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Rapid, non-destructive and accurate detection of crop N status is beneficial for optimized
fertilizer applications and grain quality prediction in the context of precision crop
management. Previous research on the remote estimation of crop N nutrition status
was mostly conducted with ground-based spectral data from nadir or oblique angles. Few
studies investigated the performance of unmanned aerial vehicle (UAV) based
multispectral imagery in regular nadir views for such a purpose, not to mention the
feasibility of oblique or multi-angular images for improved estimation. This study employed
a UAV-based five-band camera to acquire multispectral images at seven view zenith
angles (VZAs) (0°, ± 20°, ± 40° and ±60°) for three critical growth stages of winter wheat.
Four representative vegetation indices encompassing the Visible Atmospherically
Resistant Index (VARI), Red edge Chlorophyll Index (CIred-edge), Green band Chlorophyll
Index (CIgreen), Modified Normalized Difference Vegetation Index with a blue band
(mNDblue) were derived from the multi-angular images. They were used to estimate the
N nutrition status in leaf nitrogen concentration (LNC), plant nitrogen concentration (PNC),
leaf nitrogen accumulation (LNA), and plant nitrogen accumulation (PNA) of wheat
canopies for a combination of treatments in N rate, variety and planting density. The
results demonstrated that the highest accuracy for single-angle images was obtained with
CIgreen for LNC from a VZA of -60° (R2 = 0.71, RMSE = 0.34%) and PNC from a VZA of
-40° (R2 = 0.36, RMSE = 0.29%). When combining an off-nadir image (-40°) and the 0°
image, the accuracy of PNC estimation was substantially improved (CIred-edge: R

2 = 0.52,
RMSE = 0.28%). However, the use of dual-angle images did not significantly increase the
estimation accuracy for LNA and PNA compared to the use of single-angle images. Our
findings suggest that it is important and practical to use oblique images from a UAV-based
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multispectral camera for better estimation of nitrogen concentration in wheat leaves or
plants. The oblique images acquired from additional flights could be used alone or
combined with the nadir-view images for improved crop N status monitoring.
Keywords: multi-angular, unmanned aerial vehicle, vegetation index, nitrogen status, zenith angle, wheat
INTRODUCTION

Nitrogen (N) status is a critical nutrient indicator in crop growth
for optimizing fertilization management. Reasonable N fertilizer
application can not only improve N use efficiency and crop yield,
but also reduce environmental pollution (Fitzgerald et al., 2010).
Leaf N concentration (LNC) and plant N concentration (PNC)
are important indicators for N fertilizer application at early
growth stages (Hansen and Schjoerring, 2003; Li et al., 2018)
and they are highly related to the final grain quality (Zheng et al.,
2018b). As a product of N concentration and biomass, the two
nitrogen accumulation parameters leaf N accumulation (LNA)
and plant N accumulation (PNA) are used not only to diagnose
crop N status, but also to evaluate crop production capability and
predict grain quality (Zheng et al., 2018a). Accurate, real-time
and rapid detection of crop N status is beneficial for agricultural
management practices and also helps guide efficient fertilizer
applications (Hansen and Schjoerring, 2003; Yao et al., 2010).
The measurement methods of N status for N concentration (%)
and accumulation (g/m2) can be grouped into two categories:
direct measurements based on chemical analysis and indirect
estimation based on remote sensing. Although the traditional
chemical methods can produce accurate measurements, the
time-consuming, labor-intensive and destructive process
constrains their applications to a large amount of samples and
field conditions (Curran, 1989). In contrast, remote sensing has
been proved to be an efficient tool and widely applied in rapid
and non-destructive estimation of crop N status (Tilling et al.,
2007; Li et al., 2010; Lee and Lee, 2013; Quemada et al., 2014; Yao
et al., 2014).

In the past two decades, a number of methods have been
proposed to estimate crop N status with spectral data, the most
common one of which is spectral vegetation indices (VIs). The
VI-based methods are often established through fitting
relationships between N status parameters and VIs. It has
proved to be an efficient and accurate method for monitoring
N status because of its simplicity and ease of operation (Xue
et al., 2004; Yao et al., 2014; Zhou et al., 2018). Previous studies
on crops were mostly concerned about searching for the best VI
and determining the optimal bands derived from hyperspectral
data for monitoring N status in wheat (Hansen and Schjoerring,
2003; Yao et al., 2014; Yao et al., 2015), and rice (Tian et al., 2013;
Zhou et al., 2018). Most of the VIs were determined from the
bands in the visible and near infrared (VNIR) region due to the
strong dependence between N and chlorophyll for fresh leaves
and the deep absorption valleys of chlorophyll in the VNIR
region (Curran, 1989; Li et al., 2018). At leaf level, a recent study
by Li et al. (2018) demonstrated that the area-based N (N
.org 2
content) could be better estimated from reflectance than mass-
based N (N concentration). Although N content better
represents the interaction of matter and light per unit surface
area, N concentration is preferred by agronomists for growth
diagnosis and is still sought to be estimated more accurately from
spectral data (Lemaire et al., 2008; Xia et al., 2014). At canopy
level, the VIs based on VNIR bands could also be used to
quantify N accumulation because it is highly related to crop
biomass (Zheng et al., 2018a). Moreover, previous studies proved
that the estimation of foliar biochemistry was affected by the crop
canopy structure and sun-sensor geometry (Jay et al., 2017b).
However, most studies still used canopy reflectance data from
nadir observations, so that only the spectral information from
the top layer of canopy could be considered. Some studies have
demonstrated that the LNC of wheat decreased from top to
bottom and the vertical N gradient for leaves was greater than
that for stems (Dreccer et al., 2000; Wang et al., 2005). This
vertical N distribution significantly affects the spectral differences
among upper, middle, and lower layers of the canopy (Huang
et al., 2011; Ye et al., 2018). With nadir observations, the
estimation accuracy for crop N concentration remained
relatively low compared to that for N accumulation (Jay et al.,
2017b; Zheng et al., 2018b). Oblique or multi-angular
observations might help detect N status more accurately due to
its great potential in obtaining more information about the lower
to upper layers of canopy than nadir observations, especially for
open canopies (Pocewicz et al., 2007; Huang et al., 2011).

