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Abstract: Long timeseries of Earth observation data for the characterization of agricultural crops
across large scales are of high interest to crop modelers, scientists, and decision makers in the fields
of agricultural and environmental policy as well as crop monitoring and food security. They are
particularly important for regression-based crop monitoring systems that rely on historic information.
The major challenge lies in identifying pixels from satellite imagery that represent pure enough crop
signals. Here, we present a data-driven semi-automatic approach to identify pure pixels of two crop
groups (i.e., winter and spring crops and summer crops) based on a MODIS–NDVI timeseries. We
applied this method to the European Union at a 250 m spatial resolution. Pre-processed and smoothed,
daily normalized difference vegetation index (NDVI) data (2001–2017) were used to first extract
the phenological data. To account for regional characteristics (varying climate, agro-management,
etc.), these data were clustered by administrative units and by year using a Gaussian mixture model.
The number of clusters was pre-defined using data from regional agricultural acreage statistics.
After automatic labelling, clusters were filtered based on agronomic knowledge and phenological
information extracted from the same timeseries. The resulting pure pixels were validated with two
different datasets, one based on high-resolution Sentinel-2 data (5 sites, 2 years) and one based on a
regional crop map (1 site, 7 years). For the winter and spring crop class, pixel purity amounted to 93%
using the first validation dataset and to 73% using the second one, averaged over the different years.
For summer crops, the respective values were 61% (91% without one critical validation site) and
72%. The phenological analyses revealed a clear trend towards an earlier NDVI peak (approximately
−0.28 days/year) for winter and spring crops across Europe. We expect that this dataset will be
useful for various applications, from crop model calibration to operational crop monitoring and
yield forecasting.

Keywords: pixel purity; crop classification; crop monitoring; Gaussian mixture model; phenology;
remote sensing; timeseries

1. Introduction

Information on crop condition and yield at continental extents is of high importance to decision
makers in the fields of agricultural and environmental policy as well as food security [1]. Such
information is of even higher value if provided at regional (usually sub-national) scale. Region-wise,
yield forecasts can lead to higher accuracies because the analyses can be based on more locally
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appropriate predictors. For regional remote sensing-based crop monitoring, frequently based on
regression analysis, the availability of crop-specific data (crop masks) assumes a major role [2].
Nonetheless, remote sensing-dependent crop models are often run over large geographic extents with
only an approximate knowledge of crop distribution. This is due to the limitations in the spatial and
temporal resolution of the remotely sensed and ground data [3], adding uncertainty and lowering
model accuracy. Such crop model simulations could be considerably improved if fed with adequately
geo-located and pure crop specific land cover data for every growing season [4,5].

In view of the increasing and increasingly sophisticated use of Earth observation (EO) data
as model input, the correct geo-localization of crops becomes increasingly important. Large-scale
crop monitoring is usually run by (inter)governmental organizations or NGOs. Eight of the most
prominent of such organizations were interviewed by researchers [6] on how they viewed their data
and model inputs. Six out of eight organizations identified the data gaps for their crop-type maps as
“critically important” or “critical”. Frequently, surrogates for such crop type maps are derived from
downscaled statistics of larger administrative areas. The geographic distribution of crops in those
products is often spatially re-allocated based on proxies. Four products created by such downscaling
methodologies were compared by researchers [7]: They found large discrepancies among them which
suggests the generally low robustness of such approaches. The eight surveyed crop monitoring
organizations [6] viewed crop calendars as crop model input even more critically than crop masks.
Local planting and harvesting dates for different crop types are known to exert important influence on
crop monitoring and yield estimates. The need for reliable large-scale crop-type maps and phenological
data calls for respective research in this direction.

Remote sensing is widely used to try to fill these data gaps [8–15]. In much of this research, crops
are identified at only regional extents and for only one or a few years. Here, we aimed to employ
remote sensing on a continental level and on a thoroughly multi-annual basis. Our analysis period
extended from 2001 to 2017, and our area of interest covered the 28 member countries of the European
Union (EU).

However, long-period multi-annual identification of crops or crop groups at the continental scale
poses serious challenges, since it needs to deal with variability in climatic conditions. Reference data
are commonly used in these types of analysis. Such approaches require large amounts of reference
data to cover each year and climatic zone and whose collection is labour- and cost-intensive.

These difficulties, in particular the scarcity of available reference data, might be the main reason
for why multi-annual spatially explicit identification of pure crop-or crop group-specific land cover
at continental extents is largely absent, although several approaches have been undertaken. Indeed,
significant work has been done in the United States, where the National Agricultural Statistics Service
(NASS), an agency of the United States Department of Agriculture (USDA), each year publishes the
Cropland Data Layer (CDL). This dataset, derived at a 30 m spatial resolution, is a highly valued source
for crop acreage estimates [16]. The CDL, created with a machine learning approach, is, in addition to
remote sensing data (mainly Landsat, previously also AWiFS), heavily based on ground reference data,
collected by local county offices. The CDL data were used by Massey et al. [17] in an approach with
parallels to our own. They developed an automated decision tree classification to map the dominant
crop types across the United States using a MODIS NDVI (250 m) timeseries.

Other data made available by USDA are the Common Land Units (CLUs), described by the
same authors and created to delineate the field boundaries of registered US farmland. Similar field
data also exist in Europe, collected within the LPIS (Land Parcel Identification System) of the EU
member countries [18], used as the identification system of agricultural blocks or parcels within
the Integrated Administration and Control System (IACS) to manage the implementation of the EU
Common Agricultural Policy. However, only some of these data are made publicly available by their
respective EU member states, and then often only after harvest. The LPIS systems across the different
countries of the EU are not harmonized in either their methodologies or their output qualities [19].
Most LPIS systems provide land-use parcels of the size of larger blocks or cadastral parcels, often
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occupied by more than a single crop, including non-productive areas. Only recently (as of 2017) has
delineation of the effectively cropped land parcel containing a single crop become mandatory. This is
referred to as Geospatial Aid Application (GSAA), but again is not suited for retrospective analyses as
envisaged here.

In order to overcome the low availability of reliable and harmonized reference data, especially
historic data, the idea was to work with as little reference data as possible. If self-parameterization does
not lead to meaningful results, the system should be simplified. Obviously, this reduces classification
depth and requires the creation of meaningful crop group classes, merging crops with similar properties.
Such a parsimonious approach would facilitate the implementation of an operational and highly
independent system which could be run on large scales.

The objective of this work was to fill these gaps and to identify and extract yearly sets of pure
pixel signals. The datasets should adequately represent pre-defined crop groups for the time span
2001–2017 at the regional level, minimizing the negative effect of mixed pixels. The approach should
fulfil the requirements for automation, be cost-effective, reliable, and robust.

