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Abstract: Merkel cell carcinoma (MCC) is a rare and highly aggressive skin cancer with frequent
viral etiology. Indeed, in about 80% of cases, there is an association with Merkel cell polyomavirus
(MCPyV); the expression of viral T antigens is crucial for growth of virus-positive tumor cells. Since
artesunate—a drug used to treat malaria—has been reported to possess additional anti-tumor as
well as anti-viral activity, we sought to evaluate pre-clinically the effect of artesunate on MCC. We
found that artesunate repressed growth and survival of MCPyV-positive MCC cells in vitro. This
effect was accompanied by reduced large T antigen (LT) expression. Notably, however, it was even
more efficient than shRNA-mediated downregulation of LT expression. Interestingly, in one MCC
cell line (WaGa), T antigen knockdown rendered cells less sensitive to artesunate, while for two other
MCC cell lines, we could not substantiate such a relation. Mechanistically, artesunate predominantly
induces ferroptosis in MCPyV-positive MCC cells since known ferroptosis-inhibitors like DFO,
BAF-A1, Fer-1 and β-mercaptoethanol reduced artesunate-induced death. Finally, application of
artesunate in xenotransplanted mice demonstrated that growth of established MCC tumors can be
significantly suppressed in vivo. In conclusion, our results revealed a highly anti-proliferative effect
of the approved and generally well-tolerated anti-malaria compound artesunate on MCPyV-positive
MCC cells, suggesting its potential usage for MCC therapy.
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1. Introduction

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with increasing
incidence and mortality rates [1]. The most recent analysis reported 0.7 new cases per 100,000
person-years in 2013 in the United States of America with a predicted 14% increase in cases for 2020 [2],
and 0.43 MCC related deaths per 100,000 were reported for 2011 in another study [3]. 95% of the
patients with MCC are more than 50 years old, and the tumors commonly develop in chronically
sun exposed body areas [4]. Since immunosuppression is a further known risk factor for MCC,
an infectious etiology had been suspected [5]. Indeed, in 2008, a human polyomavirus named Merkel
cell polyomavirus (MCPyV) was found to be integrated into the genome of Merkel cell carcinoma
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cells [6], and subsequent studies confirmed that approximately 80% of all MCC cases are associated
with MCPyV [7]. Importantly, the integration patterns suggest that clonal expansion of the tumor
cells occurs after MCPyV integration sustaining the assumption that viral proteins are causal for
tumorigenesis [6,8,9]. Moreover, in MCPyV-positive MCC cells, expression of the viral oncoproteins
small and Large T-antigen (sT and LT) can be detected, and these proteins are essential for growth of
the tumor cells [10,11] qualifying them as potential therapeutic targets.

The five-year overall survival rate for patients with MCC is only about 40%, although the relative
survival rate (compared to an age- and sex-matched population) is 54% [12]. Primary MCCs are
excised by surgery, and adjuvant radiotherapy of the primary tumor location and the lymph node
region is recommended [13]. Until recently, the metastatic disease was treated preferentially with
various, not-standardized chemotherapeutic regimens, all of which could not improve survival of the
patients significantly [14]. Recently, however, antibodies targeting the immune suppressive protein
programmed cell death protein 1 (PD-1) or its ligand PD-L1 have demonstrated high response rates of
56 in first-line and 32% in second-line treatment, respectively for patients with stage IV disease [15,16].
Indeed, the PD-L1 targeting antibody Avelumab was the first treatment for metastatic MCC approved
both in the US and European Union [17]. Importantly, data available so far suggest that responses
of MCC patients to checkpoint inhibition are frequently long-lasting [18,19]. However, despite this
encouraging progress, many patients do not respond and a substantial number of patients develop
early secondary resistance [18,20]. Therefore, there is strong need for therapeutic approaches for
patients’ refractory to immune checkpoint inhibition. Furthermore, in developing countries there is a
particular need for alternative MCC treatment options, since the high costs of checkpoint antibodies
may limit their usage [21]