The attention to multi-angular remote sensing originated
from its performance in improving the accuracy of land cover
classification (Colstoun and Walthall, 2006; Koukal and
Atzberger, 2012; Koukal et al., 2014). There are also many
attempts to improve the estimation of crop growth or nutrition
parameters using multi-angular remote sensing based on ground,
airborne and spaceborne platforms. Generally, ground-based
multi-angular observations were obtained with a goniometer
system (Sandmeier and Itten, 1999; Sandmeier, 2000) or by
manual operation of spectrometers at various view angles (He
et al., 2016b; Song et al., 2016). With ground-based multi-angular
measurements, it was found that the remotely sensed data from
backward view (with the sensor facing away from the sun in the
solar principal plane and often expressed in negative numbers)
angles performed better than those from the nadir and forward
view (with the sensor facing towards the sun in the solar
principal plane and often expressed in positive numbers)
angles in the estimation of crop parameters such as leaf
nitrogen concentration (He et al., 2016b; Jay et al., 2017b).
These studies indicated the potential of off-nadir observations
in improving the estimation of crop nutrition parameters over
December 2019 | Volume 10 | Article 1601
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conventional nadir observations. The ground systems could
provide accurate angular sampling of canopy reflectance
(Huang et al., 2011; He et al., 2016b; Song et al., 2016), but
their inflexibility and low efficiency limit the applications to large
areas in a timely manner. In contrast, multi-angular remote
sensing from spaceborne platforms has been applied to large-
scale mapping of crop and forest parameters (Schlerf and
Atzberger, 2012). However, those spaceborne platforms might
not be suitable for crop monitoring over small fields due to the
deficiencies in spatial resolution, revisit frequency and data
availability (Zheng et al., 2018a). The manned airborne
platforms can collect data at higher temporal and spatial
resolutions, but their operational complexity and cost hinder
the frequent acquisition of multi-angular data for crop
monitoring. With the advent of unmanned aerial vehicles
(UAVs), aerial remote sensing systems become increasingly
available for crop monitoring because of their flexibility, low
cost, and ease of operation (Hunt et al., 2010; Roth and Streit,
2017; Zheng et al., 2018a; Lu et al., 2019).

To date, UAV-based multi-angular observations can be
obtained in two ways. One is from nadir-viewing and highly
overlapping images acquired from a frame camera (Roosjen
et al., 2017). With such a system, multiple views of the same
target on the ground could be extracted from the overlapping
images based on geometry of camera positions on the flight track
and pixel locations on the images. Koukal et al. (2014) has found
that the multi-angular views obtained with this approach could
improve forest classification compared to nadir observations
alone. However, Roosjen et al. (2018) reported that the view
angles derived from the overlapping images were not big enough
and could not lead to significant improvement in the estimation
accuracy of potato leaf area index (LAI) and leaf chlorophyll
content (LCC). In addition, their simulations with the PROSAIL
model indicated a substantial improvement when using spectra
with view zenith angles up to 30° compared to those with nadir
views alone. This means it is still possible to improve the
estimation of crop parameters with UAV imagery as long as
the images with large view angles are available. The other way is
to acquire oblique UAV imagery by setting the camera viewing at
various angles. Unlike the use of multiple oblique-viewing
sensors on spaceborne platforms, a practical UAV platform
usually carries only one lightweight camera due to its payload
limitation and collects multi-angular imagery by adjusting the
angle of gimbal upon request. However, such a multi-angular
UAV system has rarely been used for crop monitoring and
whether the estimation of crop nutrition parameters could be
improved over nadir observations remains unclear. Examining
the advantages of multi-angular or oblique images from UAV
platforms has great potential in developing efficient and reliable
solutions for monitoring crop N status in the context of
precision farming.

Thus, the objectives of this study were 1) to assess the
sensitivity of VIs derived from UAV imagery to crop N status
of wheat at different view zenith angles (VZAs), and 2) to
determine the optimal VZA and the VZA combination for the
estimation of N nutrition parameters from UAV-based multi-
Frontiers in Plant Science | www.frontiersin.org 3
angular imagery. Specially, we evaluated the performance of four
representative VIs at seven VZAs for the estimation of LNC,
PNC, LNA and PNA in wheat.
MATERIALS AND METHODS

Experimental Design
The experiment was conducted at the experimental station of the
National Engineering and Technology Center for Information
Agriculture (NETCIA) located in Rugao, Jiangsu province of
eastern China (120°45’ E, 32°16’ N) within the winter wheat
season of 2016 to 2017. Two winter wheat cultivars with
planophile and erectophile leaf types, Yangmai 15 and
Yangmai 16 were seeded on November 15, 2016. Three N rates
(0, 150, 300 kg/ha) with two planting densities (1.6 × 106 plants/
ha and 1.0 × 106 plants/ha, corresponding to 0.25 m and 0.4 m
row spacings) were applied with three replications. 50% of N
fertilizers were applied at the sowing day and 50% at the jointing
stage. A total of 36 plots with the size of 6 × 5 m2 each were used
for the experiment and the plots were arranged in a randomized
block design. Each plot was divided into ground sampling region
and image analysis region. In order to avoid the complexity of
soil N levels, the N level corresponded to the treatments of the
preceding rice growing season for each plot.