2. Materials and Methods

2.1. Data

Since our objective was to provide a retrospective archive of pure crop pixels back to the year
2001, the choice of remote sensing data fell on the MODIS sensor (Moderate resolution imaging
spectroradiometer) [20,21]. This sensor has been active since the beginning of this period and allows us
to avoid data discontinuity issues. The MODIS provides a high temporal observation density and has,
among available medium resolution sensors, (e.g., SPOT-VEGETATION, Satellite pour l’observation
de la Terre) a relatively high spatial resolution (250 m, in 2 bands). This is expected to image Europe’s
farmland complexity appropriately. Because of the limited spectral details at this resolution, the focus
was placed predominantly on the temporal domain.

The MODIS sensor is described in detail by the respective NASA (National Aeronautics and Space
Administration) website [22]. Here, we used daily reflectance data in the red and near-infrared range at
250 m spatial resolution (bands 1 and 2). Data of other bands were indirectly used (through provided
flags) for internal atmospheric correction or cloud masking.

The specific products we used for this work were MOD09GQ.006 and MYD09GQ.006 from the
Terra and Aqua platforms, respectively, provided by NASA LP DAAC at the USGS EROS Center [23].
For the present application, collection 6 was used. Both datasets are daily, global, atmospherically
corrected surface reflectance (L2G) products at 250 m resolution. The MODIS data are provided as
gridded products in the Sinusoidal projection. In addition to MODIS bands 1 and 2, quality rating,
observation coverage, and observation number are also provided in the products. The product was
used in conjunction with the MOD09GA (Terra) or MYD09GA (Aqua) (500–1000 m resolution) where
additional important quality and viewing geometry information is stored. In addition to these MODIS
products, the following further datasets were used

1. Agro-statistical data at varying levels of administrative units (NUTS-0 to NUTS-2, Nomenclature of
territorial units for statistics), collected by member states and/or EUROSTAT (European Statistical
Office). These data were modified and harmonized to reflect the average coverages of Utilized
Agricultural Areas (UAAs) per administrative units (up to NUTS-2) for the years of 2006–2015 [24].
These data were used to extract the number of crop group clusters per region.

2. Satellite data of Sentinel-2A and 2B (MSI sensor) for five different sites in Europe, and downloaded
from the European Space Agency (ESA) Copernicus Open Access Hub [25]. High-resolution
Sentinel-2 data were processed at 10 m resolution to extract the NDVI [26].

3. The Castile and Leon Crops and Natural Land Map (Spanish acronym MCSNCyL) [27], a GIS-based
crop coverage product stemming from a publicly available source for the region Castile and Leon
(CyL) in Spain [28,29]. Yearly LPIS datasets were used, together with other land cover data, as
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training data for a high-resolution remote sensing data classification using machine learning. The
described product was used for validation of the years 2011–2017.

4. CORINE land cover 2012, version 18.5 [30], as a raster map of 250 m resolution, generated from
the original vector data (with thematic accuracy >85%) by a “maximum combined area” approach.
A European land use/land cover map, to distinguish arable land (irrigated and non-irrigated)
from other land use/land cover classes.

5. SRTM (Shuttle Radar Topography Mission), a radar-based digital elevation dataset (version 4) at
90 m resolution, which was void filled and complemented by other DEMs [31]. These data were
used to mask highlands.

6. Farm Heterogeneity Index (FHI), a spatial, highly detailed indicator expressing the field
heterogeneity of farmland in Europe [32], used for explanatory reasons in the validation.

All computations and calculations were done with Google Earth Engine [33] and R [34].

2.2. Method

Figure 1 provides an overview of the workflow followed to detect pure crop group pixels from the
MODIS timeseries across the EU. Pre-processing of the data, where first masks and filters were applied,
was followed by smoothing and then by the extraction of the phenology. Finally, the phenology
data were clustered and labelled into crop groups, taking stock of existing statistical data and basic
agronomic knowledge. A final filtering step, aimed at minimizing noise, was applied at the end of
this process.

Figure 1. Flow diagram of pre-processing, phenology and noise removal, clustering, and
labelling procedures.
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2.3. Pre-Processing

The MODIS MOD09GQ.006 (Terra) and MYD09GQ.006 (Aqua) daily surface reflectance L2G
global data at 250 m spatial resolution were merged to increase the number of observations. We
limited the observation time period to the supposed growing cycle after winter dormancy of the main
agricultural crops in Europe, lasting from 1st of March to 31st of August. The archive comprised the
years of 2001–2017. The geographic extent was limited to the 28 EU member countries as of the end
2017. The map in Figure 2 depicts the study area. Both MODIS products (Aqua and Terra) provided
surface reflectance (ρ) in the red (RED) and near infrared (NIR) electromagnetic spectrum, with which
the NDVI was calculated:

NDVI =
ρNIR− ρRED
ρNIR + ρRED

(1)

Figure 2. Study area and the analyzed NUTS regions. Validation sites in red: five Sentinel-2-based
sites (S-2 footprints) and the region Castile and Leon (CyL, NUTS-region ES41) with a crop map-based
validation. Analyzed countries and regions for pure pixel extraction outlined with their black borders.

The MOD09GQ and MYD09GQ both provide reflectance band quality, coded as a 16 bit unsigned
integer data type. A detailed description of the quality flags is provided in the MODIS user guide [35].
The rules applied to create a positive quality mask are reported in the Supplementary Materials,
Table S1.

In addition to the surface reflectance quality band, the MOD09GA and MYD09GA (500–1000 m
resolution) products provide important quality and viewing geometry information, coded as quality
flags, and often referred to as state QA flags. These were used to define a positive quality mask
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(described in the Supplementary Materials, Table S2). The mask was applied to the group of 16 pixels
at 250 m resolution within each 1 km grid cell.

Additional masks were also used, such as the SRTM digital elevation model (keeping values <

1200 m a.s.l.) and the CORINE land-use land cover product of the year 2012, version 18 [30], where
non-irrigated and irrigated arable land was selected (CORINE classes 211 and 212, respectively).

2.4. Smoothing and Extraction of Phenology

The final NDVI value was calculated by fitting a 5th degree polynomial to each NDVI pixel
timeseries between 1st of March and 31st of August of each year. The 5th degree polynomial was chosen
to appropriately map multi-peak NDVI timeseries on arable land. This smoother was empirically
tested on the data and found to be adequate.

