds

dt
= D(sin − s)− µ(s)x, (1.1)

dx

dt
= −Dx+ µ(s)x, (1.2)

where s = s(t) and x = x(t) denote the concentration of substrate and species, respectively, sin
is the input concentration of nutrient, D is the removal rate (also called input flow rate), and
µ(·) is the specific growth function describing the kinetics of the nutrient consumption by the
bacterial species. Here, we assume that the yield coefficient of the conversion of the substrate
into biomass is equal to 1 (that is always possible to impose by a change of the unit of the
biomass concentration). More specifically, we consider in the present work the Haldane growth
function

µ(s) = µ0
s

s+ ks + s2

ki

, s ≥ 0, (1.3)

where ks is the affinity constant and ki a parameter modeling the growth inhibition under large
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concentrations of substrate. Since it will be useful later, let us define the number

sm := arg max µ(s) =
√
kiks. (1.4)

Many works have been dedicated to this classical deterministic model of the chemostat (see 
for instance [20, 34]) but most of time the removal rate D is kept constant, although it is 
well-known that in practice it is frequently subject to disturbances (see for instance [9] where 
some chronicles of time varying removal rates are depicted).

Motivated by this fact, it has been proposed a modeling of the perturbations on the input flow 
rate in the chemostat model (1.1)-(1.2) by D + Φ(z∗(θtω)), where z∗(θtω) denotes the Ornstein-
Uhlenbeck process (introduced in more detail in Section 2) and Φis a bounded function defined 
as

Φ(z) = −2d arctan(z), (1.5)
π

where d > 0 (see, for instance, [3, 11] for other possible functions).

In this way, once practitioners provide us with an interval [Dl, Dr] ⊂ R, 0 < Dl < D < Dr < ∞, 
(typically obtained from observations) we can define d = Dr − D = D − Dl and then the 
perturbed input flow is bounded for every time and any realization of the noise, i.e.,

Dl ≤ D + Φ(z∗(θtω)) ≤ Dr ∀t ∈ R. (1.6)

Then, the random chemostat model writes as follows

ds

dt
= (D + Φ(z∗(θtω)))(sin − s)− µ(s)x, (1.7)

dx

dt
= (D + Φ(z∗(θtω)))x+ µ(s)x. (1.8)

One may wonder the reason why we consider this way of modeling bounded random 
fluctuations to perturb the input flow D in the model (1.1)-(1.2), instead of considering other 
stochastic process, such as for instance the well-known standard Wiener process. Indeed, this 
way has been typically used to model real perturbations and provides several advantages from 
both the mathematical and biological points of view, see for instance [11].

On the one hand, this way of modeling noise fits in a loyal way the bounded variations of the 
input flow r ate o bserved i n r eal l ife. O n t he c ontrary, t he W iener p rocess i s u nbounded with 
probability one which leads to arbitrary large (possibly negative) values of the corresponding 
perturbed input flow r ate, w hich i s n ot r ealistic a t a ll f rom t he b iological p oint o f v iew. We 
refer readers to [7, 11] where the authors explain the relevant drawbacks found when perturbing 
the input flow in the classical deterministic chemostat (1.1)-(1.2) with a  Wiener process (where 
µ is a Monod growth function).

submitted to Mathematical Biosciences and Engineering



4

Moreover, the approach proposed in this paper allows to prove the persistence of the bacterial 
species (under some conditions on the growth function), as it is observed by practitioners on 
very long time periods despite variations of the input flow r ate. T his i s n ot t he c ase when 
considering the Wiener process where persistence cannot be ensured (see [7] and [8] where the 
Wiener process is used to model disturbances on the input flow and environmental perturbations 
in the classical deterministic chemostat).

In industrial setup, large concentrations of the input substrate sin can be observed and it 
is also well-known that bacterial species may suffer from growth inhibition under very large 
concentrations s. The non-monotonic growth function (1.3) precisely models this fact (see [1]). 
Differently to the classical case, where the growth function µ is assumed to be increasing (as 
this is the case for the Monod function), the dynamics of the deterministic chemostat model 
with such non-monotonic growth function may exhibit a bi-stability for certain values of the 
dilution rate D (see for instance [20]). Depending on the initial condition, the state of the 
system converges asymptotically to the wash-out of the biomass (which is not a desirable state) 
or a to positive equilibrium. This kind of instability is observed in practice and present an issue 
in industrial applications because its requires a good monitoring of the system to detect if the 
state belongs the attraction basin of the wash-out equilibrium [5, 28, 32, 33]. Most of the time, 
practitioners prefer to size the process to avoid such a behavior, i.e. such that the system admits 
an unique globally stable equilibrium (see also [30, 29]). This mathematically amounts to have 
the following condition

D < min(µ(sin), µ(sm)) (1.9)

(this result is recalled later one). The purpose of the present work is to study the behavior 
of the random dynamics when the constant removal rate is replaced by a bounded random 
process D+Φ(z∗(θtω)), which is supposed to be continuous, where D satisfies the condition (1.9).

