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Abstract 

Public health institutions need high-resolution next-day forecasts so they can order appropriate 
measures when there is a risk of air pollution exceeding regulatory thresholds. The MOCAGE model, 
the chemistry transport model developed by Météo-France, forecasts hourly surface PM10 concentrations 
at a resolution of 0.1° throughout France (7.6 km). To obtain more efficient forecasts, a downscaling 
method is applied using topographic data (250 m resolution) and inventory data (2.2 km). All these 
disparate inputs are spatially standardized in a geographical information system to construct continuous 
daily fields at 250 m resolution. This method is suitable for large territories with widely varying 
environments (mountains, lowlands, coastlines, urban areas, etc.) and areas with a low density of 
monitoring stations. The parameters used to improve MOCAGE forecasts are derived from “global” and 
“local” regressions describing the links between the daily PM10 concentration averages collected at 325 
monitoring stations and seven explanatory variables (three topographic and four emission-inventory 
variables). One of the main results shows that the topographic and emission variables respectively 
explain 6% and 13% of PM10 variance in France. Analysis by local regression accounts for 74% of the 
spatial variation of PM10 concentration while the global regression accounts for 49%. The results show 
above all that, if the authorities responsible for human health protection had used the downscaling 
method instead of MOCAGE raw forecasts in 2016, they would have informed or alerted ten times as 
many people about the information and recommendation threshold (50 μg.m-3) and alert threshold (80 
μg.m-3) being exceeded.  

Keywords: particulate matter; land use regression methods; spatialization; public health.  

1 Introduction 

Due to their harmful effects on health (Bentayeb et al. 2015; Riviere et al. 2019; Meier-Girard et al. 
2019), it is especially important to monitor concentrations of air pollutants and to enhance air quality 
forecasts. Air pollutant effects on human health vary with the duration and level of exposure (Barba-
Vasseur et al. 2017; Mariet et al. 2018). Among the major air pollutants, particulate matter and ozone 
have the largest impact on human health at present (Pascal et al. 2013). Exposure to particulate matter 
(PM) with an aerodynamic diameter of 10 μm or less (PM10) has notably been linked to respiratory and 
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cardiovascular diseases and related deaths (Analitis et al. 2006; Valavanidis et al. 2008; Ayres-Sampaio 
et al. 2014; Fischer et al. 2015; Dehghan et al. 2018; Riant et al. 2018). In this context, particle 
measurements and monitoring levels have featured prominently in European Legislation Directives that 
impose a duty on the authorities to inform the population when a certain threshold of mean annual or 
daily concentrations of pollutants is reached, especially in urban areas (Marco and Bo 2013; Kuklinska 
et al. 2015). The European and French air pollution networks result from European legislation (Directive 
2008/50/EC on ambient air quality and cleaner air for Europe; French decree n°2010-1250 concerning 
air quality) making monitoring mandatory in densely populated areas. Moreover, Member States of the 
European Union are encouraged to predict air pollution events using chemistry transport models (CTMs) 
in order to warn the population, with a particular focus on at-risk populations. CTMs are numerical tools 
that simulate pollutant transport and dispersion, providing estimated concentrations for a particular area 
(El-Harbawi 2013) and time period (Zhang et al. 2017). Several air quality models such as HYSPLIT 
(Makra et al. 2013; Waked et al. 2018), Polyphemus/Polair3D (Lecoeur and Seigneur 2013), CHIMERE 
(Monteiro et al. 2007; Menut et al. 2013; Mailler et al. 2017; Potier et al. 2019), MOCAGE (Sič et al. 
2015; Guth et al. 2016), CAMx (Nopmongcol et al. 2012; Milford et al. 2013), MSC-W (Simpson et al. 
2012), and CMAQ (Appel et al. 2012) have been used to simulate PM10 concentrations across France 
and Europe. These CTMs with coarse spatial resolutions (> 4 km) are typically used to analyze 
population exposure to pollutants in epidemiological studies, health risk assessments, and environmental 
damage studies (Liu et al. 2015). However, recent improvements have generated air quality models (for 
example HERMESv2.0) with spatial resolutions of up to 1–2 km (Baldasano et al. 2014; Guevara et al. 
2013). These output results are still perfectible both in terms of resolution and quality of the estimation, 
for example for mountain areas, where the complexity of relief largely influences local air pollution 
(Gryning and Millán 2012) by causing local temperature inversions (Chemel et al. 2016; Largeron and 
Staquet 2016; Paci et al. 2016), or for high-density urban areas.  