To maintain consistency in the coverage and quality of phenological data that are otherwise
reported in only a few areas of Europe [36], the NDVI timeseries itself was used to extract phenology.
The timing of NDVI peak (DOY_VImax), expressed as DOY, considers both spectral and temporal
EO-based features of the land cover. This way it provides a sort of synthesis of both domains and
might therefore be considered an information-rich indicator. As documented in scientific literature
for wheat and maize, the timing of NDVI peak (DOY_VImax) occurs around the booting or heading
date [37,38], from shortly before flowering to the time of flowering (silking of maize [39]).

The analyzed growing season was extended by one month for the countries Hungary (HU),
Romania (RO), and Bulgaria (BG), where important phenological events can still take place in September
(late NDVI peaks possible). The DOY_VImax values occurring before DOY 115 were excluded for the
countries Ireland (IE) and United Kingdom (UK) to avoid misinterpretations caused by early greening.

Phenological trend magnitude was calculated according to Sen [40], with trend significance
following the Mann–Kendall test [41]. Regions with on average less than 100 observations/year were
not considered for trend analysis.

2.5. Clustering, Labelling, and Noise Filtering

The DOY_VImax values from the smoothed NDVI timeseries were extracted and considered as
a population of statistical samples. For further processing in R, the data were re-projected from the
native sinusoidal projection to CORINE’s projection, EPSG code 3035 (European Petroleum Survey
Group), by a nearest neighbor resampling.

Pixels were region-wise and year-wise clustered by Gaussian mixture modelling (GMM), as
implemented in the R package mclust [42]. This technique was recently successfully applied by
Skakun et al. [43] for winter crop mapping in the US state of Kansas and in Ukraine and was considered
appropriate for our goal.

p
(
→
x
)
=

k∑
i=1

ϕiN
(
→
µ i, Σi

)
(2)

The assumption of GMM (Equation (2)) is that an overall sample population is composed of k
normally distributed subpopulations (components Ni . . . k), resulting in a probability density function
p(x). Each component of a mixture has its own mean (µi) and variance (σ2

i) (or vector
→
µ i and covariance

Σi for the multivariate case). Additionally, each component is defined by a component weight ϕi,
which is constrained to sum to 1 for all components. The component weights are learnt during the
unmixing process; the parameters of the GMM are estimated using an expectation–maximization
(EM) algorithm. The EM is an iterative technique for maximum likelihood estimation of probabilistic
models [44]. The variable used for clustering is DOY_VImax.

The resulting clusters normally correspond to crop groups. If DOY_VImax occurs early in the
year, the cluster will be winter and spring crops (WSpCs, small-grained cereals, and rapeseed), if it
occurs later in the year, it will be summer crops (SCs, sugar beet, potato, sunflower, maize, soybean).
The classification to crop groups relies merely on the chronological order at which the created clusters
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(maximum 2) reach their NDVI peak. If only a single cluster was detected, this cluster is assumed to
represent the crop group with the highest crop acreage according to EUROSTAT statistics.

The resulting clusters were checked for their separability. The average DOY_VImax values of
different clusters within the same region are not allowed to be closer than 10 days, as this is no longer
considered separable. If they are closer, the clusters are merged, and the number of clusters is reduced to 1.

Depending on which crop group a pixel is assigned to, threshold-based filters for a set of
agronomically-based rules were applied to ensure a high degree of pixel purity. These filters require
that, at a certain time during the growing cycle, NDVI timeseries values, which remain linked to the
classified cluster pixels, pass certain thresholds. In particular, for the class WSpCs, the NDVI value on
DOY 240 must stay at a value lower than 0.4, since crops are by then harvested or at a low level of
chlorophyll, reflected in a low NDVI. In contrast, at this stage, high NDVI values do typically occur
for SCs. For SCs, instead, the NDVI is required to be lower than 0.35 on DOY 110, assuming that no
significant biomass is accumulated by that day, and that this, in turn, is reflected by a low chlorophyll
content and a low NDVI value, whereas WSpCs would instead be identified by higher NDVI values at
this time. For SCs, it was also required that the NDVI peak did not occur earlier than DOY 150. The
mutual exclusion at the selected DOYs was expected to be robust over all of the area of interest, since
values were chosen generously, leaving some margin for the event of exceptional years. Additionally, a
two-sigma criterion (±2 SD) was applied to each class population, to filter atypical values or outliers,
as often occurs in mixed pixels.

The input samples for each GMM model were typically limited to sub-national administrative
regions (NUTS-units). The cluster building process relies on self-parameterization requiring input
of only the number of clusters to build. Given this individual region-wise processing, site-specific
characteristics of the climate, phenology, and agro-management regime did not require any prior
normalization, and the results (clusters) were comparable with respect to the individual characteristics
intrinsically contained within them.

The choice of NUTS-level determines the size of its spatial elements. An adequate choice aims at
maximizing crop-relevant regional homogeneity (e.g., climate and phenology) but also at confining the
total number of regions, guaranteeing at the same time a certain critical number of samples per region.
An additional criterion for the choice of NUTS-level was a harmonization of the spatial element size.
The chosen NUTS-levels for analysis (ranging from NUTS-level 0 to 2) of the countries are reported in
Table 1 and are visualized on the map in Figure 2.

Table 1. NUTS-levels for analysis.

NUTS Level Countries

0 AT, CY, EE, GR, LT, LU, LV, MT, SI

1 BE, DE, NL, UK

2 BG, CZ, DK, ES, FI, FR, HR, HU, IE, IT, PL, PT, RO, SE, SK

We employed evidence-based data to define the number of clusters. The EUROSTAT reports,
for the European administrative units of usually larger unit sizes (NUTS-1 or NUTS-2), the crop
acreages of the main agricultural crops. National statistics agencies report these data often at even finer
resolution. Researchers [24] have collated and elaborated these data by homogenizing, disaggregating,
and completing it in such a way that the crop acreage statistics are available for all EC member countries
at NUTS-2 level back to at least the year 2006. These crop acreage statistics serve to define the expected
number of clusters. After grouping the reported crop acreages per NUTS analysis level (see Table 1)
according to the grouping procedure described in Table 2, each crop group’s relative importance (RI)
was estimated as the crop area share averaged over the years of 2006–2017 of a NUTS analysis unit. If a
crop group’s RI was larger than or equal to a threshold of 10%, the group was considered for analysis,
otherwise it was neglected.
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Table 2. Identified crops or crop groups.