The realizations of this variable may satisfy or not the condition (1.9) at some times t. If 
not, one may wonder if this could lead the biomass to extinction. This question is of primer 
importance for the practitioners for the good health of the bio-process. In other words, for a 
nominal removal rate that satisfies c ondition ( 1.9), i s t he p ersistence o f t he b iomass always 
guaranteed, even when the realizations of the noise provide effective values of the removal rate 
that do not satisfy this condition? Precise definitions o f p ersistence i n t he f ramework o f the 
chemostat will be given later one.

Let us underline that stochastic modeling of the chemostat has received a great attention 
in the literature, considering different kinds of demographic noise [13, 14, 18, 19, 21, 35], but 
few works have dealt with noise on the input, and much less in the case of considering Haldane 
consumption function, whereas this is quite natural for an open system as the chemostat, which 
is often the main source of fluctuations.

The paper is organized in the following way: in Section 2 we provide preliminaries and classical 
results about the deterministic chemostat model (1.1)-(1.2). In Section 3 we study the properties 
of the solutions of the random chemostat model with Haldane consumption kinetics (1.7)-(1.8).
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Then, in Section 4 we give conditions to ensure both uniform weak and strong persistence of the
species. In Section 5, several simulations are presented to support the theoretical study. Finally,
we present some conclusions in Section 6.

2. Preliminaries

In this section we recall briefly some results that are useful in this paper. For the sake of
clarity, we split this preliminary section in three different parts: the first one concerns classical
results of the deterministic chemostat model (1.1)-(1.2), the second one is about the Ornstein-
Uhlenbeck process and the third one recalls the definitions of persistence.

2.1. The deterministic chemostat model

The next proposition recalls the classical results about the chemostat model (1.1)-(1.2) when
µ is a non-monotonic function. We refer readers to [20, 34] for proofs and more details.
Proposition 2.1. Assume that there exists ŝ ∈ (0, sin) such that the function µ is increasing on
(0, ŝ) and decreasing on (ŝ, sin). Define the break-even concentrations λ−(D), λ+(D) as follows

λ−(D) = min{s ∈ [0, ŝ] ; µ(s) ≥ D}, D ∈ [0, µ(ŝ)]
λ+(D) = max{s ∈ [ŝ, sin] ; µ(s) ≥ D}, D ∈ [µ(sin), µ(ŝ)]

1. If D > µ(ŝ), the system (1.1)-(1.2) possesses an unique equilibrium E0 := (0, sin), which is
globally asymptotically stable on R2

+.
2. If D < µ(sin), the system (1.1)-(1.2) admits an unique positive equilibrium E− := (sin −
λ−(D), λ−(D)) which is globally asymptotically stable on R?+ × R+.

3. If D ∈ [µ(sin), µ(ŝ)], the system (1.1)-(1.2) presents a bi-stability between E− and E0. From
any initial condition in R?+ × R+ excepted on a set of null measure, the solution converges
asymptotically to E− or E0.

Remark 1. In practice, only the second case is desirable because it guarantees that in any
situation the wash-out of the biomass is avoided.
Remark 2. For the Haldane expression (1.3), one has explicit expressions of the functions λ±

λ±(D) =
(µ0 −D)ki ±

√
(µ0 −D)2k2

i − 4D2kski

2D .

Let us recall that the concept of break-even concentrations has been revisited in the context
of stochastic models of the chemostat [38, 39] but we will not need it here. We keep the classical
deterministic definition.

In the rest of the paper, we shall consider that we are in conditions of Proposition 2.1, that is
µ non-monotonic on the interval [0, sin] (otherwise the analysis is similar to monotonic growth
function and cannot present bi-stability). Throughout the paper we shall consider the following
hypothesis
Assumption 1. There exists sm ∈ (0, sin) such that the function µ is increasing on (0, sm) and
decreasing on (sm, sin).
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2.2. The Ornstein-Uhlenbeck process

We present here briefly the Ornstein-Uhlenbeck (OU) process. For more details we refer
readers to [6, 9, 10].