Data Acquisition
UAV-Based Multi-Angular Imagery
This study employed a UAV system consisting of an eight-rotor
Mikrokopter OktoXL UAV and a six-channel multispectral
camera (Mini-MCA6, Tetracam, Inc., Chatsworth, CA, USA)
to acquire multi-angular images (Yao et al., 2017; Zhou et al.,
2017). The UAV had a maximum payload capacity of 2.5 kg and
its flight duration was 8–25 min depending on the battery and
actual payload. The Mini-MCA6 multispectral camera mounted
onboard the UAV had an incident light sensor and five spectral
bands with center wavelengths at blue (490 nm), green (550 nm),
red (671 nm), red edge (700 nm), and near-infrared (800 nm).
The incident light sensor channel was designed for calibration
purposes and not for collecting aerial images. The field of view
(FOV) of the Mini-MCA6 is 38.26° in the horizontal view and
30.97° in the vertical direction. The image size captured by this
camera is 1280 × 1024 pixels. The camera was set to a 1.5 s
shutter release interval to capture images with a 10-bit RAW
format. In order to acquire multi-angular images, we fixed the
looking angles of the camera with a goniometer before each
flight. As shown in Figure 1, the view zenith angle (VZA) of the
UAV camera was defined as 0° at nadir observation. While the
VZA with the sensor facing towards the sun in the solar principal
plane was defined as the forward direction and expressed in
positive numbers, the VZA with the sensor facing away from the
sun was defined as the backward direction and expressed in
negative numbers. Seven VZAs, encompassing three in the
backward (-60°, -40°, -20°), nadir (0°) and three in the forward
(20°, 40°, 60°) viewing directions were sampled in this
experiment (Figure 2). The wheat seeds were sowed along
North-South direction. In order to reduce the effects of sun
December 2019 | Volume 10 | Article 1601
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zenith angle (SZA) and sun azimuth angle (SAA) variations on
reflectance, we used symmetric solar positions between morning
and afternoon to acquire the backward-viewing and the forward-
viewing images. To georeference the 5-band images from the
multispectral camera for each growth stage, 25 ground control
points (GCPs) were marked evenly on the concrete roads across
Frontiers in Plant Science | www.frontiersin.org 4
the study site and its geographic coordinates were obtained from
RTK-GPS (Real-Time Kinematic Global Positioning System,
CHC X900 GNSS). Moreover, six calibration canvases (1.2 ×
1.2 m2) with reflectance intensities at 3%, 6%, 12%, 22%, 48% and
64% were placed within the study area for radiometric
calibration. The flights were conducted at the altitude of 50 m
FIGURE 1 | Schematic diagram of multi-angle remote sensing data acquisition.
FIGURE 2 | Images captured from a UAV-based multi-angular multispectral camera at the jointing stage. (A) represents the original images at seven angles
(backward: a = -60°, b = -40°, c = -20°, Nadir: d = 0°, forward: e = 20°, f = 40°, g = 60°) at 800 nm captured with the UAV system. (B) represents the images at
nadir observation (h) and backward view (i = -20°, j = -40°, k = -60°) in false color composition (700 nm, 800 nm, 671 nm).
December 2019 | Volume 10 | Article 1601
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above ground with a flight speed of 3 m/s to obtain images at the
spatial resolution of 3 cm during the three critical growth stages
including jointing (27 March), heading (12 April), anthesis (22
April) in 2017. The range of solar zenith angles and solar
azimuth angles were 50°–60° and 130°–230° for jointing stage,
54°–66° and 124°–236° for heading stage, 56°–70° and 130°–240°
for anthesis stage, respectively. All flights were carried out in stable
ambient light conditions between 10:00 and 14:00 local time with
the fixed flight speed and route planning during the entire season.
Determination of N Nutrition Parameters
Destructive sampling of the 36 plots was conducted within one
day of each UAV campaign. Thirty plants were randomly
harvested from each sampling region to represent the
homogenous plot and then separated into leaves, stems and
panicles (panicles for heading and anthesis stages only). All the
samples were oven-dried at 105°C for 30 min and afterwards at
80°C for about 48 h until a constant weight. The dried wheat
organs (leaves, stems and panicles) were weighed, ground and
stored in plastic bags for chemical analysis. Moreover, the
number of plants per unit ground area was manually counted
to extrapolate the leaf, stem and panicle biomass of the entire
plot by following the procedures in Lu et al. (2019). The N
concentration in the leaf, stem and panicle tissues was separately
determined from 0.15 g of dried samples with the micro-Keldjahl
method (Bremner and Mulvaney, 1982). The N concentration in
the leaf, stem and panicle tissues was determined with the micro-
Keldjahl method (Bremner and Mulvaney, 1982). The LNC (%)
represented the mass of N in the leaf per unit dry weight (Li et al.,
2018). Above-ground biomass (AGB) was calculated as the sum
of dry biomass in leaves, stems and panicles per unit ground area.
The N accumulation (g/m2) of leaves (LNA) and plants (PNA)
was calculated as the product of N concentration (%) and leaf dry
biomass (t/ha) and AGB, respectively (Zheng et al., 2018a). The
PNC (%) was derived from the ratio of PNA to AGB. These
variables were determined with the equations below:

AGB = Bleaf + Bstem + Bpanicle (1)

LNA = LNC � Bleaf (2)

PNA = LNC � Bleaf + Nstem � Bstem + Npanicle � Bpanicle (3)

PNC = PNA=AGB (4)
Frontiers in Plant Science | www.frontiersin.org 5
where Nstem and Npanicle represents the N concentration of the
stem and panicle per unit dry weight, respectively. Bleaf, Bstem and
Bpanicle represent dry biomass of the leaves, stems and panicles
per unit ground area. The basic statistics of N nutrition
characteristics are shown in Table 1.

Image Pre-Processing and Spectral
Vegetation Index Calculation
The pre-processing workflow of UAV images included noise
reduction, vignetting correction, lens distortion correction
(Kelcey and Lucieer, 2012), band by band alignment (Turner
et al., 2014) and radiometric calibration (Smith and Milton,
1999). To reduce the band-to-band misalignment, we manually
registered the five bands with 25 GCPs marked on the concrete
roads. The registered images were stacked into one five-band
image in TIFF format. In addition, the digital number (DN)
values of the images were transformed into reflectance values
per band by applying the empirical line model derived from the
measured reflectance values and DN values of the six calibration
canvases (Figure 3). A region of interest (ROI) of the fixed size was
delineated in the non-sampling area of each plot, which was
applied for each flight campaign. The mean value of each ROI
extracted from the reflectance image for each growth stage was
used to represent the reflectance of each plot. All pixels in each
ROI were used regardless of vegetation or non-vegetation pixels.
Therefore, we had 36 samples for each stage and a total of 108
samples for the three growth stages for subsequent analysis. The
image pre-processing and radiometric calibration were mostly
performed in the IDL/ENVI environment (Exelis Visual
Information Solutions, Boulder, CO, USA), ArcGIS 10.2.2 (Esri,
Redlands, CA, USA). We examined four published VIs derived
from the five-band images for the estimation of N nutrition status
(Table 2). The visible atmospherically resistant index (VARI)
derived from the visible region has proved to be sensitive to
vegetation fraction (Gitelson et al., 2002) and correlate well with
LAI and biomass (Gitelson et al., 2003b). The modified normalized
difference index with a blue band (mNDblue) was proposed by Jay
et al. (2019) as a strong indicator of crop chlorophyll content with
weak effect of soil background. The green band chlorophyll index
(CIgreen) and the red edge chlorophyll index (CIred-edge) have
proved to be accurate predictors of leaf (Gitelson et al., 2003a;
Schlemmer et al., 2013) and canopy chlorophyll contents (Gitelson
2005; Schlemmer et al., 2013; Clevers et al., 2017). These VIs were
selected to represent the differences in band combination, and
sensitivity to soil background, biomass and chlorophyll content
(Zheng et al., 2018a).
TABLE 1 | Basic statistics of the LNC, PNC, LNA and PNA of wheat.