The satellite based data used to spatialize PM provide greater spatial-temporal coverage compared 
to sparse ground monitoring stations. Indeed, the PM estimations are mostly at 1 × 1 km spatial 
resolution and can thus meet the demand expressed by the health services for PM10 estimates of good 
quality at high spatial resolution (Stafoggia et al. 2017; Shtein et al. 2018). However, the problem with 
satellite data is that they do not provide ground pollution data when the cloud cover is compact. Under 
these circumstances, the use of geomatic techniques applied to low-resolution CTM model outputs is 
another solution for downscaling CTM that has proven its effectiveness (Denby et al. 2011; Theobald 
et al. 2016). They are based on regressions between numerical models of PM10 concentrations and 
meteorological predictors such as temperature, wind speed, boundary layer height, etc. (Stadlober et al. 
2008), whose resolution is finer than that of the numerical models. The land use regression (LUR) 
models use air pollution measurements and land use predictor variables to estimate pollutant 
concentrations at unsampled locations at different temporal (day, month, year) resolutions (Hoek et al. 
2008; Ryan 2007). LUR models are usually used to estimate pollutant variations at the within-city scale 
or at local scale (Hoek et al. 2011; Eeftens et al. 2012; de Hoogh et al. 2013; de Hoogh et al. 2016; 
Shahraiyni and Sodoudi 2016; Miri et al. 2019) or for isolated and sparsely populated areas (Diaz-de-
Quijano et al. 2014). However, few studies have modeled broad geographic areas (European sub-
domains) at high resolutions (< 0.5 km) (Vienneau et al. 2010; 2013). 

The main objective of this study is to enhance PM10 forecasts at country scale using LUR methods 
in order to obtain the best possible statistical modeling of the spatial variation of PM10 at regional scale 
over large areas characterized by regional and local spatial heterogeneity. Another aim is to improve the 
information given to populations about air quality in accordance with recommended thresholds and to 
better predict risks for the population. Here, a LUR geomatic method based on a set of explanatory 
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variables has been used to estimate spatial variations of PM10 concentrations through regressions. The 
findings are then applied to downscale MOCAGE, a chemistry-transport model (CTM) that forecasts 
mean daily PM10 concentrations. The case study is applied to the whole of continental France at regional 
scale with a 250 m spatial resolution.  

2 Material and methods 

2.1 Data input 

2.1.1 Monitored PM10 concentration 

In France, the PM10 observation network measurements are managed by the air quality monitoring 
association network. The PM10 data used consist of daily averages calculated from data monitored at 
325 stations in 2016 (366 days), using hourly averages. When there are fewer than 20 hourly 
measurements for a day for a given station, data for that day are considered to be missing; otherwise the 
daily average is calculated from the available hourly values. The stations sample urban (50%), peri-
urban (10%), and rural (8%) areas; 10% and 22% are industrial and traffic stations respectively. All 
monitored data have been validated by the AASQA (Associations Agréées pour la Surveillance de la 
Qualité de l'Air - Authorized Associations for Air Quality Monitoring) and the LCSQA (Laboratoire 
Central de Surveillance de la Qualité de l'Air - Central Air Quality Monitoring Laboratory). Validated 
data are then collected by the European Environment Agency (EEA) as part of its Air Quality e-
Reporting. PM10 monitoring stations are unevenly distributed (Fig. 1). Clusters appear around the main 
cities (Paris, Lyon, Marseille, Lille, Toulouse), while rural and mountain areas (Alps, Pyrenees, Massif 
Central, Jura, etc.) are not very densely sampled. For this reason, only a comprehensive study of France 
as a whole will be carried out. 

Figure 1. Location of the 325 PM10 monitoring stations in continental France 

2.1.2 Simulated PM10 concentration 

MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle - Large Scale Atmospheric 
Chemistry Model) is the chemistry transport model developed by Météo-France. The model has been 
used for a wide range of scientific studies on tropospheric and stratospheric chemistry at various spatial 
and temporal scales; it simulates a lot of chemical species and, among them, PM10 concentration. It has 
been applied for example for studying the impact of climate on chemistry (Teyssèdre et al. 2007; 
Lacressonnière et al., 2012; Lamarque et al. 2013) or tropospheric-stratospheric exchanges using data 
assimilation (El Amraoui et al. 2010; Barré et al. 2013). Météo-France also contributes to the Copernicus 
Atmosphere Monitoring Service (http://www.regional.atmosphere.copernicus .eu/). MOCAGE is one of 
the seven models providing input for the regional overall forecasting system for Europe (Marécal et al. 
2015).  

The configuration of MOCAGE used in the present study has been run daily since 2005 for air quality 
operational 4-day forecasts in the framework of the PREV’AIR consortium (Honoré et al. 2008; Rouïl 
et al. 2009, http://www2.prevair.org/). The main characteristics of the configuration are the following. 
Three nested domains are used, with decreasing resolutions (globe at 1°, Europe at 0.5°, and France at 
0.1°). For the global and the European domain, the hourly input meteorological forcing fields are Météo-
France ARPEGE forecasts. For France, and for the first day of forecast, MOCAGE uses the operational 
outputs of Météo-France’s non-hydrostatic AROME model. Emissions are prescribed at the surface, 
based on state-of-the-art inventories (MACCity over the globe and TNO-MACC-III over Europe), or 
dynamically depending on the local meteorology (e.g., for sea salts and desert dusts). MOCAGE 
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simulates the concentration of gases (Josse et al. 2004; Dufour et al. 2005), primary aerosols (Martet et 
al. 2009; Sič et al. 2015), and secondary inorganic aerosols (Guth et al. 2016).  