The Ornstein-Uhlenbeck (OU) process is a stationary mean-reverting Gaussian stochastic
process defined as

(t, ω) 7→ z(t, ω) := z∗(θtω) = −βν
0∫

−∞

eβsθtω(s)ds, for all t ∈ R, ω ∈ Ω, β, ν > 0, (2.1)

where ω denotes a standard Wiener process in a probability space (Ω,F ,P), β is the mean
reversion constant representing the strength with which the process is attracted by the mean,
ν > 0 is the volatility constant describing the variation or the size of the noise and θt denotes
the usual Wiener shift flow given by

θtω(·) = ω(·+ t)− ω(t), t ∈ R.

We note that the OU process (2.1) can be obtained as the stationary solution of the Langevin
equation

dz + βzdt = νdω. (2.2)
Typically, the OU process (2.1) can model the position of a particle by taking into account

its friction in a fluid (which is the main difference with the typical standard Wiener process).
Indeed, it can be considered as a generalization of the standard Wiener process and provides a
link between the standard Wiener process (β = 0, ν = 1) and no noise at all (β = 1, ν = 0).

From now on we consider β and ν fixed and z∗(θtω) the OU process defined above.

We recall in the next proposition some of its properties.

Proposition 2.2 (See [2, 12]). There exists a θt-invariant set Ω̃ ∈ F of Ω of full measure such
that for ω ∈ Ω̃ and β, ν > 0, we have

(i) the random variable |z∗(ω)| is tempered with respect to {θt}t∈R, i.e., for a.e. ω ∈ Ω̃,

lim
t→∞

e−ηt sup
t∈R
|z∗(θ−tω)| = 0, for all η > 0.

(ii) this mapping is a stationary solution of (2.2) with continuous trajectories

(t, ω)→ z∗(θtω) = −βν
0∫

−∞

eβs(θtω)(s)ds;

(iii) for any ω ∈ Ω̃ one has:

lim
t→±∞

|z∗(θtω)|
t

= 0; lim
t→±∞

1
t

∫ t

0
z∗(θsω)ds = 0;

lim
t→±∞

1
t

∫ t

0
|z∗(θsω)| ds = E [|z∗|] <∞.
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2.3. Persistence in the chemostat
We recall here the definitions of (uniform) persistence (see for instance [17]) that we consider 

in the present work .

Definition 2.1. The dynamics (1.7)-(1.8) is strongly persistent if there exists ε  > 0 such that 
for any initial condition (s(0), x(0)) in R+ × R?+ and any realization of the D + Φ(z∗(θ(·)ω)), the 
solution verifies

lim inf
t→+∞

x(t) > ε.

Definition 2.2. The dynamics (1.7)-(1.8) is weakly persistent if there exists ε > 0 such that for 
any initial condition (s(0), x(0)) in R+ ×R?+ and any realization of D + Φ(z∗(θ(·)ω)), the solution 
verifies

lim sup
t→+∞

x(t) > ε.

3. Properties of the solutions of the random dynamics

In this section we study the random chemostat model (1.7)-(1.8) presented in the introduc-
tion. We prove the existence and uniqueness of a global positive solution and provide results
about the existence of absorbing and attracting sets which, in addition, are deterministic (i.e.
that do not depend on the realization of the noise). In addition, we derive first conditions under
which extinction of species cannot be avoided.

In the sequel, we denote X := {(s, x) ∈ R2 : s, x ≥ 0} for the positive cone.

Theorem 3.1. For any initial condition u0 ∈ X , system (1.7)-(1.8) possesses a unique global
solution u(t; 0, ω, u0) = (s(t; 0, ω, u0), x(t; 0, ω, u0)) ∈ C1([0,+∞);X ). In addition, it remains in
X for every t > 0.

Proof. Let us first write system (1.7)-(1.8) as

du

dt
= L(θtω)u+ F (u, θtω),

where
u = s

x

)
, L(θtω) = −(D + Φ(z∗(θtω))) 0

0 −(D + Φ(z∗(θtω)))

)
and

F (u, θtω) =



(D + Φ(z∗(θtω)))sin − µ0
s

s+ ks + s2

ki

x

µ0
s

s+ ks + s2

ki

x

 .

F (·, θtω) ∈ C1(X × [0,+∞);X ) whence F is locally Lipschitz respect to u ∈ X . Therefore,
for each realization of the noise, du/dt = L(θtω)u+ F (u, θtω) is an non-autonomous differential
equation with a right member Lipschitz with respect to u and continuous with respect to t

submitted to Mathematical Biosciences and Engineering
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(recall that z∗(θtω) is continuous respect to t and Φ is also continuous). Therefore, the solution
of the Cauchy problem admits an unique local solution of system (1.7)-(1.8) from the theory of
ordinary differential equations.

