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Research article

Study of the chemostat model with non-monotonic growth under
random disturbances on the removal rate
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Abstract: We revisit the chemostat model with Haldane growth function, here subject to
bounded random disturbances on the input flow rate, as often met in biotechnological or waste-
water industry. We prove existence and uniqueness of global positive solution of the random
dynamics and existence of absorbing and attracting sets that are independent of the realizations
of the noise. We study the long-time behavior of the random dynamics in terms of attracting
sets, and provide first conditions under which biomass extinction cannot be a voided. We prove
conditions for weak and strong persistence of the microbial species and provide lower bounds for
the biomass concentration, as a relevant information for practitioners. The theoretical results
are illustrated with numerical simulations.

Keywords: chemostat model, non-monotonic growth, bounded noise,
Ornstein-Uhlenbeck, absorbing set.

1. Introduction

The chemostat refers to a laboratory device used for the growth of micro-organisms in a
culture environment [26, 27], that has been regarded as an idealization of the nature to study
microbial ecosystems in stationary stage [22]. It turned out to be an important investigation
field due to a large number of applications, especially in waste water treatment [16, 25] but also
in ecological and environmental sciences (see [4, 15, 23, 24, 31]).
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It is worth mentioning that the chemostat has been subject to a large number of scientific
publications and books, not only in biology and ecology but also in mathematics. Indeed there
exists a specific research area about the so-called “theory of the chemostat” [20, 34] where many
researchers have been involved in the last years. This interest has been strengthened by the fact
that the chemostat device can be mathematically modeled in a simple way which reproduces
quite faithfully real bio-processes.

Let us recall quickly in what consists the original chemostat device. It is composed of three
tanks, the feed bottle, the culture vessel and the collection vessel, which are interconnected by
pumps (see Figure 1). The substrate is stored in the feed bottle and provided with a given flow
rate to the culture vessel, where interactions between nutrient and microbial biomass take place.
The media from the culture vessel is also withdrawn towards the collection vessel with the same
flow rate, to keep the volume in the culture vessel constant.

Figure 1. The chemostat

The mathematical model of the chemostat is given by the following dynamical system

ds
i D(sin — s) — p(s)z, (1.1)
dz
o = —Dx + u(s)x, (1.2)

where s = s(t) and x = z(t) denote the concentration of substrate and species, respectively, s;,
is the input concentration of nutrient, D is the removal rate (also called input flow rate), and
u(+) is the specific growth function describing the kinetics of the nutrient consumption by the
bacterial species. Here, we assume that the yield coefficient of the conversion of the substrate
into biomass is equal to 1 (that is always possible to impose by a change of the unit of the
biomass concentration). More specifically, we consider in the present work the Haldane growth

function s

M(S) =HKHo————=3, S >0, (13)

S
ks +—
s+ ks + i,

where k; is the affinity constant and k; a parameter modeling the growth inhibition under large

submitted to Mathematical Biosciences and Engineering



concentrations of substrate. Since it will be useful later, let us define the number
Sm = argmax u(s) = 1/ kiks. (1.4)

Many works have been dedicated to this classical deterministic model of the chemostat (see
for instance [20, 34]) but most of time the removal rate D is kept constant, although it is
well-known that in practice it is frequently subject to disturbances (see for instance [9] where
some chronicles of time varying removal rates are depicted).

Motivated by this fact, it has been proposed a modeling of the perturbations on the input flow
rate in the chemostat model (1.1)-(1.2) by D + ®z*(fw)), where z*(fw) denotes the Ornstein-
Uhlenbeck process (introduced in more detail in Section 2) and ®is a bounded function defined
as

P(z) = _%d arctan(z), (1.5)

where d > 0 (see, for instance, [3, 11] for other possible functions).
In this way, once practitioners provide us with an interval [D;, D,] CR,0< D;< D < D, < o0,

(typically obtained from observations) we can define d = D, — D = D — D; and then the
perturbed input flow is bounded for every time and any realization of the noise, i.e.,

Dy < D+ ®(2*(fw)) < D, VteR. (1.6)

Then, the random chemostat model writes as follows

O (D B (0))) (50— ) — ) (L7)
B = (D4 )+ o) (18)

One may wonder the reason why we consider this way of modeling bounded random
fluctuations to perturb the input flow D in the model (1.1)-(1.2), instead of considering other
stochastic process, such as for instance the well-known standard Wiener process. Indeed, this
way has been typically used to model real perturbations and provides several advantages from
both the mathematical and biological points of view, see for instance [11].

On the one hand, this way of modeling noise fits in a loyal way the bounded variations of the
input flow rate observed inreall ife. On t he c ontrary, t he Wiener p rocess i s unbounded with
probability one which leads to arbitrary large (possibly negative) values of the corresponding
perturbed input flow r ate, w hich i s n ot realisticat all from t he b iological p oint o f v iew. We
refer readers to [7, 11] where the authors explain the relevant drawbacks found when perturbing
the input flow in the classical deterministic chemostat (1.1)-(1.2) with a Wiener process (where
i is a Monod growth function).
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Moreover, the approach proposed in this paper allows to prove the persistence of the bacterial
species (under some conditions on the growth function), as it is observed by practitioners on
very long time periods despite variations of the input flow r ate. T hisisn ot t he c ase when
considering the Wiener process where persistence cannot be ensured (see [7] and [8] where the
Wiener process is used to model disturbances on the input flow and environmental perturbations
in the classical deterministic chemostat).