Stage LNC (%) PNC (%) LNA (g/m2) PNA (g/m2)

Min Mean Max Std Min Mean Max Std Min Mean Max Std Min Mean Max Std

Jointing 1.84 2.48 3.04 0.32 1.21 1.58 2.19 0.22 0.81 2.43 7.74 1.53 1.54 4.04 11.51 2.36
Heading 1.92 3.30 4.16 0.62 0.97 1.76 2.80 0.46 1.14 3.56 9.95 2.09 2.43 8.04 21.07 4.42
Anthesis 2.01 3.22 4.48 0.66 0.80 1.38 1.96 0.34 1.10 3.98 9.37 2.17 2.94 9.92 21.86 4.97
All 1.84 3.0 4.48 0.67 0.80 1.57 2.80 0.39 0.81 3.32 9.95 2.06 1.54 7.33 21.86 4.77
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Model Calibration and Validation
To form a large and comprehensive dataset, the samples collected
for all plots from the three critical growth stages were pooled
together. The pooled dataset was split into two parts, with 70% for
model calibration and the remainder 30% for model validation. A
linear regression model was used to evaluate the performance of
the VIs. To evaluate the combination of nadir-view and oblique-
view images, a two-variable regression was employed to establish
multi-angular models. The calibrated models were evaluated with
the accuracy metrics coefficient of determination (R2) and the
root mean square error (RMSE) determined for the validation
data. All these procedures were implemented in R x64 3.4.0
environment (R Development Core Team, 2017).
RESULTS

Variation in Canopy Reflectance of Wheat
With VZA
The canopy reflectance varies with VZA for every band, and the
spectral variation between view angles for the NIR band (800
nm) is more significant than that for other bands (Figure 4). The
highest reflectance was consistently observed from the backward
direction of -60° among all seven viewing angles for different
cultivars and N treatments. In addition, the lowest reflectance
derived from the NIR band occurred at nadir observations.

Figure 5 shows the variation of spectral reflectance at the NIR
band with VZA for different treatments and growth stages. The
trend of canopy reflectance with VZA exhibits the bowl effect
Frontiers in Plant Science | www.frontiersin.org 6
(Wang et al., 2012; Song et al., 2016), with the reflectance at 0° as
the bowl bottom and decreasing bowl depth from jointing to
anthesis stages. In addition, the reflectance derived from the
viewing angles in the backward direction was generally higher
than their counterparts in the forward direction. The planophile
variety (V1) exhibited consistently higher canopy reflectance than
the erectophile variety (V2) with the same nitrogen, density and
growth stage.

Performance of VIs for LNC and PNC
Estimation at Different VZAs
A summary of R2 and RMSE values derived from the relationships
between four spectral indices and LNC at different VZAs is shown
in Table 3. Obviously, the estimation accuracy varied with VZA
for each of the VIs. Among the four VIs, CIgreen yielded the
highest accuracy for most VZAs (Figure 6) and VARI exhibited
the lowest accuracy for all VZAs. mNDblue and CIred-edge
achieved moderate accuracies, with the former being superior
to the latter from -40° to 40°. Overall, the estimation accuracy
was higher for backward VZAs than that for the corresponding
forward VZAs. Significantly higher accuracies were yielded with
CIgreen (R2 = 0.71, RMSE = 0.34%) and CIred-edge (R2 = 0.65,
RMSE = 0.37%) at -60° than those at other VZAs.

The performance of four VIs with VZA for estimating LNC
and PNC from four VIs is shown in Figure 7. For LNC
estimation, the best performance was obtained at -60° for all
VIs. Compared to other VIs, mNDblue exhibited higher R2 values
from -20° to 20°. The highest estimation accuracy for VARI and
mNDblue was obtained at nadir observation and the accuracy
decreased dramatically with VZA in the backward and forward
directions, respectively. For CIgreen and CIred-edge, the R

2 values
decreased when the VZA varied from 0° to 20° and generally
increased when the VZA varied from 20° to 60° in both
directions. For PNC estimation, the best performance (R2 <
0.35) was obviously lower than that for LNC performance for all
VIs (R2 > 0.71). The highest R2 occurred at -40° for CIgreen and
CIred-edge but 0° for mNDblue and VARI.

Performance of VIs for LNA and PNA
Estimation at Different VZAs
The variation in the coefficient of determination (R2) with VZA
for the estimation of LNA and PNA from four VIs is presented in
Figure 8. For LNA estimation, CIgreen and VARI exhibited the
least sensitivity and greatest sensitivity to VZA, respectively.
Their R2 profiles with regard to VZA also exhibited the highest
and lowest values. The R2 profile for CIred-edge was stable for the
VZAs from -60° to 0° but exhibited a significant valley at 40°. In
FIGURE 3 | Relationships between digital number and the reflectance of
calibration panels for the five bands of the UAV-based multispectral camera.
TABLE 2 | Vegetation indices used in this study.

Full name Abbreviation Formulation Reference

Visible Atmospherically Resistant Index VARI (R550-R671)/(R550+R671-R490) Gitelson et al. (2002)
Red edge Chlorophyll Index CIred-edge R800/R700-1 Gitelson et al. (2003b)
Green band Chlorophyll Index CIgreen R800/R550-1 Gitelson et al. (2003b)
Modified Normalized Difference Vegetation Index mNDblue (R490-R700)/(R490+R800) Jay et al. (2017a)
December 2019 | Vo
The formulation of VIs was derived from references, but the use of waveband was based on our multi-spectral camera.
lume 10 | Article 1601

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Lu et al. Multi-Angular Estimation of N Nutrition
contrast, the mNDblue achieved the highest R2 at nadir
observation and also was sensitive to VZA. Similar patterns
were observed for the estimation of PNA.