Let us first show that both x and s remain in X for any u0 ∈ X . To this end, we notice first
that x(t) = 0 solves (1.7). By uniqueness of the Cauchy problem, we deduce that any other
solution is such that x(t) , 0 for any t. Notice also that one has, thanks to (1.6),

ds

dt

∣∣∣∣∣
s=0

= (D + Φ(z∗(θtω)))sin > 0,

which proves that the axis s = 0 is repulsive in X . This demonstrates the positiveness of the
solution of system (1.7)-(1.8).

Now we prove that both the substrate and the microorganisms concentrations remain bounded
for every time. To this end, define v(t) := s(t) + x(t). Then the variable v is solution of the
following differential equation

dv

dt
= (D + Φ(z∗(θtω)))(sin − v) ≤ Drsin −Dlv

and one, thanks to (1.6),
dv

dt
≤ Drsin −Dlv,

By comparison of solutions of scalar ODEs (see [37]) we obtain

v(t; 0, ω, v0) ≤ v0e
−Dlt + Dr

Dl sin
(
1− e−Dlt

)
, t ≥ 0.

Then, v is forward bounded and since v = s+ x ≥ 0, we deduce that both the solution s and x
are also bounded for positive time. The unique solution of system (1.7)-(1.8) is thus defined for
any t ≥ 0. �

Now, we prove the existence of deterministic attracting and absorbing sets for the solutions
of the random chemostat model (1.7)-(1.8).

Theorem 3.2. The system (1.7)-(1.8) possesses a deterministic (forward) attracting set

A := {(s, x) ∈ X : s+ x = sin} . (3.1)

Proof. Define the variable q(t) := s(t) − sin + x(t). Then q satisfies the following differential
equation

dq

dt
= −(D +Φ(z∗(θtω)))q

whose solution is given by

q(t; 0, ω, q(0)) = q(0)e−
∫ t

0 (D+Φ(z∗(θsω)))ds . (3.2)
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From (1.6), we have
q(0)e−Dr t ≤ q(t; 0, ω, q(0)) ≤ q(0)e−Dlt

and taking limit when t goes to infinity we have

lim
t→+∞

q(t; 0, ω, q(0)) = 0,

which means that, for any ε > 0, there exists T (ω, ε) > 0 such that

q(t; 0, ω, q(0)) ∈ [−ε, ε], t ≥ T (ω, ε).

This proves that
Bε := {(s, x) ∈ X : sin − ε ≤ s+ x ≤ sin + ε} .

is a (forward) deterministic absorbing set for system (1.7)-(1.8). As ε > 0 is arbitrary, the proof
is done. �

Remark 3. Let us underline that the attracting set (3.1) obtained in Theorem 3.2 does not
depend on the event ω ∈ Ω. This is another particularity that we get when considering this way
of modeling random bounded realizations.

Our aim now is to provide first conditions on the parameters of system (1.7)-(1.8) under
which extinction of the species occurs.

Theorem 3.3. Assume that the inequality

(3.3)Dl > µ(sm)

is fulfilled, where s m i s defined in  (1 .4). Then, the singleton

Ae := {(sin, 0)} ⊂ A

is a (forward) attracting set.

Proof. From the equation describing the dynamics of the species (1.8) and (1.6) one has

dx

dt
= −(D +Φ(z∗(θtω)))x + µ(s)x

(3.4)

≤ −(Dl − µ(sm))x.

and by comparison of solutions of scalar ordinary di

erential equations [37], we have

x(t; 0, ω, x(0)) ≤ x(0)e−(Dl−µ(sm))t.

Taking limit when t goes to infinity in (3.4), we get from (3.3) and Proposition 2.2 (iii),lim
t→+∞

x(t; 0, ω, x(0)) = 0.
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4. Conditions for persistence

In this section our aim is to provide conditions to ensure persistence of the species in the
sense defined in Section 2.3.

Before stating a result concerning the weak persistence of species, let us provide now the 
following property.

Proposition 4.1. Let beΦ(z) = −2d
π

lim
t→+∞

1
t

∫ t
0

arctan(z) defined as in (1.5). Then Φ

(z∗(θsω))ds = 0, a.s. inΦ . (4.1)

Proof. SinceΦ(z) = −2d
π

arctan(z), then we have

∫
Φ

∣∣∣∣∣−2d
π

∣∣∣∣∣arctan(z∗(ω)) dP(ω) ≤ d|Φ| = d

whenceΦ (z∗(ω)) ∈ L1(Φ, F , P). Then, since P is invariant by θ tω (see ??), from the Bircho
 ergodic theorem it yields that

lim
t→+∞

1
t

∫ t
0

Φ(z∗(θsω))ds = E[Φ(z∗(ω))], a. s. inΦ .