Artesunate is a semi-synthetic derivative of artemisinin, the active ingredient of the traditional
Chinese medicinal herb Artemisia annua [22]. Artesunate is applied as first-line drug for the treatment
of malaria which is caused by an infection with protozoa of the genus Plasmodium [23]. Although
artesunate represents the most effective and safe anti-malarial drug [24,25], its mode of action is only
incompletely understood [26]. Interestingly, artesunate has also been demonstrated to be specifically
cytotoxic to cancer cells from several tumor entities [27,28]. This cytotoxicity was ascribed to artesunate
impacting a multitude of signaling pathways and cell death modes [22]. For the latter, induction of
apoptosis [29–31] or ferroptotic cell death [32–34] have been reported most frequently. Importantly,
besides these anti-cancer effects, it also exerts anti-viral activities towards a broad range of viruses [35,36].
Therefore, we examined whether MCPyV-associated MCC cells are sensitive to this compound.

Here we demonstrate that artesunate effectively induces cell death of MCPyV-positive MCC cells
in vitro mainly through ferroptosis, while apoptosis appears not to be involved. Moreover, in a mouse
model, we demonstrate that artesunate can be applied to inhibit MCC tumor growth in vivo.

2. Results

2.1. Artesunate Effectively Inhibits Growth of MCPyV-Positive MCC Cell Lines In Vitro

Artesunate has been shown to mediate both anti-viral and anti-tumor activity [28,36]. Due to the
viral carcinogenesis of most MCCs, we tested in an initial experiment, the effect of artesunate on a
panel of MCPyV-positive classical MCC cell lines and some non-classical MCPyV-negative MCC cell
lines. Melanoma cell lines and primary fibroblasts were included as further controls. The drug was
used at concentrations of 1 and 10 µM and its effect on cell growth and metabolism was determined by
the MTS assay. While growth and survival of primary fibroblasts and melanoma cell lines was largely
unaffected at the given concentration, in particular the MTS signals of the MCPyV-positive MCC cell
lines WaGa and MKL-1 were largely reduced (Supplementary Figure S1).
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2.2. Reduced Large T Antigen Expression in Response to Artesunate

MCPyV-positive MCC cell lines depend on expression of the viral T antigens and in particular LT
for growth [37,38]. Therefore, seeking for a potentially virus-related mechanism of growth inhibition
induced by artesunate, we analyzed whether it affects LT expression. Indeed, in all five analyzed MCC
cell lines, immunoblot analysis revealed decreased LT protein expression upon a three-day incubation
with artesunate (Figure 1a; Supplementary Figure S2a).

Cancers 2020, 12, x FOR PEER REVIEW 3 of 15 

2.2. Reduced Large T Antigen Expression in Response to Artesunate 

MCPyV-positive MCC cell lines depend on expression of the viral T antigens and in particular 
LT for growth [37,38]. Therefore, seeking for a potentially virus-related mechanism of growth 
inhibition induced by artesunate, we analyzed whether it affects LT expression. Indeed, in all five 
analyzed MCC cell lines, immunoblot analysis revealed decreased LT protein expression upon a 
three-day incubation with artesunate (Figure 1a; Supplementary Figure S2a). 

 
Figure 1. Artesunate-induced repression of MCPyV-LT expression in MCC cells is not crucial for its 
cytotoxic effects. (a) The indicated MCPyV-positive Merkel cell carcinoma (MCC) cell lines were 
incubated for three days in the absence or presence of artesunate (10 µM for MKL-1, MKL-2 and WaGa 
and 12.5 µM for MS-1 and PeTa) followed by immunoblot analysis. (b) MKL-1 cells stably transduced 
with a bi-directional non-coding control region (NCCR) reporter construct were treated for five days 
with the indicated artesunate concentrations followed by flow cytometric analysis. Mean fluorescence 
for early and late region were recorded, and mean values (± SD) are displayed. (c, d) MKL-1 and 
WaGa cells stably transduced with a vector allowing doxycyclin (Dox)-inducible expression of an 
shRNA targeting MCPyV TA were treated either with Dox (1 µM) or artesunate (10 µM) for 7 days, 
respectively. (c) large T antigen (LT) expression was analyzed by immunoblot. (d) Trypan blue 
exclusion assay was applied to determine viability in the course of time. Mean values (± SD) of at least 
four independent experiments are depicted. 