Crop Group
Code

Crop Group
Acronym Crop Group Contained Main Agricultural Crops

1 WSpCs Winter and spring crops Soft and durum wheat, winter and spring
barley, triticale, rye, oats, rapeseed

2 SCs Summer crops Sugar beet, potato, sunflower, maize, soybean

2.6. Validation

The validation of the results focused on pixel purity, assessed by high-resolution satellite data.
Crop group-specific pixel purity was calculated as the average coverage of the pure MODIS pixel
extent by pixels from classified high-resolution satellite data of the same class. Two independent
validation approaches based on different validation datasets were undertaken. Both datasets rely on
high-resolution remote sensing data (between 10 and 20 m), assumed to provide sufficient detail and
reliability for the assessment of pixel purity.

2.6.1. Sentinel-2-Based Validation

The Sentinel-2 (S-2)-based validation approach was pursued to counter the lack of high-quality
reference data suitable for validation. The processed reference data are an expert-based binary
classification of S-2 high-resolution remote sensing data. They provided the classes WSpCs and SCs,
following a highly similar although simpler process to the one presented here. This approach was
applicable to any site within the area of interest, and a sufficient number of well-chosen sites may
represent an even more representative database for validation than sporadically available data sources
elsewhere. The five sites (100 × 100 km, corresponding to S-2 tiling grids, see Figure 2) in Spain (ES),
France (FR), Germany (DE), Romania (RO), and the border area between Latvia and Lithuania (LL) all
represent regions with a high arable land share and the presence of both WSpCs and SCs. Validation
site DE has a high share of rapeseed. Agro-climatically, the sites represent the majority of possible
climates, ranging from low latitude, very warm and dry, to high latitude, very cold and humid climates.

In order to produce high-resolution reference maps, 418 Sentinel-2 level 1C (top-of-atmosphere
reflectance) acquisitions were atmospherically corrected to (L2A) top-of-canopy (TOC) reflectance
products by the simplified model for atmospheric correction algorithm (SMAC) [45], using
MODIS-based aerosol optical density (product: MYD04_3k, collection 6) and the default SMAC
values for ozone and water vapor. This algorithm provided a good relation between processing time
and output quality. Scene cloud contamination was estimated following the methodology implemented
in the Sen2cor processor [46], where for a pixel, a minimum of 15% cloud presence probability was
required to be classified as cloud. Additionally, Sen2cor’s cloud shadow radiometry-based binary mask
was applied. The NDVI was calculated from band 4 (red) and band 8 (near infrared) at 10 m spatial
resolution with 5 day temporal resolution. The resulting timeseries was smoothed using a Whittaker
interpolation approach [47,48]. The use of a different smoother compared to the MODIS processing
was not considered problematic, as the crop group separation based on DOY_VImax is considered
highly robust with typically large margins between crop groups. The timeseries for a current growing
season was extracted on arable land according to CORINE land cover and for pixels accounting for
at least 10 cloud-free observations within the timeseries. After classifying DOY_VImax values by a
threshold-based approach, the frequency and, hence, the pixel share of WSpCs and SCs within each
MODIS pixel were calculated. The classification rules to extract the two groups, WSpCs and SCs, were
scene-histogram based, separating two sub-populations of DOY_VImax at the lowest frequency of
their scene-histogram. In single cases, this general rule did not lead to a meaningful separation and the
dividing DOY_VImax value was defined based on agronomic knowledge.
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2.6.2. Crop Map-Based Validation

The second reference dataset was a classified dataset with detailed land use information and, in
particular, crop classes covering a large and important agricultural region of Spain (NUTS-2 region ES41,
see Figure 2) for the years of 2011–2017. These data offer a high degree of data independence, being
generated by a third party and based on an independent data source. The data is referred to as Castile
and Leon crops and natural land map [27]. The sensors Deimos-1 (2011–2016), Landsat 8 (2013–2016)
and Sentinel-2 (2016 until now) provide the predictors for the classification. The training data were
extracted from LPIS (and more recently from GSAA), the GIS of the Integrated Administration and
Control System for Common Agricultural Policy. Spain’s LPIS follows the cadastral parcel as reporting
geometry. The overall classification accuracy of these data is 82% on average, being generally much
higher in crop classes than in natural land [28,29].

3. Results

The results were obtained at the chosen NUTS-level (Table 1) for all EU member countries except
Malta and Finland, and for all years from 2001 to 2017. Due to the insufficient areas of arable land, the
countries Malta and Finland and other single NUTS regions were automatically excluded from the
analysis (e.g., Corsica in France or Berlin in Germany).

3.1. Pure Pixel Results

The pure pixel results are shown in Figure 3 over the European extent. In order to visualize all the
years simultaneously, we depicted the average share of a crop group’s pure pixel density over arable
land for the whole timeseries of 2001–2017 on a grid size of 10 by 10 km. The legend’s color ramp
indicates the share of the specific crop group density in relation to the sum of both crop group densities.
The shares had a range of 0–1 and were complementary for WSpCs and SCs. It is important to note
that the results depicted below should not be confused with a fully exhaustive crop classification, such
as a wall-to-wall classification. An example of the real distribution of pure pixels in a single year is
visible in more detail in Figure 4. The clustering and labelling were performed on a subset of arable
land pixels, those of highest purity. Although its sample size should, in general terms, be in line with
the proportional area covered by this crop group on a regional extent, this is, especially for a particular
year, not necessarily the case.

Figure 3. Average share of the WSpCs and SCs pure pixel density from 2001–2017 over arable land,
aggregated to a pixel size of 10 × 10 km.
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Figure 4. Details of a single year (2017) for a subset of the Romanian validation site (RO), showing the
real size of pure pixels (250 × 250 m), overlaid on a Sentintel-2 RGB maximum value composite for
May 2017.

Looking at the results at a regional level, a small-scale map reveals more geographic details in
the last column of Figures 5 and 6. In this case, the examples are from Aragón in Spain and from the
Sud-Est region in Romania. The first column shows the probability density function of the pure pixels,
underlined by the respective crop group color. The second column shows the NDVI timeseries of the
crop groups; both graphs are shown as examples and for a limited number of years (as rows).

Figure 5. Probability density function of DOY_VImax (first column), NDVI timeseries (2nd column),
and geographic distribution (3rd column) of the two crop group’s pure pixels for the region Aragón
(Spain) from 2009–2012 (by row). Winter/spring crops (WSpCs, orange), summer crops (SCss, cyan).
The timeseries depicts mean run ± 1 SD.
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Figure 6. Probability density function of DOY_VImax (first column), NDVI timeseries (2nd column),
and geographic distribution (3rd column) of the two crop group’s pure pixels for the region Sud-Est
(Romania) in 2005–2008 (by row). Winter/spring crops (WSpCs, orange), summer crops (SCs, cyan).
The timeseries depicts mean run ± 1 SD.