Angle Combinations for LNC and PNC
Estimation
Table 4 lists the R2 values derived with four VIs from a
combination of 0° and an off-nadir VZA for LNC and PNC
Frontiers in Plant Science | www.frontiersin.org 7
estimation, with the R2 values derived from 0° as the baseline.
For LNC estimation, the combination of 0° and an off-nadir VZA
improved the estimation accuracy for CIgreen, CIred-edge and VARI
as compared to only using a nadir VZA. Among all VIs and all
angle combinations, the highest accuracy was achieved with CIgreen
from the combination of 0° and -60° (R2 = 0.66, RMSE = 0.39%).
For PNC estimation, the combination of 0° and an off-nadir VZA
obviously performed better than the nadir VZA for all VIs.
FIGURE 4 | Canopy spectral reflectance of winter wheat over different viewing angles for the erectophile variety with different treatments (A: D1N0, B: D1N1,
C: D1N2, D: D2N0, E: D2N1, F: D2N2; D1 = 0.25 m, D2 = 0.4 m; N0 = 0 kg•ha-1, N1 = 150 kg•ha-1, N2 = 300 kg•ha-1; D and N represent row spacing and
nitrogen level, respectively) at the heading stage from the experimental site.
FIGURE 5 | Variation of the spectral reflectance at 800 nm with VZA for different growing stages of winter wheat (left column: Jointing (A, D), middle column:
Heading (B, E), right column: Anthesis (C, F); top row: D1 = 0.25 m, bottom row: D2 = 0.4 m; V1 = planophile type, V2 = erectophile type; N0 = 0 kg•ha-1, N1 =
150 kg•ha-1, N2 = 300 kg•ha-1; V, D, N represent variety, row spacing and nitrogen level, respectively).
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Although all R2 values for PNC estimation were lower than their
counterparts for LNC estimation, the improvements from angle
combinations for the former were generally more significant than
those for the latter. The highest accuracy in the estimation of PNC
was achieved with CIred-edge from the combination of 0° and -40°
(R2 = 0.52, RMSE = 0.28%).

Angle Combinations for LNA and PNA
Estimation
The corresponding R2 and RMSE values for LNA and PNA
estimation are presented in Table 5. The addition of off-nadir
VZAs did not improve the performance of each VI in LNA
estimation, and the accuracies obtained at the nadir VZA were
higher than those in LNC estimation for all VIs. The highest
accuracy for LNA was observed for CIgreen from the nadir view
Frontiers in Plant Science | www.frontiersin.org 8
(R2 = 0.79, RMSE = 0.83 g/m2). For PNA estimation, the addition
of off-nadir VZAs could slightly improve the performance of
mNDblue and CIred-edge. However, the best performance was still
achieved with CIgreen from the nadir observation (R2 = 0.80,
RMSE = 1.80 g/m2).
DISCUSSION

The Effect of VZA on N Status Estimation
The performance of VIs in the estimation of N nutrition status
was dependent not only on the selected bands, but also the VZA
(Figure 5). Overall, the VIs derived from the backward direction
performed better than those from the forward direction. Huber
et al. (2007) also demonstrated that mono-directional models
TABLE 3 | Coefficient of determination (R2) and RMSE (%) for the relationships between four spectral indices and LNC or PNC at different viewing zenith angles.

Variable VZA mNDblue CIgreen CIred-edge VARI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LNC –60° 0.55 0.42 0.71 0.34 0.65 0.37 0.34 0.52
–40° 0.60 0.40 0.64 0.38 0.44 0.47 0.37 0.50
–20° 0.62 0.39 0.51 0.44 0.49 0.45 0.43 0.48
0° 0.65 0.37 0.56 0.42 0.54 0.43 0.46 0.47
20° 0.55 0.42 0.47 0.46 0.44 0.47 0.24 0.55
40° 0.58 0.41 0.55 0.43 0.50 0.45 0.24 0.55
60° 0.55 0.43 0.62 0.39 0.55 0.42 0.13 0.59

PNC –60° 0.09 0.35 0.24 0.32 0.30 0.31 0.21 0.32
–40° 0.11 0.34 0.36 0.29 0.35 0.29 0.22 0.32
–20° 0.12 0.34 0.25 0.32 0.29 0.31 0.19 0.33
0° 0.28 0.31 0.27 0.31 0.30 0.31 0.32 0.30
20° 0.20 0.33 0.22 0.32 0.19 0.33 0.21 0.32
40° 0.24 0.32 0.28 0.31 0.29 0.31 0.19 0.33
60° 0.07 0.35 0.28 0.31 0.20 0.33 0.08 0.35
December 2019 | V
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The accuracy metrics were calculated from validation data. The number in bold represents the maximum R2 and minimum RMSE (%), respectively.
FIGURE 6 | Comparison between measured and estimated LNC values with CIgreen at seven VZAs (A: 0°, B: -20°, C: -40°, D: -60°, E: 20°, F: 40°, G: 60°).
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derived from backward viewing angles performed better than
those from forward viewing angles for the prediction of foliar
nitrogen concentration. This could be because stronger spectral
signals of N dynamics were obtained from the sunlit stems and
leaves in the backward direction than those from shady stems
and leaves in the forward direction (Verrelst et al., 2008; He et al.,
2016b). Since the highest reflectance could be obtained at the
hotspot position from the backward viewing direction where the
sensor is aligned with the sun (Jupp and Strahler, 1991), some
studies attempted to improve the estimation of vegetation
parameters using the hotspot effect (Pocewicz et al., 2007;
Meng et al., 2016). However, it is difficult to accurately capture
the hotspot reflectance because it depends not only on crop
canopy architecture, but also on the VZA (Chen et al., 2003; Liao
et al., 2013). Given the labor and time cost in capturing the
hotspot effect, we adopted the 20° angle sampling interval that
was unable to present the hot spot reflectance while analyzing the
directional effect. In addition, the magnitude of the canopy
hotspot effect largely depends on the size, shape, orientation,
density and spatial dispersion of leaves (Qin and Xiang, 1994).
Although the reflectance at hotspot direction is valuable for
estimating canopy structural parameters, such as clumping index
Frontiers in Plant Science | www.frontiersin.org 9
(Chen et al., 2005), this study focused on the estimation of
canopy chemistry for practical application purposes by
examining the optimal single or dual observation angles.