Figure 1. Artesunate-induced repression of MCPyV-LT expression in MCC cells is not crucial for
its cytotoxic effects. (a) The indicated MCPyV-positive Merkel cell carcinoma (MCC) cell lines were
incubated for three days in the absence or presence of artesunate (10 µM for MKL-1, MKL-2 and WaGa
and 12.5 µM for MS-1 and PeTa) followed by immunoblot analysis. (b) MKL-1 cells stably transduced
with a bi-directional non-coding control region (NCCR) reporter construct were treated for five days
with the indicated artesunate concentrations followed by flow cytometric analysis. Mean fluorescence
for early and late region were recorded, and mean values (± SD) are displayed. (c,d) MKL-1 and WaGa
cells stably transduced with a vector allowing doxycyclin (Dox)-inducible expression of an shRNA
targeting MCPyV TA were treated either with Dox (1 µM) or artesunate (10 µM) for 7 days, respectively.
(c) large T antigen (LT) expression was analyzed by immunoblot. (d) Trypan blue exclusion assay was
applied to determine viability in the course of time. Mean values (± SD) of at least four independent
experiments are depicted.
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To investigate whether artesunate affects the promoter driving T antigen expression, we made use
of a reporter construct in which the bi-directional MCPyV non-coding control region (NCCR) controls
expression of a green and a red fluorescent protein representing the early and late region, respectively.
Indeed, MKL-1 cells transduced with the reporter demonstrated a dose dependent reduction of green
fluorescence upon treatment with artesunate, while red fluorescence was not affected (Figure 1b;
Supplementary Figure S3) suggesting that artesunate may specifically downregulate LT via repression
of its NCCR-dependent transcription.

2.3. Artesunate Exerts Stronger Cytotoxic Effects on MCC Cells than TA Knockdown

Next, we asked whether the inhibition of T antigen (TA) expression could be a crucial mediator of
the artesunate-induced effects on MCC cells. To answer this question, we compared loss of viability
following artesunate treatment with cell death induced upon shRNA-mediated TA knockdown.
To this end, MKL-1 and WaGa cells transduced with a lentiviral vector allowing doxycyclin-inducible
expression of an shRNA targeting both T antigens were used. Addition of doxycyclin to these cells led
to an efficient knockdown evident by reduced LT in immunoblot analysis (Figure 1c; Supplementary
Figure S2b), which however was associated with only a minor increase in dead cells as assessed by
the trypan blue exclusion assay (Figure 1d). In contrast, incubation with 10 µM artesunate, which
was associated with a similar level of LT reduction (Figure 1c; Supplementary Figure S2b), induced
massive cell death within 7 days. These results argue against repression of TA expression being the
sole mechanism for the observed artesunate-mediated cytotoxicity on MCPyV-positive MCC cell lines.

2.4. Expression of the T Antigens Sensitizes the MCPyV-Positive Cell Line WaGa to Artesunate

As the results so far did not exclude a possible role of MCPyV for the artesunate-induced
cytotoxicity, we analyzed next whether TA knockdown in MCPyV-positive MCC cells may affect
their artesunate sensitivity. Since many cytotoxic drugs are less effective against non-proliferating
cells [39], we used MKL-1, MKL-2 and WaGa cells which in addition to the inducible TA shRNA,
constitutively express a Retinoblastoma protein 1 (RB1) shRNA rescuing the growth arrest induced
by LT knockdown [38]. Control cells without doxycycline treatment and cells incubated for four
days with doxycycline to repress T-antigen expression (Figure 2a) were then treated with artesunate
ranging from 1.6 to 50 µM. Two assays, namely the trypan blue dye exclusion assay and DNA staining
using propidium iodide were used to analyze cell viability of both groups. Interestingly, both assays
demonstrated that WaGa cells with repressed T antigen showed increased cell viability upon artesunate
treatment compared to the respective controls without the knockdown (Figure 2b). Therefore, T antigen
expression seems to sensitize WaGa cells to artesunate induced cell death. For MKL-1 and MKL-2 cells,
however, T antigen knockdown did not alter their sensitivity towards artesunate (Figure 2b).