The algorithm’s ability to deal with varying phenological expression across several years can
be well observed for the case of Aragón (Figure 5). For example, the probability density function
clearly shows an earlier and later peak of WSpCs in the years of 2009–2011, which are, however, both
classified correctly as WSpCs, as is the single peak classification in 2012 conflating the winter and
spring crop signal. These graphs show the versatility of the algorithm, able to deal correctly with
different situations such as the consequences of inter-annual differences in phenology. Around DOY
200, a few SCs were detected (their number is depicted in the graph’s legend), yet extracted correctly,
as the classified timeseries in the middle column indicates. The geographic distribution reveals high
stability for both crop groups across the years shown.

Figure 6 shows a contrasting example for the Sud-Est region of Romania over the period of
2005–2008. Here it is clear that the algorithm, thanks to its robustness, can deal with large inter-annual
variability in phenology when detecting WSpCs and SCs. Note that the DOY_VImax of WSpCs in 2007
was advanced by about 3 weeks, compared to 2006, recognizable from the probability density function
(1st column) and the timeseries (middle column). In 2007, moreover, SCs were composed of two
sub-clusters with distinct DOY_VImax peaks (see 1st column), which were both classified correctly as
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SCs. It can also be seen that the group-wise number of samples of pure pixels can change considerably
among years, a fact that can have several reasons, the main two being (i) real acreage changes and
(ii) changing plant conditions expressed by the NDVI. Both reasons might also occur at the same time,
as was the case in this example.

3.2. Validation of Pure Pixels

Pixel purity is closely related to the algorithmic behavior of the filtering, which we briefly explore
here, since it helps to understand the full complexity of pure pixel quality. As already mentioned, pixels
not fulfilling the multiple NDVI thresholds and the two-sigma criterion were filtered out after running
the GMM. Assessing preference or unevenness in the pure pixel filtering process is of high interest,
since the pure pixel representativeness and comparability might be compromised. The exclusion of
samples (pixels) according to these defined filters was measured with an exclusion rate (ER) = number
of excluded samples/number of original samples. The ER was generally very high, with a median
of 89% (ER interquartile range: 15%, 5th, and 95th percentile: 49% and 99%, respectively). A slight
tendency to retain more samples was observed in Mediterranean countries, in particular in Spain
(ER median: 59%), which is probably related to a higher spatial separation of the two crop groups’
geo-locations; SCs are typically irrigated spots within wider WSpCs areas. Lower exclusion rates were
observed also for the Czech Republic (ER median: 75%) and Slovakia (ER median: 77%), which is
probably due to the larger patches of the same crop group, compared to other countries. Analytically,
and over the European continental extent, the ER was compared to the farm heterogeneity index (FHI).
The correlation (linear-log model) of ER and averaged FHI regional values yielded R = 0.50, indicating
a positive correlation of the ER with heterogeneous farmland (Figure 7). This suggests that a more
homogeneous agricultural landscape does generally result in less noise and, consequently, in less data
exclusion by filtering.

Figure 7. Exclusion rate (ER) versus farmland heterogeneity index (FHI), compared as the regional
medians and means, respectively, as colored lines; the confidence interval was at level 0.95.

Pixel purity is closely related to the algorithmic behavior of the filtering, which we briefly explore
here, since it helps to understand the full complexity of pure pixel quality. As already mentioned, pixels
not fulfilling the multiple NDVI thresholds and the two-sigma criterion were filtered out after running
the GMM. Assessing preference or unevenness in the pure pixel filtering process is of high interest,
since the pure pixel representativeness and comparability might be compromised. The exclusion of
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samples (pixels) according to these defined filters was measured with an exclusion rate (ER) = number
of excluded samples/number of original samples. The ER was generally very high, with a median
of 89% (ER interquartile range: 15%, 5th, and 95th percentile: 49% and 99%, respectively). A slight
tendency to retain more samples was observed in Mediterranean countries, in particular in Spain
(ER median: 59%), which is probably related to a higher spatial separation of the two crop groups’
geo-locations; SCs are typically irrigated spots within wider WSpCs areas. Lower exclusion rates were
observed also for the Czech Republic (ER median: 75%) and Slovakia (ER median: 77%), which is
probably due to the larger patches of the same crop group, compared to other countries. Analytically,
and over the European continental extent, the ER was compared to the farm heterogeneity index (FHI).
The correlation (linear-log model) of ER and averaged FHI regional values yielded R = 0.50, indicating
a positive correlation of the ER with heterogeneous farmland (Figure 7). This suggests that a more
homogeneous agricultural landscape does generally result in less noise and, consequently, in less data
exclusion by filtering.

Figure 8 shows a subset of the validation site in Romania in 2017, where the identified pure pixels
are overlaid on the Sentinel-2-based validation data.

Figure 8. Details of the validation site in Romania: pure pixels (250 m spatial resolution) overlaid on
the Sentinel-2-based classification.

Class-wise pixel purities for five validation sites in 2016 and 2017, based on Sentinel-2
high-resolution data (10 m resolution), are provided in the upper part of Table 3. According to
this validation scheme, pixel purities for WSpCs were on average 93%. For SCs, the pixel purities were
less homogeneous than for WSpCs, while pixel purities were still larger than 80% at the validation
sites in Romania (RO) and Spain (ES) as well as in Germany (DE) and France (FR) for 2017; they were
significantly lower in 2016 at the latter two sites and were particularly low for Lithuania and Latvia
(LL). However, the low pixel purities at these sites should not be over-interpreted, since the year 2016
was particularly compromised by low pixel availability (see the number of samples reported in Table 3)
due to the high cloudiness in the S-2 data which, especially for SCs, highly compromised the results.
Regardless of this low data availability, the temporal vegetation profiles of WSpCs and SCs in extremely
late maturing areas can be easily confused, as they resemble each other to a high degree. Lithuania
and Latvia (LL) in particular represent one of the most extreme cases in Europe of this late maturation;
cereals are harvested almost together with potatoes (which are a very prominent SCs there). Due to
the resulting confusion, SCs are overestimated there, leading to low pixel purities. In DE, instead, the
low pixel purity for SCs in 2016 was also due to the slight underestimation of S-2-based reference SCs,
caused by a later DOY_VImax of WSpCs that year, resulting in a later division threshold value among
crop groups.
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Table 3. Pixel purity for each validation site.