Moreover, the VZA affected the possibility of sensing the soil
background from the UAV platform especially for early growth
stages. The NIR band exhibited stronger spectral difference
between VZAs than other bands (i.e. 490 nm, 550 nm, 671 nm,
and 700 nm) (Figure 4), which was caused by the spatial
heterogeneity of spectral properties within the field of view.
Generally, a higher VZA led to more chances to sense the
vegetative parts and fewer chances to sense the soil background
in the winter wheat fields. As shown in Figure 4, the highest
canopy reflectance at the NIR band was obtained from the -60°
image, while the lowest value was at nadir. Our finding is
consistent with the previous study by Verrelst et al. (2008) who
demonstrated that the VIs were significantly affected by the
proportions of soil background and vegetation within the field
of views. Compared to the off-nadir ones, the nadir observations
had more signals from the soil background due to the existence of
canopy gaps. The off-nadir observations corresponded to different
proportions of soil background seen from the sensor, which could
explain the difference in canopy reflectance between VZAs.
FIGURE 7 | Coefficient of determination (R2) values for the relationships of four VIs with (A) LNC and (B) PNC over the seven VZAs.
FIGURE 8 | Coefficient of determination (R2) values for the relationships of four VIs with (A) LNA and (B) PNA over the seven VZAs.
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Difference in Estimation Accuracy
Between VIs
Among the four VIs examined, VARI performed worst for the
estimation of N nutrition parameters over all VZAs and CIgreen
performed best. Since VARI was constructed from visible bands
alone, the lack of the NIR band enhancing the contrast between
different N levels might be responsible for the worst performance
(Hunt et al., 2010). The superior performance of CIgreen over
CIred-edge and mNDblue was probably attributed to the greater
sensitivity of the green band to chlorophyll concentration than
the red edge (RE) band. In addition, the wavelength center of the
RE band (700 nm) as compared to 720~730 nmused in other studies
was only approximately 30 nm offset the red band (671 nm) (Feng
et al., 2015; Zhou et al., 2018). Considering the 10 nm bandwidth of
these bands in themultispectral camera, the potential of the RE band
may need to be further explored with longer wavelengths.
Frontiers in Plant Science | www.frontiersin.org 10
For the estimation of LNA and PNA, the accuracy for the
VARI at nadir position was remarkably better than those at off-
nadir positions (except for VZA = 20°). The mNDblue exhibited
stronger sensitivity to VZA in backward direction than forward
direction. Due to the influence of the dark green pixels from
shaded leaves, the mNDblue yielded higher R2 in the forward
viewing direction compared to the backward direction. This was
similar to the finding reported by Jay et al. (2019) on quantifying
the biochemistry in sugar beet crops. In contrast, the other two
VIs (CIred-edge, CIgreen) appeared to be much less sensitive to
VZA. This was especially the case for the two VIs at backward
viewing directions (Figure 8). Specifically, VARI was composed
of merely visible bands and the other three included the NIR
band. The high-absorbing visible bands in the VARI at off-nadir
positions might saturate for the estimation of biomass. The
main reason for the insensitivity of the CIred-edge and CIgreen to
TABLE 5 | Coefficient of determination (R2) and RMSE (g/m2) for LNA and PNA estimation using the VIs from a combination of 0° and an off-nadir VZA.

Variable VZA combination mNDblue CIgreen CIred-edge VARI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LNA 0° + (-60°) 0.64 1.14 0.72 1.00 0.64 1.13 0.51 1.32
0° + (-40°) 0.66 1.09 0.69 1.05 0.63 1.15 0.51 1.32
0° + (-20°) 0.67 1.08 0.63 1.15 0.63 1.15 0.48 1.37
0° + 20° 0.60 1.19 0.62 1.16 0.54 1.27 0.49 1.34
0° + 40° 0.60 1.19 0.68 1.06 0.62 1.16 0.50 1.33
0° + 60° 0.61 1.18 0.69 1.06 0.70 1.04 0.53 1.29

0° 0.70 1.00 0.79 0.83 0.73 0.94 0.56 1.20
PNA 0° + (-60°) 0.79 2.10 0.81 2.02 0.75 2.27 0.54 3.08

0° + (-40°) 0.78 2.15 0.78 2.13 0.76 2.26 0.50 3.23
0° + (-20°) 0.78 2.12 0.78 2.12 0.78 2.15 0.51 3.19
0° + 20° 0.75 2.29 0.77 2.18 0.77 2.21 0.58 2.97
0° + 40° 0.76 2.25 0.77 2.19 0.74 2.33 0.59 2.94
0° + 60° 0.74 2.32 0.80 2.05 0.80 2.05 0.56 3.02

0° 0.71 2.18 0.80 1.80 0.74 2.07 0.55 2.72
December 2019 | Vo
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The number in bold represents the maximum R2 calculated from validation data for each agronomic variable with VI. The row of 0° corresponds to the estimation accuracies for VIs from the
nadir VZA only.
TABLE 4 | Coefficient of determination (R2) and RMSE (%) for LNC and PNC estimation using the VIs from a combination of 0° and other off-nadir VZAs.