Hence, it is enough to show that E[Φ(z∗(ω))] = 0. In fact, we have

E[Φ(z∗(ω))] =
∫
R

Φ(x)fOU(x)dx = 0,

where fOU denotes the density function of the Ornstein-Uhlenbeck process, which is an odd 
function since it is gaussian, and Φ is an even function. �

Remark 4. From Proposition 4.1 we notice that we could model random perturbations as in 
this paper, i.e., by means of Φ(z∗(θtω), and the ergodic property (4.1) remains true as long as Φ
is an even function.

Theorem 4.1. Assume that the inequality

µ(sin) > D. (4.2)

is fulfilled. Then, the random chemostat model (1.7)-(1.8) is weakly persistent, that is there exits
ε > 0 such that for any initial condition x0 ∈ X , any realization satisfies

lim sup
t→+∞

x(t; 0, ω, x0) ≥ ε.

Proof. Let ε > 0 be such that µ(s) > D for all s ∈ [sin − ε, sin + ε] and define

η := min{µ(s)−D : s ∈ [sin − ε, sin + ε]} > 0.
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From Theorem 3.2, we know that s(t; 0, ω, s0) onverges asymptotically to the set [0, sin].
Therefore, there exists T (ω, ε) > 0 such that s(t; 0, ω, s0) < sin + ε for any t > T (ω, ε).

Consider now, for t > T (ω, ε), the sets

U(t) := {τ ∈ [T (ω, ε), t] : s(τ ; 0, ω, s0) < sin − ε} ,
V (t) := {τ ∈ [T (ω, ε), t] : s(τ ; 0, ω, s0) ∈ [sin − ε, sin + ε]}

and the functions in [0, 1]

u(t) := measU(t)
t− T (ω, ε) , v(t) := measV (t)

t− T (ω, ε) = 1− u(t).

Then, from equation (1.8), one can write the following inequality

ẋ(t) ≥

−(D + αδz
∗(θtω))x(t), t ∈ U(t)

(η − αδz∗(θtω))x(t), t ∈ V (t)

and by integration between T (ω, ε) and t > T (ω, ε) one get

x(t) ≥ x(T (ω, ε))e(t−T (ω,ε))
[
u(t)(−D)+(1−u(t))η− 1

t−T (ω,ε)

∫ t

T (ω,ε) Φ(z∗(θrω))dr
]
, t > T (ω, ε) (4.3)

Assume that one has
lim
t→+∞

u(t) = 0.

From Proposition 4.1, one has

lim
t→+∞

e
− 1

t−T (ω,ε)

∫ t

T (ω,ε) Φ(z∗(θrω))dr = 1

and then (4.3) gives
lim
t→+∞

x(t) = +∞

which is a contradiction since x is bounded. We deduce thus that the sets U(·) are necessarily
such that

meas U(t)→ +∞ when t→ +∞

that is
meas({t : s(t) < sin − ε}) = +∞

which shows that one has
lim inf
t→+∞

s(t) ≤ sin − ε

or equivalently
lim sup
t→+∞

x(t) ≥ ε > 0

since s(t) + x(t) converges to sin for any realization (see the proof of Theorem 3.2). �
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Remark 5. Theorem 4.1 proves the weak (uniformly) persistence of species as long asD < µ(sin)
is fulfilled, the same condition that guarantees the persistence in the deterministic case (see
Proposition 2.1). However, let us underline that we do not impose the upper bound Dr of
the variations of the removal rate to fulfill this inequality. This means that one could have
realizations of the disturbances such that the effective value of the removal rate is above µ(sin)
on large periods of time making the species to be arbitrary closed to the extinction but it will
always persist.

In the next result we consider a stronger condition on the upper bound Dr of the removal
rate which ensures the strong persistence of the species.

Theorem 4.2. Assume that the inequality

Dr < µ(sin) (4.4)

is fulfilled. Then, the random chemostat model (1.7)-(1.8) is strongly persistent and the set

Ap := {(x, y) ∈ X : s+ x = sin, x ≥ sin − λ−(Dr)} ⊂ A

is (forward) attracting, with (where the function λ− is defined in Proposition 2.1).