In industrial setup, large concentrations of the input substrate s;, can be observed and it
is also well-known that bacterial species may suffer from growth inhibition under very large
concentrations s. The non-monotonic growth function (1.3) precisely models this fact (see [1]).
Differently to the classical case, where the growth function p is assumed to be increasing (as
this is the case for the Monod function), the dynamics of the deterministic chemostat model
with such non-monotonic growth function may exhibit a bi-stability for certain values of the
dilution rate D (see for instance [20]). Depending on the initial condition, the state of the
system converges asymptotically to the wash-out of the biomass (which is not a desirable state)
or a to positive equilibrium. This kind of instability is observed in practice and present an issue
in industrial applications because its requires a good monitoring of the system to detect if the
state belongs the attraction basin of the wash-out equilibrium [5, 28, 32, 33]. Most of the time,
practitioners prefer to size the process to avoid such a behavior, i.e. such that the system admits
an unique globally stable equilibrium (see also [30, 29]). This mathematically amounts to have
the following condition

D < min(p(sim), (5m)) (1.9)

(this result is recalled later one). The purpose of the present work is to study the behavior
of the random dynamics when the constant removal rate is replaced by a bounded random
process D+®(z*(0,w)), which is supposed to be continuous, where D satisfies the condition (1.9).

The realizations of this variable may satisfy or not the condition (1.9) at some times t. If
not, one may wonder if this could lead the biomass to extinction. This question is of primer
importance for the practitioners for the good health of the bio-process. In other words, for a
nominal removal rate that satisfies ¢ ondition ( 1.9),1st he p ersistence o ft he b iomass always
guaranteed, even when the realizations of the noise provide effective values of the removal rate
that do not satisfy this condition? Precise definitions o f p ersistence in t he f ramework o f the
chemostat will be given later one.

Let us underline that stochastic modeling of the chemostat has received a great attention
in the literature, considering different kinds of demographic noise [13, 14, 18, 19, 21, 35], but
few works have dealt with noise on the input, and much less in the case of considering Haldane
consumption function, whereas this is quite natural for an open system as the chemostat, which
is often the main source of fluctuations.

The paper is organized in the following way: in Section 2 we provide preliminaries and classical
results about the deterministic chemostat model (1.1)-(1.2). In Section 3 we study the properties

of the solutions of the random chemostat model with Haldane consumption kinetics (1.7)-(1.8).
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Then, in Section 4 we give conditions to ensure both uniform weak and strong persistence of the
species. In Section 5, several simulations are presented to support the theoretical study. Finally,
we present some conclusions in Section 6.

2. Preliminaries

In this section we recall briefly some results that are useful in this paper. For the sake of
clarity, we split this preliminary section in three different parts: the first one concerns classical
results of the deterministic chemostat model (1.1)-(1.2), the second one is about the Ornstein-
Uhlenbeck process and the third one recalls the definitions of persistence.

2.1. The deterministic chemostat model

The next proposition recalls the classical results about the chemostat model (1.1)-(1.2) when
p is a non-monotonic function. We refer readers to [20, 34] for proofs and more details.

Proposition 2.1. Assume that there exists § € (0, s;,) such that the function p is increasing on
(0, 8) and decreasing on (8, $i). Define the break-even concentrations A~ (D), At (D) as follows

A™(D) = min{s € [0,3]; pu(s) = D}, D € [0, u(3)]
AHD) = max{s € [3,sm]; u(s) = D}, D € [p(sin), 1(3)]

1. If D > u(8), the system (1.1)-(1.2) possesses an unique equilibrium E° := (0, s;,), which is
globally asymptotically stable on R%.

2. If D < u(siy), the system (1.1)-(1.2) admits an unique positive equilibrium E~ := (s;, —
AT(D), A" (D)) which is globally asymptotically stable on RY x R;.

3. If D € [u(sin), (8)], the system (1.1)-(1.2) presents a bi-stability between E~ and E°. From
any initial condition in R x Ry excepted on a set of null measure, the solution converges
asymptotically to B~ or E°.

Remark 1. In practice, only the second case is desirable because it guarantees that in any
situation the wash-out of the biomass is avoided.

Remark 2. For the Haldane expression (1.3), one has explicit expressions of the functions A*

(110 — D)ki £ /(1o — D)2k? — 4Dk, k;
2D '

Let us recall that the concept of break-even concentrations has been revisited in the context
of stochastic models of the chemostat [38, 39] but we will not need it here. We keep the classical
deterministic definition.

ME(D) =

In the rest of the paper, we shall consider that we are in conditions of Proposition 2.1, that is
p non-monotonic on the interval [0, s;,,] (otherwise the analysis is similar to monotonic growth
function and cannot present bi-stability). Throughout the paper we shall consider the following
hypothesis

Assumption 1. There exists s, € (0, s;,) such that the function p is increasing on (0, s,,) and
decreasing on (S, Sin)-
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2.2. The Ornstein-Uhlenbeck process

We present here briefly the Ornstein-Uhlenbeck (OU) process. For more details we refer
readers to [6, 9, 10].

The Ornstein-Uhlenbeck (OU) process is a stationary mean-reverting Gaussian stochastic
process defined as

0
(t,w) = z(t,w) := 2" (Ow) = —Pv / e’ *Qw(s)ds, forallteR, weQ, Bv>0  (21)

—0o0

where w denotes a standard Wiener process in a probability space (2, F,P), 8 is the mean
reversion constant representing the strength with which the process is attracted by the mean,
v > 0 is the wvolatility constant describing the variation or the size of the noise and 6#; denotes
the usual Wiener shift flow given by

Ow(-) =w(-+t) —w(t), teR.