Variable VZA combination mNDblue CIgreen CIred-edge VARI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LNC 0° + (-60°) 0.54 0.45 0.66 0.39 0.62 0.41 0.27 0.57
0° + (-40°) 0.56 0.44 0.58 0.43 0.45 0.49 0.23 0.58
0° + (-20°) 0.54 0.45 0.48 0.48 0.48 0.48 0.23 0.58
0° + 20° 0.55 0.44 0.47 0.50 0.41 0.51 0.23 0.58
0° + 40° 0.54 0.45 0.48 0.48 0.41 0.51 0.27 0.57
0° + 60° 0.56 0.44 0.55 0.44 0.55 0.44 0.20 0.59

0° 0.65 0.37 0.56 0.52 0.54 0.43 0.46 0.47
PNC 0° + (-60°) 0.40 0.31 0.47 0.29 0.48 0.29 0.41 0.31

0° + (-40°) 0.37 0.32 0.47 0.30 0.52 0.28 0.41 0.31
0° + (-20°) 0.40 0.31 0.47 0.29 0.50 0.29 0.41 0.31
0° + 20° 0.41 0.31 0.45 0.30 0.48 0.29 0.40 0.31
0° + 40° 0.46 0.30 0.47 0.30 0.47 0.29 0.42 0.31
0° + 60° 0.49 0.29 0.46 0.30 0.50 0.29 0.43 0.31

0° 0.28 0.31 0.26 0.31 0.27 0.31 0.33 0.32
The number in bold represents the maximum R2 calculated for each nutrition parameter and VI. The row of 0° corresponds to the estimation accuracies for VIs from the nadir only.
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VZA was probably that leaf or plant biomass contributed
dominantly to the N accumulation variables and the
performance of biomass sensitive VIs were insignificantly
dependent on VZA (Gianelle and Guastella, 2007). The
biomass signals of crop canopies were strong for the growth
stages examined in this study and did not need to be enhanced
from off-nadir observations. Overall, the estimation accuracies
for N accumulation (LNA and PNA) were obviously higher than
those for N concentration (LNC and PNC). The canopy-level
finding was supported by a recent study by Li et al. (2018) who
demonstrated that it was easier to estimate N mass per unit
surface area than that per unit dry mass. This was explained by
the better representation of the interaction between matter and
light per unit surface area with spectral reflectance from leaf
optical properties perspective.

Given the links between agronomic variables, one may be
concerned about the dominant role of biomass in the estimation
of N status. To address this issue, we analyzed their relationships
and found the nitrogen accumulation was strongly correlated to
biomass, both for leaves (LNA vs leaf biomass: R2 = 0.85, p <
0.0001) and the plants (PNA vs above-ground biomass: R2 =
0.79, p < 0.0001). However, the nitrogen concentration was only
weakly correlated to biomass for leaves (LNC vs leaf biomass: R2 =
0.23, p < 0.0001) and not correlated to biomass for plants (PNA
vs above-ground biomass: R2 = 0.01, p > 0.42).Therefore,
biomass (leaf biomass or above-ground biomass) might play a
significant role in nitrogen accumulation (LNA or PNA) but not
so in nitrogen concentration (LNC or PNC). Although the
variation of accuracy across VZAs for biomass estimation
(Table 6) was almost consistent with that for LNA and PNA,
the accuracies for the former were lower than those for the latter
under the same VI and SZA. Biomass might have played a
dominant role in nitrogen accumulation, but definitely not in
nitrogen concentration. In addition, the accuracies for nitrogen
accumulation were already high with nadir observations alone.
The improvements for LNC and PNC estimation by using
Frontiers in Plant Science | www.frontiersin.org 11
oblique observations should be attributed to the stronger
capability of detecting nitrogen in the leaves or the canopies.

The Angular Combinations for the
Estimation of Agricultural Parameters
Given the vertical variation in N concentration within the crop
canopy, the N concentration derived from the top canopy is
obviously different than that from the whole plant or other
positions within the canopy. The off-nadir observations have
been proved to be useful in obtaining more detailed information
about crop N status, especially for open canopies (Pocewicz et al.,
2007; Huang et al., 2011). Our study demonstrated that the off-
nadir observations could improve the estimation accuracy for
LNC and PNC, which could be explained by fact that VIs from
the 0° image mainly captured the information of N concentration
from the upper leaves or panicles but lacked the information
from the lower organs.

To investigate the contribution of multi-angular spectral data,
we evaluated the performance of the combination of nadir and
off-nadir images for the estimation of N nutrition parameters.
For LNC estimation, a slight improvement was achieved when
using the combination of 0° and -60° images as compared to the
0° image alone. Although the off-nadir observations could
acquire more information within the canopy, most leaves
could be sensed from the 0° VZA and no significant
improvement could be obtained by adding an off-nadir image.
Conversely, the combination of 0° and another angle
substantially improved the estimation accuracy for PNC with
each VI. Off-nadir observations created more chances to sense
not just leaves and panicles at different heights, but also stems
within the canopy. Since the off-nadir observations did not
exhibit better performance than the nadir observation for LNA
and PNA estimations, the addition of an off-nadir image to the
nadir image failed to make an improvement.

Although some studies attempted to combine the spectral
information from three or four VZAs for improving the
TABLE 6 | Coefficient of determination (R2) and RMSE (t/ha) for AGB and leaf biomass estimation using the VIs from seven VZAs.

Variable VZA mNDblue CIgreen CIred-edge VARI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

AGB –60° 0.60 1.52 0.50 1.70 0.57 1.58 0.18 2.18
–40° 0.51 1.69 0.51 1.68 0.44 1.80 0.18 2.18
–20° 0.54 1.63 0.50 1.71 0.49 1.72 0.17 2.19
0° 0.48 1.74 0.53 1.66 0.45 1.78 0.29 2.03
20° 0.53 1.65 0.49 1.72 0.37 1.90 0.36 1.92
40° 0.44 1.80 0.43 1.82 0.20 2.16 0.09 2.30
60° 0.60 1.52 0.56 1.60 0.43 1.83 0.10 2.29

Leaf biomass –60° 0.54 0.30 0.62 0.28 0.68 0.25 0.38 0.35
–40° 0.54 0.30 0.72 0.24 0.66 0.26 0.41 0.34
–20° 0.58 0.29 0.69 0.25 0.65 0.26 0.41 0.34
0° 0.58 0.29 0.67 0.26 0.60 0.28 0.47 0.32
20° 0.50 0.31 0.65 0.26 0.54 0.30 0.47 0.32
40° 0.40 0.34 0.56 0.29 0.34 0.36 0.17 0.40
60° 0.48 0.32 0.53 0.31 0.47 0.32 0.19 0.40
December 2019 | Vo
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estimation accuracy, the noise effect resulting from adding
multiple VZAs may reduce the predictive power for the multi-
angular model (Huber et al., 2007; He et al., 2016b). We might
miss the combination of three or even more angles for improved
estimation, but such a combination of multi-angular views will
increase the burden of flight campaigns. Two angles would be a
trade-off between multi-angular observations and data
acquisition workload. Therefore, we only tested the
combination of 0° and an off-nadir angle from the perspective
of operability and efficiency.