Site NUTS Name/NUTS code/S-2
Graticule

Year
n Samples Purity (%): Mean

WSpCs SCs WSpCs SCs

RO Sud Muntenia/ 2016 5830 985 89.51 98.15

RO31/35TNK 2017 3831 1671 91.15 97.41

ES Castilla La Mancha/ 2016 2743 69 91.73 80.29

ES42/30SWJ 2017 1959 53 88.71 87.64

DE Mecklenburg-Vorpommern/ 2016 410 63 98.5 59.9

DE8/32UQE 2017 1548 188 98.15 90.57

FR Champagne-Ardenne/ 2016 190 10 98.77 54.1

FR21/31UEQ 2017 1278 58 94.26 80.12

LL Border Latvia + Lithuania/ 2016 1014 274 98.97 13.77

LV+LT/34VFH 2017 3288 2445 97.83 21.63

Weighted average, all years, all S-2 regions 92.80 60.57

Weighted average, all years, all S-2 regions
without LL 91.52 90.77

CyL (ES) ES41 2011 18,986 561 74.49 73.42

2012 19,119 925 71.88 72.24

2013 17,571 284 72.82 77.41

2014 18,566 578 72.85 74.77

2015 17,474 932 74.03 72.30

2016 19,417 263 74.25 76.31

2017 18,225 677 73.29 61.70

Weighted average, all years, region CyL 73.37 71.76

Turning to the pixel purity validation based on the crop map of Castille and Leon (CyL), Spain, in
2011–2017 (lower part of Table 3), generally lower pixel purities were found compared to the S-2-based
ones, and the results were rather more homogeneous.

3.3. Phenology-Related Results

We extracted crop-specific phenological data at the locations of identified pure pixels. The data are
available for all years, and some examples of these data are presented in Figure 9, where the average
timing of the NDVI peak (average DOY_VImax of 2001–2017) is depicted for WSpCs (A) and SCs (B)
across Europe by averaging the values per region. Figure 9C,D shows the DOY_VImax trends over the
time period 2001–2017 for WSpCs and SCs, respectively.

The difference between the geographic patterns of WSpC- and SC-based DOY_VImax values
(Figure 9A,B) is striking: while WSpCs followed a mostly latitude-based and, therefore, climatic
gradient, with earliest DOY_VImax values in the south and latest in the north, the pattern for SCs was
much more heterogeneous across Europe.

The crop-specific trends in the DOY_VImax values over the period 2001–2017 are shown in
Figure 9C,D. The WSpCs trend was negative for 90% of the analyzed regions over the area of interest
(total average −4.76 days or −0.28 days/year), meaning that the NDVI peak was occurring earlier in
large parts of Europe, which is in line with other research on climate change effects for wheat [49].
For SCs, the trends were generally less obvious (total average +0.92 days, +0.05 days/year), but large
areas were dominated by either positive trends (Central Europe) or negative trends (South and South
East Europe).
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Figure 9. Average DOY_VImax values of the years 2001–2017 for WSpCs (A) and SCs (B), averaged by
region. Magnitude and significance of DOY_VImax trends from 2001–2017 for WSpCs (C) and SCs (D),
averaged per region.

4. Discussion

The motivation to consider crop groups was that single crops are typically difficult to separate
on an operational basis with this kind of remotely sensed data. Despite a loss in classification depth,
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grouping is still effective if looked at from the point of view of data utilization. The majority of these
grouped European agricultural crops appear very similar in terms of their phenological life cycle, based
on NDVI [50]. While this similarity is particularly noticeable with respect to the timing of maximum
vegetation index, it also applies for the majority of crops to large parts of (or the entire) crop life cycle.
Therefore, these crop groups can have a high potential to act as surrogates for single crops contained
within them.

This methodology was applied separately on each individual region and year across the EU,
minimizing problems related to regional characteristics, climatic inter-regional and inter-annual
variability, or distinct local agronomic practices. Despite independent region-wise data treatment, the
transitions at regional borders were generally smooth and seamless. However, a more abrupt change
was observable at the border of Latvia and Estonia, which was due to the overestimation of SCs in
Latvia (and Lithuania). For this reason, we found the lowest purity values in this area, where the crop
group-specific DOY_VImax were temporally too close to each other and, therefore, the crop groups
could not be discriminated. In such regions, an additional variable not based on NDVI peak timing
could improve the results.

The intensity of a specific crop group might differ from year to year. Such differences may but not
necessarily mean that the cultivated area has changed. They often result from climatic events, favoring
or hampering events of crop growth (dry or wet periods, late or early sowing, etc.) which, for a specific
crop group, might be reflected in a lower or higher presence of pure pixels. Most permanently irrigated
areas, usually SCs, remain highly stable throughout the years, such as those used to cultivate summer
crops in warm and dry areas of Spain, southern France, Italy, Greece, and Bulgaria. These areas are
typically visible as small spots within larger WSpCs areas.

We found lower exclusion rates for Spain and some other countries (CZ, SK). We concluded that
all the explanations for these observations point in the same direction: larger patches lead to less noise
and, consequently, to a lower filtering rate. This theory is corroborated by an analysis of regional data,
where regions in eastern Germany, with their known large field structures, were found to be slightly
less prone to data filtering. Accordingly, in this analysis, the pixels show a slight preference for more
homogeneous farmland, often hand in hand with larger agricultural patches.

As a rule of thumb, we can say that a crop group suffering from unfavorable growth conditions
is represented by a smaller number of samples, due to the more inherent noise, which is eventually
filtered (e.g., stemming from soil signals). This can be observed for example in Figure 6. Looking at the
NDVI timeseries in 2007 and 2008 for SCs (middle column), lower than usual NDVI (2007) or an earlier
NDVI peak (2008) suggest sub-optimal plant conditions, resulting in lower sample volumes same as
for 2005–2006. Highly vigorous and dense stands, instead, produce less noise, resulting, generally,
in a higher number of samples. Once again, this means that a change in crop group acreage cannot
unambiguously be deduced from the sample volume. This should be taken into account when reading
the pure pixels’ geographic distribution (Figure 6, last column). Such changes in sample frequency
might also occur solely due to the plant status. The question, if whether the sampling preference for
vigorous crops leads to significant changes on the averaged NDVI run per crop group, is legitimate.
Apart from a lower representativeness due to the fewer samples, it could have an important effect,
especially if crop conditions are not homogeneous within a region. Then, vigorous crops would tend to
rule out poorer ones of the same category. This could happen in particular in larger regions with stands
in either good or poor crop status, or in regions with a high climatic gradient, leading to advanced
and delayed crop phenologies. In dry years, in particular, irrigated SCs could be overrepresented if
present together with non-irrigated SCs in the same region. It becomes clear that the choice of region
size (NUTS-level) is highly important; on the one hand, its size should be large enough to guarantee a
regular run of the algorithm, providing enough samples; while on the other hand, it should be small
enough to limit plant or phenological heterogeneities caused by, for example, climate or topography.