We note that the OU process (2.1) can be obtained as the stationary solution of the Langevin
equation
dz + fzdt = vdw. (2.2)

Typically, the OU process (2.1) can model the position of a particle by taking into account
its friction in a fluid (which is the main difference with the typical standard Wiener process).
Indeed, it can be considered as a generalization of the standard Wiener process and provides a
link between the standard Wiener process (f =0, v = 1) and no noise at all (=1, v =0).

From now on we consider 5 and v fixed and z*(f;w) the OU process defined above.

We recall in the next proposition some of its properties.

Proposition 2.2 (See [2, 12]). There ezists a 0,-invariant set Qe F of Q of full measure such
that for w € Q and B,v > 0, we have

(i) the random variable |z*(w)| is tempered with respect to {0;}ier, i.e., for a.e. w € Q,

hm e "sup [2*(0_w)| =0, foralln > 0.
t—o0 teR

(7i) this mapping 1is a stationary solution of (2.2) with continuous trajectories

(t,w) = 2" (Ow) = —fv / e (0,w)(s)ds;

(iii) for any w € Q one has:
*(0 1ot
lim 2" (Ow)] =0; lim - z*(@sw)ds =0;
t—+oo t t—+oo ¢

lim —/]z O,w)| ds = E[|z*]] <
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2.3. Persistence in the chemostat

We recall here the definitions of (uniform) persistence (see for instance [17]) that we consider
in the present work .

Definition 2.1. The dynamics (1.7)-(1.8) is strongly persistent if there exists ¢ > 0 such that
for any initial condition (s(0), z(0)) in Ry x R% and any realization of the D 4 ®(2*(0.yw)), the
solution verifies

liminf x(t) > e.

t—+o00

Definition 2.2. The dynamics (1.7)-(1.8) is weakly persistent if there exists € > 0 such that for
any initial condition (s(0),z(0)) in Ry x R% and any realization of D + ®(2*(6.)w)), the solution
verifies

lim sup z(t) > e.

t—+o00

3. Properties of the solutions of the random dynamics

In this section we study the random chemostat model (1.7)-(1.8) presented in the introduc-
tion. We prove the existence and uniqueness of a global positive solution and provide results
about the existence of absorbing and attracting sets which, in addition, are deterministic (i.e.
that do not depend on the realization of the noise). In addition, we derive first conditions under
which extinction of species cannot be avoided.

In the sequel, we denote X := {(s,x) € R? : s,z > 0} for the positive cone.

Theorem 3.1. For any initial condition ug € X, system (1.7)-(1.8) possesses a unique global
solution u(t; 0,w, ug) = (s(t;0,w, up), (t; 0, w, up)) € C*([0,+00); X). In addition, it remains in
X for every t > 0.

Proof. Let us first write system (1.7)-(1.8) as

du _ L(Ow)u + F(u,Ow),
dt
e (D + (=" (0)))
s (D422 (Ow 0
u = x ) ) L(etW) - 0 —(D+(I>(z*(9tw))) >
and s
(D + Bz (60)))sin — po———7
s+ ks + —
F(u,ﬁtw) = S kl
po——"z7
S + ks + ]Z

F(-,0,w) € C1(X x [0,+00); X) whence F is locally Lipschitz respect to u € X. Therefore,
for each realization of the noise, du/dt = L(6w)u + F(u,fw) is an non-autonomous differential
equation with a right member Lipschitz with respect to u and continuous with respect to ¢
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(recall that 2*(A,w) is continuous respect to ¢ and P is also continuous). Therefore, the solution
of the Cauchy problem admits an unique local solution of system (1.7)-(1.8) from the theory of
ordinary differential equations.

Let us first show that both z and s remain in X for any ug € X. To this end, we notice first
that z(t) = 0 solves (1.7). By uniqueness of the Cauchy problem, we deduce that any other
solution is such that x(t) # 0 for any ¢t. Notice also that one has, thanks to (1.6),

ds

dat|_y (D + ®(*(6w)))sim > 0,

0

which proves that the axis s = 0 is repulsive in X'. This demonstrates the positiveness of the
solution of system (1.7)-(1.8).

Now we prove that both the substrate and the microorganisms concentrations remain bounded
for every time. To this end, define v(t) := s(t) + x(¢). Then the variable v is solution of the
following differential equation

d
d—: = (D + (I)<Z*(9tw)))<3m — U) < Drsm . DZU
and one, thanks to (1.6),
@ S DT‘Sin — Dl/U7
dt

By comparison of solutions of scalar ODEs (see [37]) we obtain
t0 < —Dlt D’ 1 —Dlt > ()
v(t;0,w, vp) < voe +ﬁ8m( —e ), t>0.

Then, v is forward bounded and since v = s + x > 0, we deduce that both the solution s and =
are also bounded for positive time. The unique solution of system (1.7)-(1.8) is thus defined for
any t > 0. O

Now, we prove the existence of deterministic attracting and absorbing sets for the solutions
of the random chemostat model (1.7)-(1.8).

Theorem 3.2. The system (1.7)-(1.8) possesses a deterministic (forward) attracting set
A={(s,z) € X : s+x=s8}. (3.1)

Proof. Define the variable ¢(t) := s(t) — s;, + x(t). Then ¢ satisfies the following differential
equation

dq .
T = —(D+0((6))a
whose solution is given by
lt; 0, w, ¢(0)) = g(0)e™ o P+, (3.2)
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From (1.6), we have
q(0)e™ " < q(t: 0, w, (0)) < (0)e™ "

and taking limit when ¢ goes to infinity we have
Jim (40,0, (0)) =0,
which means that, for any ¢ > 0, there exists T'(w,e) > 0 such that
q(t;0,w,q(0)) € [—&,¢], t>T(w,e).