In addition, artesunate induced cell death was preceded by a G2/M arrest (Supplementary
Figure S4), while TA knockdown has been demonstrated to cause an arrest in G1 [11], further sustaining
the conclusion that artesunate has important impacts on MCC cells in addition to T antigen repression.
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Figure 2. T antigen knockdown is associated with decreased artesunate sensitivity of WaGa but not
MKL-1 and MKL-2 cells. We used the indicated cell lines which were stably transduced with a vector
allowing doxycyclin (Dox)-inducible expression of a T antigen (TA) shRNA as well as with a vector
constitutively expressing an RB1 shRNA. (a) Following 5 days in the presence or absence of Dox (1 µM)
TA knockdown was evaluated by immunoblot analysis. (b) Then artesunate dose-response curves
were recorded for control and Dox-treated cells applying the trypan blue exclusion assay as well as
determination of the Sub-G1 population following propidium iodide staining of fixed cells. Displayed
are mean values (+ SE) of at least three independent experiments.

2.5. No Signs of Apoptotic Cell Death Are Induced by Artesunate in Most MCPyV-Positive MCC Cell Lines

To further scrutinize artesunate’s cytotoxicity towards MCPyV-positive MCC cells, we recorded
dose response curves for five MCC cell lines applying two different cell death assays. Interestingly, we
observed for four of the five cell lines, a significant difference between cell death induction as assayed
by trypan blue exclusion compared to the appearance of a sub-G1 population in particular at higher
artesunate concentrations (Figure 3a; Supplementary Figure S5). Indeed, cells with DNA less than 2N
were less frequent than cells that had lost membrane integrity. This suggests that artesunate-induced
death is not preceded by DNA fragmentation, a well-known characteristic of apoptosis [40]. Hence,
apoptosis, a frequently described result of artesunate treatment in cancer cells [29–31,41], seems not to
represent a crucial mechanism in these MCPyV-positive MCC cell lines. Only for MKL-2, no difference
could be observed between the two dose response curves suggesting a possible contribution of
apoptotic cell death.
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Figure 3. No signs of apoptotic cell death in most artesunate-treated MCC cells. (a) The indicated cell
lines were treated for three days with increasing concentrations of artesunate. Then cell death was
measured by the trypan blue exclusion assay. Additionally, cells were fixed and stained with propidium
iodide to determine the increase in cells with a DNA content of less than 2N (sub-G1) (b) Cells were
treated with 50 µM artesunate (ART) in the presence and absence of 20 µM of the caspase inhibitor
Z-VAD. Viability was assessed by the trypan blue exclusion assay. Statistical testing applying ANOVA
did not reveal significant differences.

To further evaluate these findings, we applied the pan caspase inhibitor benzyloxycarbonyl
-ValAla-Asp (OMe) fluoromethylketone (Z-VAD-FMK), which bears the capability to suppress
caspase-dependent apoptosis [42]. Although for MKL-2 an increase of viable cells in the presence
of Z-VAD-FMK was observed, a significant rescue from artesunate induced cell death could not be
detected for any of the five MCC cell lines (Figure 3b; differences tested with ANOVA and subsequent
post hoc tests comparing values to those of artesunate-treated cells).

Finally, we investigated morphologic changes associated with artesunate treatment of
MCPyV-positive MCC cell lines since apoptosis is characterized by characteristic features like cell
shrinkage, membrane blebbing and formation of apoptotic bodies [43,44]. However, none of these
characteristics were detectable when we analyzed the two non-spheroidal cell lines WaGa and PeTa by
time lapse microscopy. Indeed, upon artesunate treatment, the opposite of shrinkage, i.e., cell swelling,
was observed before death occurred (Supplementary Figure S6).