Other factors that contribute to pixel impurity might include the optical properties of the MODIS
sensor. The observation geometry of MODIS plays an important role, which is as a wide field sensor
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(swath of 2330 km) prone to the negative effects of possible high off-nadir viewing angles towards
the margins of the swath. A related consequence of this is the increasing incongruence, along with
rising viewing angle between the actual observation footprint and the gridded pixel in the processed
image. While the grid area geometry of an observation point (once filled with values, becoming a
pixel) is set to a constant depending on the spatial resolution, the observation footprint area of a single
optical element of the sensor’s optical array increases primarily as a function of viewing angle. This
can create high noise levels depending on the degree of land cover heterogeneity in the immediate
neighborhood of an observation point. Such noisy data then leads to mixed signals, being filtered out
with the algorithm as presently described, but also causing an increase in the omission error. This is
discussed in the scientific literature [51] in more detail.

The applied filters might locally exclude double cropping systems, which in Europe, due to the
climatic constraints, are primarily systems of one main crop and a cover crop. These systems are
more intensively practiced in Central–Western Europe [52]. Depending on the type of analysis being
conducted with pure pixels, this should be considered, although one would generally only expect
minor effects.

In terms of pixel purity, we found rather different values for the S-2-based and crop map-based
validation. There might be several reasons for the lower purities in the CyL site. Firstly, the CyL
land cover map is a more sophisticated product than the simple S-2-based DOY_VImax grouping
into two crop groups; there is more detail in the CyL land cover map, which, compared to S-2-based
grouping, tends to identify more impurities. The CyL land cover map relies on spatially more detailed
information, while the S-2-based validation data are created on an arable land mask according to
CORINE land cover, which in turn was created with a large minimum mapping unit of 25 ha. Secondly,
the CyL validation dataset itself contains inherent uncertainties: the dataset is reported with an overall
accuracy of 84% [29]. Some classes, however, do not reach this accuracy and, therefore, provide, when
used as reference data, a potential source of misclassification.

The strength of the crop map dataset (CyL) is its independence in terms of base data and
methodology, whereas the S-2-based validation dataset, although of higher spatial resolution, is
derived using a highly similar technique to the one used to derive the pure pixels, in this way perhaps
overestimating the real purity values. Considering the drawbacks (e.g., the inherent uncertainty) of
the crop map validation of CyL on the one hand, and the methodological similarity and simplicity of
the S-2-based validation dataset on the other, we assumed that the real purity values lie somewhere in
among their resulting values. Additional crop map-based validation data sources and more S-2-based
validation years, which we did not obtain or were not of the desired quality, could have improved the
reliability of the pixel purity assessment.

A comparison of our results with other research is difficult, since there is little available for
large-scale assessments and on a multi-annual basis. Massey et al. [17] identified comparable crop
classes such as corn–soybean, potato, and wheat–barley and provided one-year’s (2008) user’s accuracy
(UA, complement of commission error). User’s accuracy is a better basis of comparison for pixel
purities than producer’s accuracy or overall accuracy, since the pure pixels are based on a selective
procedure where an omission error assessment is not meaningful. However, a direct comparison of
UA and pixel purity needs to be interpreted in a qualitative way. Massey et al. [17] found UA values
for the crop classes corn–soybean, potato, and wheat–barley of 77.4%, 96.2%, and 74.5%. Our pixel
purities on the S-2 validated sites were on average 92.8% and 60.6% (91.5% and 90.8% without LL) for
WSpCs and SCs, respectively, and for the crop map-based validation, 73.4% and 71.8%, respectively. If
we assume our purity values to lie somewhere in between the S-2 and crop map-based validation, we
can deduce that we achieved for WSpCs clearly higher purity values than the reported UA. Similarly,
we found higher purity values for SCs than the reported UA, at least on the sites not too far north if
we consider that the influence of the potato class, despite its high UA, is very low compared to the
corn—soybean class (potato covers < 0.5% of total US cropland). We can therefore assume that our
pixel purities on the majority of sites were most probably higher in quality than the reported results of
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Massey et al. [17], both for WSpCs and SCs. This is of even greater importance considering that we
did not use any field data and that the European agricultural landscape was probably more complex
than the US-American pendant. On the other hand, it was not unexpected, since we focused on the
selection of pure pixels and not on a full wall-to-wall map. Skakun et al. [41] identified winter crops
without field reference data by a GMM-based within-season approach using MODIS NDVI (250 m) in
multiple years in Kansas and in one year in the Ukraine. They achieved impressive UA values of, on
average, 95.7% in Kansas and 85.1% in the Ukraine. It has to be noted in our favor that both test sites
exhibit large agricultural fields and a high winter crop proportion, which is expected to facilitate the
classification compared to the more complex European reality. We indeed achieved similar qualities,
for example, on the test site in Eastern Germany which is known for its larger field sizes.

For certain applications, some of the mentioned limitations were less relevant, since the data
were averaged over the area or time, for example, the creation of crop group-specific regional average
maps (e.g., the presented results of phenology, Figure 9) which can assume a wall-to-wall character.
However, we can derive much more details from the pure pixel timeseries, as shown in Figure 3, where
we visualized a map of the average share of WSpCs and SCs pure pixel density of all analyzed years
with a 10 × 10 km grid cell size. This map provides a glimpse of what is possible with these results. If
we assume that the geographic crop distribution on the ground is not subject to major changes, then an
average geographic crop group distribution within a grid cell is quite well represented by the density
of pure pixels over multiple years, i.e., within a 6 to 8 year time window. In this case, the distorting
effect of single years, in which the density of crop group-specific pure pixels might not represent so
well the typical acreage, are likely to level out. To normalize inter-regional differences, such as stronger
sampling in particular NUTS-regions (e.g., a larger field size), it is advisable to calculate the crop
group-specific share of aggregated pure pixel densities which is indeed shown in Figure 3.

Such a multi-year pure pixel density map, although considered static as it expresses a preference
for a crop group over multiple years, may still present, in many cases, a pragmatic crop mask proxy if
annual crop masks are unavailable or insufficient in terms of density. Assuming no particular crop
group-specific preference in pure pixel sampling, it can be considered a probabilistic crop mask of the
considered time period.