This proves that
B.i={(s,0) €X : sip—e<s+x< s, +e}

is a (forward) deterministic absorbing set for system (1.7)-(1.8). As e > 0 is arbitrary, the proof
is done. o

Remark 3. Let us underline that the attracting set (3.1) obtained in Theorem 3.2 does not
depend on the event w € (). This is another particularity that we get when considering this way
of modeling random bounded realizations.

Our aim now is to provide first conditions on the parameters of system (1.7)-(1.8) under
which extinction of the species occurs.

Theorem 3.3. Assume that the inequality
D; > u(sm) (3.3)
is fulfilled, where s , is defined in (1 .4). Then, the singleton
Ae = {(sm,0)} C A
is a (forward) attracting set.

Proof. From the equation describing the dynamics of the species (1.8) and (1.6) one has

W (D4R (0w)e + (s
< —(Di— pl(sm)).
and by comparison of solutions of scalar ordinary di
erential equations [37], we have (3.4)

x(t7 OJ (U, 3‘:(0)) S I‘(O)ef(Dl*/—L(Sm))t.

Taking limit when ¢ goes to infinit)gli?l (&:(#),0me,get0fom ((3.3) and Proposition 2.2 (iii),
— 100
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4. Conditions for persistence

In this section our aim is to provide conditions to ensure persistence of the species in the
sense defined in Section 2.3.

Before stating a result concerning the weak persistence of species, let us provide now the
following property.

Proposition 4.1. Let be®(z) = —2¢ _arctan(z) defined as in (1.5). Then ®

1

lim ~ ["(z*(0w))ds =0, a.s. ind . (4.1)
t—+oo t Jo
Proof. Since®(z) = —2¢_ arctan(z), then we have
2d .
/ = aretan(2(w)) | dP(w) < d|®] = d
ol

whence® (2*(w)) € L'(®,F,P). Then, since P is invariant by 6 w (see ??), from the Bircho
ergodic theorem it yields that

lim 1 "O(2*(Aw))ds = E[®(z*(w))], a.s. ind.

t—+oo t o

Hence, it is enough to show that E[®(z*(w))] = 0. In fact, we have

E[®(2*(w))] = /R & (2) fou(a)de = 0,

where fou denotes the density function of the Ornstein-Uhlenbeck process, which is an odd

function since it is gaussian, and & is an even function. O

Remark 4. From Proposition 4.1 we notice that we could model random perturbations as in
this paper, i.e., by means of ®(z*(fw), and the ergodic property (4.1) remains true as long as ®
is an even function.

Theorem 4.1. Assume that the inequality
w(sin) > D. (4.2)

is fulfilled. Then, the random chemostat model (1.7)-(1.8) is weakly persistent, that is there exits
e > 0 such that for any initial condition xq € X, any realization satisfies

lim sup z(¢; 0, w, xy) > €.
t—-+o00

Proof. Let € > 0 be such that p(s) > D for all s € [s;, — €, $in + €] and define
n:=min{u(s) — D : s € [sin — €, Sin + €|} > 0.

submitted to Mathematical Biosciences and Engineering



11

From Theorem 3.2, we know that s(¢;0,w, sg) onverges asymptotically to the set [0, s;,].
Therefore, there exists T'(w, ) > 0 such that s(¢;0,w, sg) < s, + € for any t > T'(w, €).

Consider now, for ¢t > T'(w, €), the sets

U(t) =47 € [T(w,e),t] : s(1;0,w,80) < Sin — €},
V(t) =1 € [T(w,e),t] : s(1;0,w, 80) € [Sin — &, Sin + €]}

and the functions in [0, 1]

u(t) = meas U (t)

_ meas V(t)
T Tw.e) v(t)

= T(w.9) =1—u(t).

Then, from equation (1.8), one can write the following inequality

(t) > {_(D + asz* (Ow))z(t), te U(t)
T (0= asz*(Ow))x(t), te V()

and by integration between T'(w,¢) and ¢ > T'(w, ) one get

(=T @) [uO) (- D)+ 1 =ult)1- =y fr, o) 2" Or))ir |

z(t) > x(T(w,¢))e , t>T(w,e) (4.3)
Assume that one has
From Proposition 4.1, one has
lim e FT@a Jr oy 2 Or)ar _ 1

t——+o0

and then (4.3) gives
lim z(t) = +o0

t——4o00
which is a contradiction since z is bounded. We deduce thus that the sets U(-) are necessarily

such that
meas U(t) — 400 when ¢t — +00

that is
meas({t : s(t) < sy —€}) = +o0

which shows that one has

liminf s(t) < s;, — €
t——+o00

or equivalently
limsupx(t) > e >0

t—-+o0

since s(t) 4+ x(t) converges to s;, for any realization (see the proof of Theorem 3.2). o
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Remark 5. Theorem 4.1 proves the weak (uniformly) persistence of species as long as D < u(s;,,)
is fulfilled, the same condition that guarantees the persistence in the deterministic case (see
Proposition 2.1). However, let us underline that we do not impose the upper bound D, of
the variations of the removal rate to fulfill this inequality. This means that one could have
realizations of the disturbances such that the effective value of the removal rate is above pu(s;,)
on large periods of time making the species to be arbitrary closed to the extinction but it will
always persist.