In conclusion, several observations suggest that at least in most artesunate-treated MCPyV-positive
cell lines, apoptosis is not induced, and the morphologic feature of cell swelling hints to either necroptosis
or ferroptosis provoked by artesunate [44,45].
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2.6. Ferroptosis as a Key Player in Artesunate-Induced Cytotoxicity in MCPyV-Positive Cells

Previous studies had revealed the capability of artesunate to induce ferroptosis, an iron-dependent
cell death mode characterized by lipid peroxidation [32–34]. Therefore, we next applied several specific
inhibitors to test for ferroptotic features of artesunate-treated MCC cells. In this regard, rescue from
cell death by the radical-trapping antioxidant ferrostatin-1 (Fer-1) which blocks lipid peroxidation [46]
is regarded as one of the features defining ferroptosis [47]. Indeed, in all investigated MCC cell
lines artesunate-induced cell death was significantly reduced by Fer-1. In addition, inhibition of
artesunate-triggered viability loss by the iron-chelator deferoxamine (DFO) confirmed a ferroptotic
process (Figure 4a).
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Figure 4. Ferroptosis inhibitors rescue MCPyV-positive MCC cells from artesunate-induced cell death.
The indicated MCPyV-positive MCC cell lines were cultured in the absence or presence of 50 µM
artesunate (ART). Additionally, either 10 µM of the radical-trapping antioxidant ferrostatin-1 (Fer-1),
100 µM of the iron-chelator deferoxamine (DFO), 50 nM of the autophagy inhibitor bafilomycin-A1
(BAF-A1) (a) or 25 µM of the ACSL4 inhibitor rosiglitazone (Rosi) (b) were included in the culture
medium. After two days of co-treatment, viability was assessed by the trypan blue exclusion assay.
Mean values (± SD) of at least three independent experiments are displayed. The effect of multiple
treatment and inhibitor combinations was tested by ANOVA followed by post-hoc test comparing the
effect always against the one observed for artesunate treatment. (* p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001).

Furthermore, the effect of the vacuolar ATPase inhibitor bafilomycin-A1 (BAF-A1) in combination
with artesunate was investigated. Multifaceted outcomes, like apoptosis induction or inhibition
of autophagy, have been described for BAF-A1 [48,49]. However, BAF-A1 has also been observed
to suppress ferroptosis, giving rise to one of the arguments linking autophagy to the ferroptotic
process [47,50,51]. Such a link appears to exist also in MCC cell lines since among the tested inhibitors,
BAF-A1 most efficiently suppressed artesunate-induced cell death in the MCPyV-positive MCC cell
lines (Figure 4a).



Cancers 2020, 12, 919 8 of 15

A further reported step essential for ferroptosis is the inhibition of cystine import, which is
necessary for antioxidant production [52,53]. In line with the notion that artesunate-induced cell death
requires reduced cystine import, β-mercaptoethanol, which promotes cystine uptake [54], repressed
cell death in artesunate-treated MCC cells (Supplementary Figure S7).

Finally, we tested rosiglitazone (Rosi), an inhibitor of the Acyl-CoA synthetase long-chain family
member 4 (ACSL4). This enzyme has been demonstrated to be involved in ferroptosis execution by
converting long-chain poly-unsaturated fatty acids (PUFAs) to their corresponding fatty acyl-CoA
variants [55,56]. Indeed, Rosi exerted a protective effect on all three tested artesunate-treated MCC cell
lines (Figure 4b).

These results suggest that artesunate kills MCPyV-positive MCC cells by dysregulating lipid
metabolism and autophagy resulting in ferroptosis.