The derived data may also help to fill an important data gap in crop modelling and monitoring
systems related to phenology. Spatialized knowledge of crop group-specific occurrence of the NDVI
peak, often related to the occurrence of heading or flowering, presents an important contribution to
crop calendars (Figure 9 A,B)

The smooth gradient of WSpCs (Figure 9A) is, to a high degree, due to the fact that this crop group
is usually rainfed, hence heavily constrained by climatic conditions. This results from water-extensive
management, with earlier sowing dates in water-limited areas (predominantly the south), in turn,
leading to smaller DOY_VImax values. Towards cooler and more humid zones, management decisions
are increasingly determined by temperature-based criteria, leading to the latest sowing dates in the
coldest areas (in predominantly the north), hence leading to later DOY_VImax values. The SCs instead
(Figure 9B) often rely on irrigation in drier regions, which allows a certain detachment from natural
climatic constraints such as rainfall or soil humidity. This enables longer photosynthetic assimilation
periods to achieve higher yields, as this is practiced, for example, with dedicated maize varieties. If not
irrigated, analogous water and temperature-based criteria determine the management of SCs. The high
versatility and suitability of many WSpCs leads to a wider DOY_VImax range than for SCs, whose
cultivation in cooler zones is somewhat more limited.

Interpreting the trends in DOY_Vimax (Figure 9C,D), we assume that farmers in drier areas are
adapting to climate change by moving the usual cultivation patterns ahead of time to cope with later
water scarcity or excessive heat. In more humid areas, where water availability is less limited, farmers
instead might change to higher yielding cultivars with longer growing cycles such as later maize
maturity groups. A similarly positive DOY_VImax trend can be expected for areas where irrigation is
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intensified, leading to longer growing periods and, therefore, later NDVI peaks [53] as evidenced in
Figure 9D for Andalusia, Spain [54,55].

5. Conclusions

The aim of this work was to map crop group-specific pure pixels for the time period 2001–2017,
as, currently, there is no any available crop-specific geo-localized product at the European level. The
results presented here are a first step in filling this gap and provide the basis for further inter-annual
crop group-specific analyses. The main result was a timeseries of crop group-specific pixels of high
purity. In addition, as a first application of the new data, crop group-specific phenological data
were identified and published. The data can be made available to the research community upon
reasonable request.

Our almost exclusively data-driven approach delivers information on crop groups across the
continental extent with high robustness. The validations in several regions of Europe reveal reasonable
pixel purities: by applying the S-2-based remote sensing validation approach, pixel purities for WSpCs
range in all site-year combinations around 90% (and are frequently above this) but are, on average,
lower for SCs. The Spanish validation site Castille and Leon (CyL), where a crop map-based validation
was applied, provided more balanced values of around 73% and 72% purity for WSpCs and SCs,
respectively. Despite some areas of lower performance (in particular the Baltics, for reasons described
above), the data are considered of high value for numerous crop group-specific applications, and its
quality is in line with existing research. Some class confusion was detected in more northern regions
where classes were harder to separate due to the more similar phenological expression of WSpCs and
SCs. This confusion occurred especially in colder regions, such as in the Baltic countries, where WSpCs
show highly delayed crop development thereby approaching the SCs’ temporal profiles. The algorithm
offers a possibility to bypass problem areas by visual quality checking and then subsequent substitution
of badly classified data by data based on models from neighboring regions of the same year.

Our phenological analyses showed a clear trend towards an earlier NDVI peak timing for WSpCs,
which might be interpreted as some kind of response to climate change. For SCs, often irrigated,
distinct trends were observed but differed depending on region.

The algorithm presented requires a very low level of parameterization. The method requires few
a priori definitions, based on agronomic knowledge, and regional statistical data on typical absolute or
relative crop acreages. No field data are required, and the approach relies mainly on the MODIS NDVI
timeseries, from which decisive phenology metrics are extracted. This is of some value, since field data
across such large extents in space and time are usually not available or very cumbersome and costly
to collect.

There is no need for stratification or biogeoclimatic regionalization to account for climatic gradients.
Analyses were instead applied on individual regions, which is highly advantageous.

The approach works on a pixel and regional level, where the region is defined by statistical
territorial administrative units (NUTS). The regional scale is freely adjustable, assuming that crop
acreage data are available for the chosen level of analysis. However, the analysis level represents a
trade-off so as (i) not to run into problems with intra-unit climate heterogeneity and related phenology
shifts while, (ii) at the same time, providing enough samples for the analysis.

The process runs in a semi-automatic way and can be extended to include coming years as well
as other regions. For northern regions, an additional variable might need to be considered to help
discriminate the otherwise overlapping NDVI peak timings of WSpCs and SCs. Only data in the red
and infrared spectral range were used (MODIS), albeit with a high revisit rate, and this is therefore
easily interchangeable with other sensors, similar indicators, or biophysical variables (e.g., fAPAR) of
even finer spatial resolution, as they increasingly become available at higher temporal resolutions.

A known limitation is the classification depth, but the method could be complemented with
satellite data of higher spatial and/or spectral resolution and an extended methodology to increase the
number of classes. Indeed, such data and an additional processing step could be integrated on top of
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this approach, taking advantage of a first crop group separation. For some applications, such as for
inventories, the fact that this result is not providing a wall-to-wall classification but a selection of pure
pixels of two crop groups presents a drawback. However, these results are considered an important
first contribution, and further steps towards an exhaustive map can be undertaken.

The number of pixels is considered sufficient to provide a representative picture of the whole area
of interest. As such, the methodology provides the basis for further research or modelling, especially
for crop group-specific biomass or acreage estimation. A slight tendency towards samples on more
homogeneous farmland was observed as well as a tendency towards more vigorous crops which,
for specific aspects, might be considered a limitation. This could be problematic for regions with
heterogeneous farm structures (i.e., where small- and large-scale structured agriculture is present
in the same region) but might be alleviated by reducing the region size to achieve an increase in
intra-unit homogeneity.

In summary, these results have the potential to contribute important information to ongoing
research regarding crop group-specific analyses over large extents, in both retrospective and future
directions. Applying a crop-specific parameterization, this research can contribute, for example, to
crop biomass estimates, crop yield forecasts, or crop residue analyses. Obviously, for estimates of the
ongoing crop season, for example, via statistical regressions to historic area-based yields, in-season
estimates are needed, which we envisage as a next step, applying extensions to this algorithm. Finally, a
historic series of pure pixels allows for an a posteriori cropland classification, of interest to, for example,
soil carbon, soil erosion, and greenhouse gas modelers, as well as to agricultural landscape researchers
touching on issues such as agricultural biodiversity. Another perspective, which takes advantage
of this research, is the integration of the results presented here in the operational MARS Crop Yield
Forecasting System (MCYFS), run by the Directorate General Joint Research Centre (DG JRC) of the
European Commission.
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