In the next result we consider a stronger condition on the upper bound D" of the removal
rate which ensures the strong persistence of the species.

Theorem 4.2. Assume that the inequality
D" < pu(sin) (4.4)
is fulfilled. Then, the random chemostat model (1.7)-(1.8) is strongly persistent and the set
A, ={(z,y) €eX : s+x =35, > 8n — AN (D)} CA
is (forward) attracting, with (where the function A\~ is defined in Proposition 2.1).
Proof. Take € > 0 such that u(s) > D" for any s € [s;, — &, $i,, + €] and posit

=min{u(s) — D" : s € [Sin — €, 8in + €]} > 0.

From now on, we will s(¢), z(t) and ¢(t) instead of s(¢;0,w, so), x(t;0,w, zo) and ¢q(¢; 0, w, o)
to make the readability easier even though we recall that every state variable depends on the
noise.

From Theorem 3.2, we know that the variable ¢(t) = s(t) — s;, +x(t) converges asymptotically
to zero for any realization, and thus any solution s(t) of the random model (1.7)-(1.8) converges
to the set [0, s;,,]. Consequently, there exists T'(w,e) > 0 such that

s(t) < sin+ ¢, qt) > —k, Vt>T(w,e),

where .
K= Msin = 2/2) = D (/2) > 0.
1(sin — €/2)
If s(t) € [$in — €, Sin +¢] for any ¢ > T'(w, €), then one has, from equation (1.8)), &(t) > nx(t)
for any ¢ > T'(w, e), which implies that x is unbounded, thus a contradiction. We deduce that
there exists a finite time T'(w) > T'(w, €) such that s(T(w)) < s;, — /2. On another hand, from

equation (1.7), s(t) can be written as the solution of the non-autonomous dynamics

f; = F(t,s) := (D + ®(z"(6iw)) — p(s))(sin — 8) — pu(s)q(t). (4.5)

Note that one has
F(t,sin —€/2) < (D" — plsin — €/2))(e/2) — plsin — €/2)q(1)
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and then
F(t,sim—¢€/2) < (D" — pu(sim —€/2))(€/2) + p(sim —€/2)k =0, t>T(w,e)

(from the definition of k). We deduce that the set [0, s;, — €/2] is forward invariant for the
semi-flow {$ = F(t,s), t > T'(w,e)}. Therefore, one has

s(t) < sy —e/2, t>T(w).

Then, one can write from equation (4.5)

ds

= S (D" = ) (sin — 5) = p(s)a(t),  t>T(w)

and from the comparison of solutions of scalar ordinary differential equations [37], one has the
inequality s(t) < sT(t) for any ¢t > T'(w), where sT(t) is solution of the Cauchy problem

d;; = (D" = p(s7))(sin — s7) = pu(sT)a(t),  sT(T(w)) = s(T(w)).

Note that the solution s () belongs to the interval [0, s;,] for any ¢ > T'(w) (and is thus bounded)
and that its dynamics is asymptotic autonomous with limiting dynamics

ds’

T (D" — (M) (sin — ) (4.6)

Under assumption D" < pu(s;,), one has necessarily A~ (D") < s;,, and the property
(D" = u(@))(A(D") —0) >0, Vo €[0,sm] \{A"(D")}

is fulfilled. One finally obtains that the any solution of (4.6) in [0, s;,] is such that s'(t) — A\=(D")
when ¢t — +oo. From the theory of asymptotically autonomous dynamical systems [36], one
concludes that s*(¢) converges also to A™(D") when ¢ — 400, which proves that one has

limsup s(t) < A7 (D")
t——+o0
or equivalently
liminf z(t) > s;, — A7 (D") > 0

t—+00

since s(t) + x(t) converges to s;, for any realization. This demonstrates the strong persistence
of the random dynamics (1.7)-(1.8) with the explicit lower bound s;, — A~ (D"). o

Now we consider the last situation when pu(s;,) < D < p(s,,) which corresponds to the bi-
stability in the deterministic case. In the random framework, one cannot guarantee persistence
nor wash-out of the biomass. As we shall see later on simulations, the asymptotic behavior of
the solutions depends on the initial condition and the realization of the noise. However we show
that an upper bound on the biomass can be provided.
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Theorem 4.3. Assume xo > 0. Then, the upper bound

lim sup #(t; 0, w, 29) < 84 — A~ (D)

t—+o0
for any solution of the random dynamics (1.7)-(1.8) as long as D' < u(s,,).

Proof. Let us remark that in this proof we will write x(t), s(t) and ¢(t), or simply z, s and g,
instead of x(¢;0,w, xg), s(t;0,w, so) and q(t;0,w, qo) for the sake of simplicity.

Consider zy > 0. Then, from (1.8) one has

W= (uls) ~ (D + B (B)))e
= (u(sin—z—q) — (D + P(z*(Ow))))x := F(t,x), (4.7)

where ¢ = s;, — x — s.

We know that lim; o ¢(t) = 0 then, for every ¢ > 0 there exists T(w,e) > 0 such that
lq(t)| < € for every t > T(w,e). Thus x(t) < s, + ¢ for every t > T'(w, €).