Proof. Take ε > 0 such that µ(s) > Dr for any s ∈ [sin − ε, sin + ε] and posit

η := min{µ(s)−Dr : s ∈ [sin − ε, sin + ε]} > 0.

From now on, we will s(t), x(t) and q(t) instead of s(t; 0, ω, s0), x(t; 0, ω, x0) and q(t; 0, ω, q0)
to make the readability easier even though we recall that every state variable depends on the
noise.

From Theorem 3.2, we know that the variable q(t) = s(t)−sin+x(t) converges asymptotically
to zero for any realization, and thus any solution s(t) of the random model (1.7)-(1.8) converges
to the set [0, sin]. Consequently, there exists T (ω, ε) > 0 such that

s(t) < sin + ε, q(t) > −κ, ∀t > T (ω, ε),

where
κ := µ(sin − ε/2)−Dr

µ(sin − ε/2) (ε/2) > 0.

If s(t) ∈ [sin− ε, sin + ε] for any t > T (ω, ε), then one has, from equation (1.8)), ẋ(t) > ηx(t)
for any t > T (ω, ε), which implies that x is unbounded, thus a contradiction. We deduce that
there exists a finite time T (ω) ≥ T (ω, ε) such that s(T (ω)) ≤ sin− ε/2. On another hand, from
equation (1.7), s(t) can be written as the solution of the non-autonomous dynamics

ds

dt
= F (t, s) := (D + Φ(z∗(θtω))− µ(s))(sin − s)− µ(s)q(t). (4.5)

Note that one has

F (t, sin − ε/2) ≤ (Dr − µ(sin − ε/2))(ε/2)− µ(sin − ε/2)q(t)
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and then

F (t, sin − ε/2) ≤ (Dr − µ(sin − ε/2))(ε/2) + µ(sin − ε/2)κ = 0, t > T (ω, ε)

(from the definition of κ). We deduce that the set [0, sin − ε/2] is forward invariant for the
semi-flow {ṡ = F (t, s), t > T (ω, ε)}. Therefore, one has

s(t) ≤ sin − ε/2, t > T (ω).

Then, one can write from equation (4.5)

ds

dt
≤ (Dr − µ(s))(sin − s)− µ(s)q(t), t > T (ω)

and from the comparison of solutions of scalar ordinary differential equations [37], one has the
inequality s(t) ≤ s+(t) for any t > T (ω), where s+(t) is solution of the Cauchy problem

ds+

dt
= (Dr − µ(s+))(sin − s+)− µ(s+)q(t), s+(T (ω)) = s(T (ω)).

Note that the solution s+(t) belongs to the interval [0, sin] for any t ≥ T (ω) (and is thus bounded)
and that its dynamics is asymptotic autonomous with limiting dynamics

ds†

dt
= (Dr − µ(s†))(sin − s†) (4.6)

Under assumption Dr < µ(sin), one has necessarily λ−(Dr) < sin and the property

(Dr − µ(σ))(λ−(Dr)− σ) > 0, ∀σ ∈ [0, sin] \ {λ−(Dr)}

is fulfilled. One finally obtains that the any solution of (4.6) in [0, sin] is such that s†(t)→ λ−(Dr)
when t → +∞. From the theory of asymptotically autonomous dynamical systems [36], one
concludes that s+(t) converges also to λ−(Dr) when t→ +∞, which proves that one has

lim sup
t→+∞

s(t) ≤ λ−(Dr)

or equivalently
lim inf
t→+∞

x(t) ≥ sin − λ−(Dr) > 0

since s(t) + x(t) converges to sin for any realization. This demonstrates the strong persistence
of the random dynamics (1.7)-(1.8) with the explicit lower bound sin − λ−(Dr). �

Now we consider the last situation when µ(sin) < D < µ(sm) which corresponds to the bi-
stability in the deterministic case. In the random framework, one cannot guarantee persistence
nor wash-out of the biomass. As we shall see later on simulations, the asymptotic behavior of
the solutions depends on the initial condition and the realization of the noise. However we show
that an upper bound on the biomass can be provided.
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Theorem 4.3. Assume x0 > 0. Then, the upper bound

lim sup
t→+∞

x(t; 0, ω, x0) ≤ sin − λ−(Dl)

for any solution of the random dynamics (1.7)-(1.8) as long as Dl < µ(sm).

Proof. Let us remark that in this proof we will write x(t), s(t) and q(t), or simply x, s and q,
instead of x(t; 0, ω, x0), s(t; 0, ω, s0) and q(t; 0, ω, q0) for the sake of simplicity.