2.7. Artesunate Inhibits Tumor Growth In Vivo

To evaluate whether artesunate can affect growth of MCPyV-positive tumors in a living organism,
we used xenotransplantation mouse models based on subcutaneous transplantation of the cell lines
MKL-1 or WaGa [57]. Following injection of the tumor cells, the animals were monitored until they
developed visible and palpable tumors measuring approximately 150 mm3. Subsequently, 100 mg/kg
body weight artesunate was administered intraperitoneally while control mice received the same
volume of vehicle control. Artesunate treatment significantly reduced tumor growth of both MKL-1
and WaGa tumors (Figure 5).
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regulatory agencies that allows fast identification of new treatment options, usually associated with 

Figure 5. Tumor growth is restricted in artesunate-treated mice. Immunodeficient NOD/Scid mice
received subcutaneous injection of either MKL-1 or WaGa cells. When tumors reached a size of 100 mm3,
the mice were randomly assigned to control group (n = 6 for WaGa and n = 5 for MKL-1, since in one
animal no tumor growth was observed) or treatment group (n = 6). Each mouse from the treatment
group was subjected to daily intraperitoneal injections with 100 mg/kg artesunate. The control group
received injection of an equal volume of solvent (2% DMSO in PBS). The experiment was terminated
once individual tumors of the control group reached the maximum tolerable size. Depicted are the
means (± SEM). Statistical analyses of area under the curves for the two models were p < 0.001 for
MKL-1 and 0.0305 for WaGa (unpaired t-test).

3. Discussion

The term drug repositioning (also called drug repurposing) describes the use of established drugs
for new therapeutic purposes. Drug repositioning is a well-established process approved by regulatory
agencies that allows fast identification of new treatment options, usually associated with less costs
and lower risks for patients compared to the development of new drugs [58]. While some compounds
(e.g., thalidomide, zoledronic acid, celecoxib) have already been successfully repositioned for cancer
treatment, other drugs like, e.g., artesunate are currently in the process for possible repositioning [58].
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Artesunate is a derivative of artemisinin, an extract from the plant Artemisia annua Linne [22].
Notably, the discovery that artemisinin-class substances can be applied as potent therapeutics for malaria
patients, was awarded with the Nobel Prize in 2015 [59]. Indeed, artesunate exerts superior antimalarial
effects in clinical application and is characterized by an excellent safety profile [60]. Furthermore, in
recent years, several additional activities beyond anti-malarial activity have been observed [22,61].
In this respect, pre-clinical studies on artesunate have demonstrated anti-tumor activity against many
different cancers including colon caancer [29], lung adenocarcinoma [31], pancreatic cancer [33],
breast cancer [62] and different hematological malignancies [30,32,63]. The present study adds
MCPyV-positive MCC to this list as we demonstrate the capability of artesunate to restrict growth of
virus-positive MCC cells in vitro as well as in xenotransplantation mouse models in vivo.

The question whether presence of the viral proteins in these cells affects their artesunate sensitivity
could not be fully answered. In line with different reported anti-viral effects of artesunate [35,36]
including impairment of the polyomavirus life cycle [64,65], we observed repression of T antigen
expression in artesunate-treated MCPyV-positive MCC cells. This was different compared to human
papilloma virus infected cervical cancer cells in which expression of the viral oncogenes was not
affected by the related compound dihydroartemisinin [66]. However, although T antigens are essential
for growth of MCPyV-positive MCC cells [11], the cytotoxicity of artesunate towards these cells seems
not to depend on viral-protein repression. Indeed, in this respect, artesunate was more potent than T
antigen knockdown. It was only in one MCC cell line (WaGa), that sensitivity towards artesunate was
reduced upon knockdown of T antigen expression.

Irrespective of a possible contribution of the T antigens to artesunate-induced cell death of
MCPyV-positive MCC cells, a set of inhibitor experiments suggest that artesunate induces ferroptosis
and not apoptosis in these cells. Among the multitude of different modes of regulated cell death,
an important distinction is their dependence on caspases. In this regard, apoptosis and pyroptosis
require activation of these proteases while necroptosis, ferroptosis, parthanatos, alkaliptosis and
oxeiptosis are caspase-independent [45]. In the case of artesunate-treated MCPyV-positive MCC cells,
the pan caspase inhibitor Z-VAD-FMK did not significantly reduce cell death. In contrast, inhibitors
targeting different steps of the ferroptotic pathway were effective in rescuing artesunate-triggered
killing of virtually all five investigated MCC cell lines.