Moreover, for all x € (s;,— A~ (D!)+¢, si,+€), one has s;, —x—q € (—q—&,\"(D!)—qg—¢). In
fact, since s;, —2 —q = s > 0 (see Theorem 3.1), then we have s;, —2—¢q € (0, \"(D!)—g—¢) C
(0, \=(D")) whence F(t,z) < 0 since (0, \=(D")) < D' and D + ®(z*(6w)) > D

Thus,
limsup z(t) < 85, — A" (DY) 4 ¢

t——+o0

for every ¢ > 0. O
5. Numerical simulations

In this section we present several numerical simulations to support our theoretical results in
three different cases: extinction, strong persistence and weak persistence of species.

Two different figures are presented in each ¢ ase. The first figure (with two panels) concerns
the dynamics of the substrate (top) and the species (bottom) in the random chemostat model
(1.7)-(1.8) for different realizations of the noise (in colored continuous lines) along with the
case without noise i.e. the deterministic chemostat model (in blue dashed lines). In addition,
in each panel we display a little box with a zoom to illustrate better the dynamics around
the attracting set. The second figure o ffers i nformation a bout t he ¢ onsumption f unction of
the consumer species and those parameters involved in conditions to have extinction, weak
persistence and strong persistence of species.

We first present the case of extinction in Figure 2. We consider sqg = 14, xo = 5 as initial
conditions and set s;, = 14, puo = 4, ks = 7.5, k; = 4, D = 1.4 and the interval given by
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practitioners from observations is [D!, D"] = [1.15,1.65], then d = 0.25. In addition, » = 1 and
= 1. We can observe in Figure 3 that D' > yu(s,,) holds true and then, as proved in Theorem
3.3, the species extinguishes (the attracting set in this case is {(0, ;) }).

1
13.8 —
13.6 [ —
2
134 — —
g
a2l J
ﬁ 3.2
18— —
Q2
= 128 _
n 126 —
124 — — —
122 I I I I I I I I I
o 1 2 3 4 5 6 7 8 9 10
time
5
o J
n
8 s -
13}
)
Qo :
[42]
N J
o | | | | T ; . !
o 1 2 3 4 5 6 7 8 9 10
time

Figure 2. Extinction of species. Values of the parameters: s;, = 14, uo =4, ks = 7,
ki=5 D =14, D' =115 D" =1.65,d=0.25, 3=1, v =1 and the initial values
so =14, g =5

This is indeed quite intuitive as condition (3.3) basically means that the nominal value D
of the removal rate is too large large compared to the growth kinetics (recall that D' > u(s,,)
implies D > ((Sy,)), even though we start far away from the washout (s;,,0).

Figure 3. Consumption function of consumer species in case of extinction. Values of
the parameters: s;, = 14, s,,, = 5.4772, D = 1.4, D' = 1.65, D' = 1.15, ju(s4,,) = 0.7943,
1(8m) = 10699.

Now we present situations where weak and strong persistence is ensured. To compare, we
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start with the case of weak persistence by considering sy = 16.7, xg = 0.01 as initial conditions
and set s;, = 16.7, uo = 7, ks = 7, k; = 7. In addition, f = 1 and v = 1. Once fixed these
parameters, the removal rate D will be the set to allow conditions (4.4) and (4.2) be true or false.

In Figure 4 we set D = 1.7 and the interval [D!, D] = [1.45,1.95] then d = 0.25. In this case
D < pu(s4y) is fulfilled (observe Figure 5) then we have weak persistence of species, see Theorem
4.1. Although we start very closed to the washout (s;,,0), we observe persistence of species.

Q SN -
- \
® 12 N\
= 3 — \ \
“(a’ 10— _ \ —
i e T e A\
L 525 = S — \
wn 5 “s\\ 7
4 L W\
48 46.5 47 475 48 48.5 49 49.5 50
| |
2
0 5 10 15 20 25 30 35 40 45 50
time
' T T —— - p———
77
I
145 - /
% 10— ~ — = / —
,,,,,,,,,,,,,,,,,, I e - /
3 e = =
Q — /
Q‘ 135
wn °- T
.
44 45 46 47 48 49 >
o ! —————— |
o 5 10 15 20 25 30 35 40 45 50
time

Figure 4. Persistence of species in weak sense. Values of the parameters: s;, = 16.7,
po="ks=7ki=7 D=17 D' =145 D" =195, d=0.25 8=1,v=1and the
initial values sy = 16.7, x¢o = 0.01

Figure 5. Consumption function of consumer species in case of weak persistence.
Values of the parameters:s;, = 16.7, s,, =7, D = 1.7, D! = 1.45, D" = 1.95, d = 0.25,
w(sin) = 1.8397, u(s,,) = 2.3333

In Figure 6 we set D = 1.4 and the interval [D!, D"] = [1.15,1.65] then d = 0.25. In this case
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D" < u(siy) holds true (see Figure 10) and then strong persistence of species is obtained from

Theorem 4.1.

Substrate
T

Species
T

Figure 6. Persistence of species in strong sense. Values of the parameters: s;, = 16.7,
po="7ks=7ki=7 D=14 D' =115 D" =165, d=0.25 8=1,v =1 and the
initial values so = 16.7, x¢o = 0.01

Figure 7. Consumption function of consumer species in case of strong persistence.
Values of the parameters: s;, = 16.7, 8,, = 7, D = 1.4, D' = 1.15, D"
w1(sin) = 1.8397, p(sm,) = 2.3333

1.65, d = 0.25,

Moreover, we would like to notice that OU process proves again to be a powerful tool when

modeling real (bounded) noises.
between weak and strong persistence.