The Limitations and Potential Applications
Our study demonstrated that the estimation accuracies for N
status parameters from backward VZAs were obviously higher
than those from forward VZAs with most of VIs. This finding is
consistent with previous studies using the spectral data from the
backward viewing direction to improve the estimation of
vegetation parameters, such as LAI in forest (Pocewicz et al.,
2007), yield in soybean (Galvão et al., 2009), and LNC in wheat
(He et al., 2016b). However, it is still difficult to acquire images at
the exactly specified VZA in the field using a UAV system.
Although a gimbal was used to guarantee the attitude of the
sensor, the random wind might change the initial VZA during a
UAV flight. Therefore, the performance of multi-angular VIs
might be affected by the stability and the accuracy of the VZA
with the UAV-based camera.

To avoid complicating the image collection process and aim
for practical collection strategies, we have not investigated the
effects of SZA and SAA on wheat canopy reflectance in this
study. To reduce such effects, we tried our best to collect the
aerial images during 10:00-14:00 local time so as to minimize the
ranges of SZA (50°–70°) and SAA (130°–230°). Considering the
symmetry of solar positions in the morning and afternoon along
north-south orientation of wheat rows, the equivalent SAA
ranged from 130° to 180° (or from 180° to 230°). These angle
ranges were narrower than that of VZA that varied from -60° to
60°. Therefore, the results of this study should be less affected by
the variations in SZA and SAA. Anyway, in the future, SZA and
SAA effects should be further minimized by shortening
measurement periods within a day or finishing the angular
measurements over several days at a fixed time.

The optimal observation angles (-40° and -60°) found in this
study were in the backward viewing direction and close to the
angle of the hotspot position, which suggests the potential of
hotspot effect in better estimating wheat N status. This match
was derived from only one experiment in this study and remains
to be confirmed with more experimental data or model
simulations in future work. The superior performance of
backward viewing angles over forward viewing angles could be
explained by the stronger spectral signals of N dynamics from
the sunlit leaves and panicles in the backward direction (Verrelst
et al., 2008; He et al., 2016b). If the SZA is close to nadir
position, more soil background would be sunlit and oblique
observations are more vital to reduce soil background effect.
Future work may include model simulations to examine
whether -40° or -60° would be preferred angles, but an angle
Frontiers in Plant Science | www.frontiersin.org 12
in the backward direction may be necessary for the goals
achieved in this study.

Although soil background might affect the estimation of foliar
chemistry (e.g., N status) from canopy reflectance spectra, this
study did not separate soil pixels from vegetation pixels for two
reasons. One was the weak visibility of soil background from off-
nadir observations compared to nadir observations. While the
soil background might be visible on nadir-view images that
would become increasingly invisible on oblique-view images
with larger VZAs in the background or forward viewing
directions (Figure 2B). This was also one of the main
motivations to perform this multi-angular UAV remote
sensing study. The direct use of oblique-view images for N
status estimation could avoid another special step of removing
soil background, of which the quality may be subjective to the
analyst. Nevertheless, the advantages of using multi-angular
observations include not only less visibility of soil background,
but also better sensing of non-leaf organs (e.g., panicles). On the
other hand, soil background was not a strong factor for this study
because the three sampling growth stages were in the middle
period of the season and characterized by dense canopy cover.
Actually, we tried applying a NDVI threshold (NDVI < 0.4 for
soil) to separate soil pixels from vegetation pixels. Subsequently,
we found the plot-level VIs before removing soil background
(VIs for all pixels) were tightly correlated to those after removing
soil background (VIs for green pixels), with R2 values ranging
0.9956 to 0.9982 for CIgreen and CIred-edge. To avoid redundancy,
we did not add the separation of soil background to this study
but focused on exploring the benefits of using oblique
observations from the flexible UAV platform.

Lastly, the multispectral camera included only five bands and
we could construct a limited number of sensitive VIs for N status
monitoring. This might explain why our best accuracy for LNC
estimation was lower than that with a hyperspectral sensor (He
et al., 2016a). Although our models developed with index-based
statistical approaches are dataset-specific and might lack
transferability to other sites with different vegetation types, our
study demonstrated the importance of considering UAV-based
multi-angular observation in N monitoring. Thus, the future
research may focus on the investigation of a UAV-based multi-
angular hyperspectral camera for more accurate estimation of
crop N status parameters.

CONCLUSIONS

This study evaluated the performance of four representative VIs
derived from the UAV-based multi-angular multispectral images
for the estimation of N nutrition parameters in winter wheat. We
found that the general superiority of backward viewing VIs over
the forward viewing VIs was obvious for LNC, but not so for
PNC. The highest accuracy was obtained with CIgreen for LNC
from a VZA of -60° (R2 = 0.71, RMSE = 0.34%) and PNC from a
VZA of -40° (R2 = 0.36, RMSE = 0.29%). CIgreen also yielded the
highest accuracy for the estimation of LNA and PNA, but did not
exhibit significant sensitivity to VZA. For mono-angular
observations, the N status in concentration was more poorly
December 2019 | Volume 10 | Article 1601
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estimated as compared to that in accumulation. By combining an
off-nadir image and the 0° image, we were able to increase the
accuracy of PNC substantially with CIred-edge (R

2 = 0.52, RMSE =
0.28%). Although the highest accuracy for LNC estimation with
dual-angle images was achieved with CIgreen from the
combination of 0° and -60° (R2 = 0.66), this was still not better
than that using a single-angle image (-60°) with the same index
(R2 = 0.71). Compared to the use of single-angle images, the
improvement from the use of dual-angle images was not so
significant for LNC and especially for LNA and PNA.

The findings of this study suggest that it is useful for UAV users
to acquire multispectral images at oblique angles, especially in the
backward viewing direction, for more accurate estimation of N
concentration parameters in winter wheat. The oblique-view
images could be used alone or combined with the commonly
used nadir-view images for improved estimation of winter wheat N
concentration. Although this study demonstrates the great
potential of multi-angular multispectral imagery in UAV-based
winter wheat N status monitoring, the performance of oblique
observations should be further validated with other multispectral
cameras popular in the community and applications to other crops.
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