Ferroptosis is a mode of programmed cell death that is characterized by an iron-dependent
accumulation of lipid peroxides [48]. Interestingly, ferroptosis is considered to be pro-inflammatory
and immunogenic, due to release of damage-associated molecular patterns (DAMPs) [67,68]. Hence,
besides the direct effects on the tumor cells, artesunate may also support anti-tumor immune responses.
However, direct evidence for this possibility is still scarce and further investigations on this topic
are necessary [67]. Notwithstanding, following preclinical evaluation of the anti-tumoral activity
of artesunate in recent years, we have now reached a phase of human trials for the treatment of
cancer patients with artesunate. In this respect, several phase 1 and phase two studies (colorectal
cancer, hepatocellular carcinoma, breast cancer and several intraepithelial neoplasias) are ongoing
(www.clinicaltrials.gov), and for a few trials results have already been published. These reports
highlighted the favorable tolerability of artesunate [69–72], and some even found first hints for clinical
activity [69,70]. It may be interesting to see how artesunate, maybe even in combination with immune
checkpoint inhibitors, performs in cancer trials in the future. Certainly, MCPyV-positive MCC patients
may be included in such studies.

www.clinicaltrials.gov
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4. Materials and Methods

4.1. Ethics Statement

Animal experiments were performed according to the legal requirements and approved by the
Regierung von Unterfranken (RUF 55.2.2 -22532.2 -925-18).

4.2. Cloning and Usage of an NCCR Reporter Construct

To allow assessment of the transcriptional activity of the MCPyV noncoding control region (NCCR)
by flow cytometry, we cloned a lentiviral reporter construct in which we placed a green and a red
fluorescent protein 3′ and 5′ of the NCCR (Supplementary Figure S8). We included in addition to
the mere NCCR, also the sequences coding for the N-terminus of sT and VP2 in the construct to
prevent losing potential regulatory elements extending into the respective coding region. To this end,
mNeongreen and mCherry coding sequences were cloned in frame with the first 78 codons of sT and
the first 64 codons of VP2, respectively (Supplementary Figure S8a). This cassette was inserted into
the multiple cloning site of pLVX-Puro (Clontech) yielding the construct pLVX NCCR mNeongreen
mRuby3 (the map is available upon request).

Lentivirus particles were generated as described [39] and used for infection of MKL-1 cells. Red
and green fluorescence was analyzed on a CytoFLEX flow cytometer (Beckman Coulter).

4.3. Cell Culture

MCPyV-positive MCC cell lines MKL-1 [73], MKL-2 [74], MS-1 [75], WaGa and PeTa (both
described in [9]) were cultivated in RPMI-1640 medium (Sigma Aldrich) supplemented with 10% FBS
(Biochrom GmbH), 100 U/mL penicillin and 0.1 mg/mL streptomycin (Sigma Aldrich).

MKL-1, MKL-2 and WaGa cells with constitutive expression of an shRNA targeting RB1 and
doxycyclin-inducible expression of an shRNA targeting both T antigens (TA shRNA tet), have been
described previously [38].

4.4. Immunoblotting

Cells were lysed using the ELB lysis buffer containing 150 mM NaCl, 50 mM Hepes pH 7.5,
5 mM EDTA, 0.1% NP-40, 20 mM β-glycerophosphate, 0.5 mM sodium orthovanadate and a protease
inhibitor (Roche). The immunoblotting procedure was performed as described [38]. The antibodies
used in this study were directed against MCPyV-LT (CM2B4; Santa Cruz Biotechnologies), β-tubulin
(TUB 2.1; Sigma-Aldrich, Ottobrunn, Germany) and vinculin (hVIN-1; Sigma-Aldrich). Uncropped
blots are given in Supplementary Figures S9 and S10)

4.5. MTS Assay

Cell lines were seeded in sextuplicate per condition in 96-well plates. Following 5 days of
incubation with 0. 1 and 10 µM artesunate (Sigma Aldrich), the MTS proliferation assay (Promega,
Mannheim, Germany) was applied according to the manufacturer’s instructions.