In addition, it allows us to observe clearly the difference

Finally we present some numerical simulations to observe that both extinction and persistence
can be obtained when D! < u(s;,) < D is fulfilled, as in the deterministic case. However, the
issue here depends also on the realization of the noise.
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Substrate

20 40 60 80 100 120 140

time

80 100 120 140

Figure 8. Extinction of species. Values of the parameters: s;, = 20.1, uo =4, ks =7,
ki=7 D=1, D' =0.75 D" =125, d=0.25, =1, v = 1 and the initial values
so = 20.1, xg = 0.01

Substrate

Species

Figure 9. Persistence of species in strong sense. Values of the parameters: s;, = 20.1,
o =4, ks =7k =7 D=1, D' =0.75, D" =125, d =025, 3 =1, v =1 and the
initial values so = 20.1, g =5
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Figure 10. Consumption function of consumer species in case of strong persistence.
Values of the parameters: s;, = 20.1, s,, =7, D =1, D' = 0.75, D" = 1.25, d = 0.25,
w1(sin) = 0.9479, p(sy,) = 1.3333

6. Conclusion

We have considered the chemostat model (1.1)-(1.2) with Haldane consumption kinetics,
under bounded perturbations on the input flow rate, motivated by real cases in industrial setup
and biotechnology. To this end, we use a bounded saturated function of the Ornstein-Uhlenbeck
process that allows us to ensure the noise to be bounded in realistic intervals.

We prove in Theorem 3.1 existence and uniqueness of global positive solution of the
corresponding random chemostat (1.7)-(1.8) by means of standard results from the theory of
ODEs and thanks to properties of the Ornstein-Uhlenbeck process. Then, in Theorem 3.2 we
establish the existence of an absorbing and attracting set which has the nice property to be
deterministic, i.e. that does not depend on the realization of the noise.

We then focused on the long-time behavior of the random dynamics inside this attracting
set. To this end, we first proved in Theorem 3.3 that extinction of species cannot be avoided
as long as D' > p(s,,) whatever is the input concentration s;,. On the opposite, we proved
in Theorem 4.1 the weakly uniformly persistence of species when D < p(s;,), which means
that species can be temporarily arbitrary closed to the extinction but still persist even when
having random disturbances in the input flow. The condition D < pu(s;,) ensures persistence in
the deterministic case but the effective removal rate does not necessarily fulfills this condition
depending on the realizations. Finally, we prove the strong persistence of the species in Theorem
4.2 under the stronger condition D" < p(s;,). in this case, we provide an explicit lower bound
for the asymptotic concentration of the species, a useful information for practitioners.

In addition, we support the theoretical results with several numerical simulations which
depicts the possible behaviors of the random dynamics. Moreover, this allows us to illustrate
the difference between weak and strong persistence: once fixed every parameter we change the
removal rate D to let conditions u(s;,) > D and u(s;,) > D" be true or not. Condition to have
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weak persistence (u(s;,) > D) does not involve the noise and then the random realizations of
the species can fluctuate closed to zero and we still ensure persistence whereas condition to
have strong persistence (4(s;,) > D") only fulfills for realizations of the perturbed removal rate
inside a small enough interval.

To conclude, we would like to stress that the Ornstein-Uhlenbeck process has proved once
again to be relevant tool to model random disturbances in a biological framework. This stochastic
process fits in a quite loyal way the bounded fluctuations that are observed in practice, and justify
the (weak or strong) persistence of the biomass despite the possible realizations of noise, as also
observed in practice.

Acknowledgments

This work has been partially supported by Proyecto de Excelencia P12-FQM-1492 from
Junta de Andalucia, Project PGC2018-096540-B-100 from Ministerio de Ciencia, Innovacién
y Universidades (Spanish government) and Project US-1254251 from Consejeria de Economia y
Conocimiento (Junta de Andalucia).

References

1. J. Andrews, A mathematical model for the continuous culture of microorganisms utilizing
inhibitory substrates, Biotechnology € Bioengineering, 10 (1968), 707-723.

2. L. Arnold, Random Dynamical Systems, Springer Berlin Heidelberg, 1998.

Y. Asai and P. Kloeden, Numerical schemes for random odes via stochastic differential
equations, Communications in Applied Analysis, 17.

4. J. Barlow, F. de Noyelles, B. Peterson, J. Peterson and W. Schaffner, Continuous flow
nutrient bioassays with natural phytoplankton populations, G. Glass (Editor): Bioassay
Techniques and Environmental Chemistry, John Wiley & Sons Ltd., 1973.

5. G. Bastin and D. Dochain, On-line estimation and adaptive control of bioreactors, Elsevier,
1990.

6. T. Caraballo, R. Colucci, J. Lopez-de-la-Cruz and A. Rapaport, A way to model stochastic
perturbations in population dynamics models with bounded realizations, Communications
in Nonlinear Science and Numerical Simulation, 77 (2019), 239-257.

7. T. Caraballo, M. J. Garrido-Atienza and J. Lépez-de-la-Cruz, Some Aspects Concerning
the Dynamics of Stochastic Chemostats, vol. 69, chapter 11, 227-246, Springer International
Publishing, Cham, 2016.

8. T. Caraballo, M. J. Garrido-Atienza and J. Lopez-de-la-Cruz, Dynamics of some stochastic
chemostat models with multiplicative noise, Communications on Pure and Applied Analysis,
16 (2017), 1893-1914.

9. T. Caraballo, M. J. Garrido-Atienza, J. Lépez-de-la-Cruz and A. Rapaport, Modeling
and analysis of random and stochastic input flows in the chemostat model, Discrete &
Continuous Dynamical Systems - Series B, 24 (2018), 3591-3614.

submitted to Mathematical Biosciences and Engineering



21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, Applied
Dynamical Systems, Springer International Publishing, 2016.