Consider x0 > 0. Then, from (1.8) one has

dx

dt
= (µ(s)− (D + Φ(z∗(θtω))))x

= (µ(sin − x− q)− (D + Φ(z∗(θtω))))x := F (t, x), (4.7)

where q = sin − x− s.

We know that limt→+∞ q(t) = 0 then, for every ε > 0 there exists T (ω, ε) > 0 such that
|q(t)| < ε for every t > T (ω, ε). Thus x(t) < sin + ε for every t > T (ω, ε).

Moreover, for all x ∈ (sin−λ−(Dl)+ε, sin+ε), one has sin−x−q ∈ (−q−ε, λ−(Dl)−q−ε). In
fact, since sin−x−q = s ≥ 0 (see Theorem 3.1), then we have sin−x−q ∈ (0, λ−(Dl)−q−ε) ⊂
(0, λ−(Dl)) whence F (t, x) < 0 since µ(0, λ−(Dl)) < Dl and D + Φ(z∗(θtω)) ≥ Dl.

Thus,
lim sup
t→+∞

x(t) ≤ sin − λ−(Dl) + ε

for every ε > 0. �

5. Numerical simulations

In this section we present several numerical simulations to support our theoretical results in 
three different cases: extinction, strong persistence and weak persistence of species.

Two different figures are presented i n each c ase. The first figure (wi th two  panels) concerns 
the dynamics of the substrate (top) and the species (bottom) in the random chemostat model 
(1.7)-(1.8) for different realizations of the noise (in colored continuous lines) along with the 
case without noise i.e. the deterministic chemostat model (in blue dashed lines). In addition, 
in each panel we display a little box with a zoom to illustrate better the dynamics around 
the attracting set. The second figure o ffers i nformation a bout t he c onsumption f unction of 
the consumer species and those parameters involved in conditions to have extinction, weak 
persistence and strong persistence of species.

We first present the case of extinction in Figure 2. We consider s0 = 14, x0 = 5 as initial 
conditions and set sin = 14, µ0 = 4, ks = 7.5, ki = 4, D = 1.4 and the interval given by
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practitioners from observations is [Dl, Dr] = [1.15, 1.65], then d = 0.25. In addition, ν  = 1 and 
 = 1. We can observe in Figure 3 that Dl > µ(sm) holds true and then, as proved in Theorem 
3.3, the species extinguishes (the attracting set in this case is {(0, sin)}).
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Figure 2. Extinction of species. Values of the parameters: sin = 14, µ0 = 4, ks = 7,
ki = 5, D = 1.4, Dl = 1.15, Dr = 1.65, d = 0.25 , β = 1, ν = 1 and the initial values
s0 = 14, x0 = 5

This is indeed quite intuitive as condition (3.3) basically means that the nominal value D 
of the removal rate is too large large compared to the growth kinetics (recall that Dl > µ(sm) 
implies D > µ(sm)), even though we start far away from the washout (sin, 0).

Figure 3. Consumption function of consumer species in case of extinction. Values of
the parameters: sin = 14, sm = 5.4772, D = 1.4, Dl = 1.65, Dl = 1.15, µ(sin) = 0.7943,
µ(sm) = 10699.

Now we present situations where weak and strong persistence is ensured. To compare, we
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start with the case of weak persistence by considering s0 = 16.7, x0 = 0.01 as initial conditions
and set sin = 16.7, µ0 = 7, ks = 7, ki = 7. In addition, β = 1 and ν = 1. Once fixed these
parameters, the removal rate D will be the set to allow conditions (4.4) and (4.2) be true or false.

In Figure 4 we set D = 1.7 and the interval [Dl, Dr] = [1.45, 1.95] then d = 0.25. In this case
D < µ(sin) is fulfilled (observe Figure 5) then we have weak persistence of species, see Theorem
4.1. Although we start very closed to the washout (sin, 0), we observe persistence of species.

Figure 4. Persistence of species in weak sense. Values of the parameters: sin = 16.7,
µ0 = 7, ks = 7, ki = 7, D = 1.7, Dl = 1.45, Dr = 1.95, d = 0.25, β = 1, ν = 1 and the
initial values s0 = 16.7, x0 = 0.01

Figure 5. Consumption function of consumer species in case of weak persistence.
Values of the parameters:sin = 16.7, sm = 7, D = 1.7, Dl = 1.45, Dr = 1.95, d = 0.25,
µ(sin) = 1.8397, µ(sm) = 2.3333

In Figure 6 we set D = 1.4 and the interval [Dl, Dr] = [1.15, 1.65] then d = 0.25. In this case
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Dr < µ(sin) holds true (see Figure 10) and then strong persistence of species is obtained from
Theorem 4.1.