4.6. DNA Staining

Cells were fixed with ice-cold 90% ethanol followed by a one-hour treatment with propidium
iodide mix (PBS + 1% FCS + 0.1 mg/mL propidium iodide + 0.1 mg/mL RNAse A). Analysis was then
performed by flow cytometry.

4.7. Trypan Blue Exclusion Assay

Cells were stained with 0.4% trypan blue in PBS (Sigma Aldrich), and the number of living,
dye-excluding cells as well as the dead blue-stained cells were counted using a hemocytometer.
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4.8. Time Lapse Microscopy

WaGa and PeTa cells were seeded at a density of 1 × 105 cells per well in µ-Slides (Ibidi) and
treated with 50 µM artesunate. Morphologic changes in the course of time were recorded using a
Nikon Eclipse Ti microscope.

4.9. Animal Experiments

Five-week-old female NOD.CB17/Prkdcscid mice (Charles River) were used for the
xenotransplantation experiments. They were housed under specific pathogen-free conditions. Each
mouse was injected subcutaneously with a suspension of 5 × 106 MKL-1 or WaGa tumor cells mixed
with an equal volume of Matrigel (Corning) in a total volume of 100 µL. The tumor size was measured
daily using a vernier calipers and the volume was calculated using the formula (V = π/6 × a2

× b
(a: length; b: height). Once the tumor size reached approximately 150 mm3, the mice were divided
into the control group (n = 6 for WaGa and n = 5 for MKL-1, since in one animal, no tumor growth
was observed) and treatment group (n = 6). Each mouse from the treatment group was subjected
to daily intraperitoneal injections with 100 mg/kg of artesunate, which was dissolved in DMSO and
then brought to a total volume of 200 µL with PBS prior to injection. Similarly, the control group
was injected with the same volume of DMSO in 200 µL of PBS (2% DMSO). The experiments were
terminated once the tumors of the control group reached the maximum tolerable size.

4.10. Statistical Analysis

Statistical analyses were completed with Prism 5.03 (GraphPad Software, Inc;. San Diego, CA 92108,
USA). Since cell volume distribution did not pass normality test; the volumes were compared by
non-parametric Mann–Whitney test. The effect of multiple treatment and inhibitor combinations was
tested by ANOVA followed by post-hoc test comparing the effect always against ones observed for
artesunate treatment. Adjusted p values following Dunnett multiple comparison testing were given.
For tumor growth curves, first area under the curve of tumor sizes (baseline set to zero) normalized to
the size at the start of treatment, were determined. These values were compared by unpaired t-test.

5. Conclusions

Artesunate induced ferroptosis in MCPyV-positive MCC cells in vitro and restricted growth of
MCC xenograft tumors in vivo. These results suggest that the established antimalarial therapeutic
may be applied to treat patients with MCPyV-positive MCC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/919/s1,
Figure S1: tMCC cell lines are more sensitive towards artesunate than melanoma cell lines or primary fibroblasts,
Figure S2: Densitometric analyses of all immunoblots presented in the publication, Figure S3: Artesunate represses
NCCR driven early region transcription (representative histograms of the NCCR Reporter-Assay corresponding
to the bar graph in Figure 1b), Figure S4: Artesunate induces G2/M arrest in MCPyV-positive MCC cells,
Figure S5: Propidium iodide staining of artesunate treated MCPyV-positive MCC cells (representative histograms
corresponding to Figure 3a), Figure S6: Artesunate induces cell swelling of MCPyV-positive MCC cells, Figure S7:
β-Mercaptoethanol, an activator of cystine uptake, represses artesunate-induced cell death, Figure S8: An MCPyV
NCCR reporter construct, Figure S9: Uncropped blots from Figure 1a,c, Figure S10: Uncropped blots from Figure 2.
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