T. Caraballo, X. Han and P. E. Kloeden, Chemostats with random inputs and wall growth,
Mathematical Methods in the Applied Sciences, 38 (2015), 3538-3550.

T. Caraballo, P. E. Kloeden and B. Schmalfuss, Exponentially stable stationary solutions
for stochastic evolution equations and their perturbation, Applied Mathematics and Opti-
mization, 50 (2004), 183-207.

B. Cloez and C. Fritsch, Gaussian approximations for chemostat models in finite and infinite
dimensions, Journal of Mathematical Biology, 75 (2017), 805-843.

P. Collet, S. Martinez, S. Méléard and J. S. Martin, Stochastic models for a chemostat and
long-time behavior, Advances in Applied Probability, 45 (2013), 822-836.

I. F. Creed, D. M. McKnight, B. A. Pellerin, M. B. Green, B. A. Bergamaschi, G. R. Aiken,
D. A. Burns, S. E. G. Findlay, J. B. Shanley, R. G. Striegl, B. T. Aulenbach, D. W. Clow,
H. Laudon, B. L. McGlynn, K. J. McGuire, R. A. Smith and S. M. Stackpoole, The river as a
chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum,
Canadian Journal of Fisheries and Aquatic Sciences, 72 (2015), 1272-1285.

G. D’Ans, P. Kokotovic and D. Gottlieb, A nonlinear regulator problem for a model of
biological waste treatment, IEEE Transactions on Automatic Control, 16 (1971), 341-347.

H. I. Freedman and P. Moson, Persistence definitions and their connections, Proceedings of
the American Mathematical Society, 109 (1990), 1025-1033.

C. Fritsch, J. Harmand and F. Campillo, A modeling approach of the chemostat, Ecological
Modelling, 299 (2015), 1-13.

J. Grasman, M. D. Gee and O. A. V. Herwaarden, Breakdown of a chemostat exposed to
stochastic noise, Journal of Engineering Mathematics, 53 (2005), 291-300.

J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of
Micro-organisms Cultures, Wiley, Chemical Engineering Series, John Wiley & Sons, Inc.,
2017.

L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemo-
stat models, Journal of Differential Equations, 217 (2005), 26-53.

H. W. Jannasch, Steady state and the chemostat in ecology, Limnology and Oceanography,
19 (1974), 716-720.

S. Jorgensen and B. Fath, Fundamentals of Ecological Modelling Applications in Environ-
mental Management and Research, Elsevier, 2011.

J. Kalff and R. Knoechel, Phytoplankton and their dynamics in oligotrophic and eutrophic
lakes, Annual Review of Ecology and Systematics, 9 (1978), 475-495.

J. W. M. La Riviere, Microbial ecology of liquid waste treatment, in Advances in Microbial
Ecology, vol. 1, Springer US, 1977, 215-259.

J. Monod, La technique de culture continue: Théorie et applications, Annales de [’Institute
Pasteur, 79 (1950), 390-410.

submitted to Mathematical Biosciences and Engineering



22

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

A. Novick and L. Szilard, Experiments with the chemostat on spontaneous mutations of
bacteria, Proceedings of the National Academy of Sciences, 36 (1950), 708-719.

A. Rapaport and J. Harmand, Robust regulation of a class of partially observed nonlinear
continuous bioreactors, Journal of Process Control, 12 (2002), 291-302.

A. Rapaport and J. Harmand, Biological control of the chemostat with nonmonotonic
response and different removal rates, Mathematical Biosciences and Engineering, 5 (2008),
539-547.

A. Rapaport, I. Haidar and J. Harmand, Global dynamics of the buffered chemostat for a
general class of response functions, Journal of Mathematical Biology, 71 (2014), 69-98.

E. Rurangwa and M. C. J. Verdegem, Microorganisms in recirculating aquaculture systems
and their management, Reviews in Aquaculture, 7 (2015), 117-130.

B. Satishkumar and M. Chidambaram, Control of unstable bioreactor using fuzzy tuned PI
controller, Bioprocess Engineering, 20 (1999), 127.

A. Schaum, J. Alvarez and T. Lopez-Arenas, Saturated PI control of continuous bioreactors
with haldane kinetics, Chemical Engineering Science, 68 (2012), 520-529.

H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competi-
tion, Cambridge University Press, 1995.

G. Stephanopoulos, R. Aris and A. Fredrickson, A stochastic analysis of the growth of com-
peting microbial populations in a continuous biochemical reactor, Mathematical Biosciences,
45 (1979), 99-135.

H. Thieme, Convergence results and a poincare-bendixson trichotomy for asymptotically
autonomous differential equations, Journal of Mathematical Biology, 30.

W. Walter, Ordinary Differential Equations, Springer New York, 1998.

C. Xu and S. Yuan, An analogue of break-even concentration in a simple stochastic chemo-
stat model, Applied Mathematics Letters, 48 (2015), 62—68.

D. Zhao and S. Yuan, Critical result on the break-even concentration in a single-species
stochastic chemostat model, Journal of Mathematical Analysis and Applications, 434 (2016),
1336-1345.

submitted to Mathematical Biosciences and Engineering



	Introduction
	Preliminaries
	The deterministic chemostat model
	The Ornstein-Uhlenbeck process
	Persistence in the chemostat

	Properties of the solutions of the random dynamics
	Conditions for persistence
	Numerical simulations
	Conclusion