Figure 6. Persistence of species in strong sense. Values of the parameters: sin = 16.7,
µ0 = 7, ks = 7, ki = 7, D = 1.4, Dl = 1.15, Dr = 1.65, d = 0.25, β = 1, ν = 1 and the
initial values s0 = 16.7, x0 = 0.01

Figure 7. Consumption function of consumer species in case of strong persistence.
Values of the parameters: sin = 16.7, sm = 7, D = 1.4, Dl = 1.15, Dr = 1.65, d = 0.25,
µ(sin) = 1.8397, µ(sm) = 2.3333

Moreover, we would like to notice that OU process proves again to be a powerful tool when
modeling real (bounded) noises. In addition, it allows us to observe clearly the difference
between weak and strong persistence.

Finally we present some numerical simulations to observe that both extinction and persistence
can be obtained when Dl < µ(sin) < D is fulfilled, as in the deterministic case. However, the
issue here depends also on the realization of the noise.
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Figure 8. Extinction of species. Values of the parameters: sin = 20.1, µ0 = 4, ks = 7,
ki = 7, D = 1, Dl = 0.75, Dr = 1.25, d = 0.25, β = 1, ν = 1 and the initial values
s0 = 20.1, x0 = 0.01

Figure 9. Persistence of species in strong sense. Values of the parameters: sin = 20.1,
µ0 = 4, ks = 7, ki = 7, D = 1, Dl = 0.75, Dr = 1.25, d = 0.25, β = 1, ν = 1 and the
initial values s0 = 20.1, x0 = 5
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Figure 10. Consumption function of consumer species in case of strong persistence.
Values of the parameters: sin = 20.1, sm = 7, D = 1, Dl = 0.75, Dr = 1.25, d = 0.25,
µ(sin) = 0.9479, µ(sm) = 1.3333

6. Conclusion

We have considered the chemostat model (1.1)-(1.2) with Haldane consumption kinetics,
under bounded perturbations on the input flow rate, motivated by real cases in industrial setup
and biotechnology. To this end, we use a bounded saturated function of the Ornstein-Uhlenbeck
process that allows us to ensure the noise to be bounded in realistic intervals.

We prove in Theorem 3.1 existence and uniqueness of global positive solution of the
corresponding random chemostat (1.7)-(1.8) by means of standard results from the theory of
ODEs and thanks to properties of the Ornstein-Uhlenbeck process. Then, in Theorem 3.2 we
establish the existence of an absorbing and attracting set which has the nice property to be
deterministic, i.e. that does not depend on the realization of the noise.

We then focused on the long-time behavior of the random dynamics inside this attracting
set. To this end, we first proved in Theorem 3.3 that extinction of species cannot be avoided
as long as Dl > µ(sm) whatever is the input concentration sin. On the opposite, we proved
in Theorem 4.1 the weakly uniformly persistence of species when D < µ(sin), which means
that species can be temporarily arbitrary closed to the extinction but still persist even when
having random disturbances in the input flow. The condition D < µ(sin) ensures persistence in
the deterministic case but the effective removal rate does not necessarily fulfills this condition
depending on the realizations. Finally, we prove the strong persistence of the species in Theorem
4.2 under the stronger condition Dr < µ(sin). in this case, we provide an explicit lower bound
for the asymptotic concentration of the species, a useful information for practitioners.

In addition, we support the theoretical results with several numerical simulations which
depicts the possible behaviors of the random dynamics. Moreover, this allows us to illustrate
the difference between weak and strong persistence: once fixed every parameter we change the
removal rate D to let conditions µ(sin) > D and µ(sin) > Dr be true or not. Condition to have
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weak persistence (µ(sin) > D) does not involve the noise and then the random realizations of
the species can fluctuate closed to zero and we still ensure persistence whereas condition to
have strong persistence (µ(sin) > Dr) only fulfills for realizations of the perturbed removal rate
inside a small enough interval.

To conclude, we would like to stress that the Ornstein-Uhlenbeck process has proved once
again to be relevant tool to model random disturbances in a biological framework. This stochastic
process fits in a quite loyal way the bounded fluctuations that are observed in practice, and justify
the (weak or strong) persistence of the biomass despite the possible realizations of noise, as also
observed in practice.
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chemostat models with multiplicative noise, Communications on Pure and Applied Analysis,
16 (2017), 1893–1914.

9. T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz and A. Rapaport, Modeling
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