MOCAGE outputs are expressed in the WGS 84 geodetic system at a resolution of 0.1° in X and Y, 
with an average distance of 7.6 km from one point to another. The domain covered by MOCAGE extends 
over 10.9° in Y and 14.9° in X (West = 9.95°; East = -4.95°; North = 51.95°; South = 41.05°). 
Preliminary filtering has extracted the points belonging to continental France from the databases. Data 
refer to the 366 days of monitored data. 

 2.1.3 Explanatory variables 

PM10 emissions register. The inventory of PM10 emissions, at the resolution of 0.025°, concerns 
the whole area covered by the monitored PM10 concentration and MOCAGE. Data derived from data 
collected by the National Spatial Inventory (INS, http://emissions-air.developpement-durable.gouv.fr/) 
were made available to the CNRM by INERIS (Institut national de l’Environnement et des Risques - 
National Institute for Environment and Risk Management) as part of the PREV'AIR consortium. They 
consist of 101 696 points whose values are daily averages expressed in μg.km² that concern the 10 
sectors of SNAP (Selected Nomenclature for Air Pollution) emissions (Sup. material 1). Because some 
sources of pollution in France (i) are related to similar activities and (ii) some of them are too scarce, 
some SNAPs have been grouped together to form (i) the “industry + waste treatment” type (SNAPs 
1+3+4+5+6+9) and (ii) the “road” type (SNAPs 7+8). SNAPs 2 (non industrial combustion plant) and 
10 (agriculture) are left unchanged (Sup. material 2). Inventory points are also projected in RGF-L93. 
The value of each point resulting from the inventory (2.2 km resolution) is transferred to the 81 pixels 
of the resulting 9 x 9 pixels window (250 m resolution). The values are then smoothed by reference to 
a moving average (radius of 8 pixels). 

Topographic variables. The 250 m resolution Digital Elevation Model (DEM) provided by the 
French National Geographic Institute (IGN) is used to construct a large number of topographic variables 
(Joly et al. 2012). Preliminary Pearson correlation processing was done to select the variables that most 
frequently explain the spatial distribution of PM10 concentrations at the p<0.05 threshold. There are three 
variables: elevation [elev], magnitude of the positive landforms (hump amplitude [hump]), and valley 
depth [valley]. The hump value corresponds to the deviation in elevation between ground elevation and 
the virtual surface connecting all the thalwegs. Conversely, the valley value corresponds to the deviation 
in elevation between the ground and the virtual surface connecting all the ridges (Joly et al. 2012). These 
variables are intended to describe the capacity of topographic settings to impede or facilitate particle 
dispersion. 

2.2 Methods 

2.2.1 Regressions 

The available information and the processing applied to obtain data for the regressions and 
downscaling are presented in Figure 2. The information provided in the form of dots is transformed into 
continuous spatial fields by kriging or geomatic processing. Values corresponding to monitored PM10 
concentration (1.1.1 in Figure 2), simulated PM10 concentration (1.1.2 in Figure 2), PM10 emissions 
register and topographical variables (1.1.3 in Figure 2) for each of the 325 pixels where monitoring 
stations are located are extracted from the raster layers made up of 86 366 691 pixels. The result is three 
tables, all comprising 325 rows (number of monitoring stations) and either 366 days (in the case of 
monitored and simulated PM10 concentration) or seven columns (explanatory variables, four for the 
different types of PM10 emissions and three for the topographical variables).  
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To control the degree of collinearity between variables, the variance inflation factor (VIF, an index 
quantifying the level of collinearity of a variable when it is added to the others in a multiple regression) 
is calculated. A maximum VIF value of 5 (Hair et al. 2006) has been recommended. Collinearities 
between the seven explanatory variables are very low (<1.5), except for elevation and hump, which have 
VIF values of 4.1 and 3.3. These values are high, but below 5 and so remain acceptable. 

Figure 2. Available data and their transformation for further statistical processing 

Based standard ordinary least squares (OLS) regression models are then used to establish the statistical 
links between the explanatory variables and the monitored PM10 concentration (Arslan and Akyürek 
2018). A simple linear regression is performed for each of the 366 days between the 325 PM10 
concentrations (response variables) and each of the seven explanatory variables. Only significant 
variables (p < 0.05) are selected and included in a multiple regression (final daily model). The “global” 
regressions referred to above provide poor results when applied to climatologically heterogeneous areas 
such as France. The solution chosen to overcome this difficulty is to carry out “local” regressions (Joly 
et al. 2011; Diaz-de-Quijano 2016). This method is based primarily on the recognition of the n nearest 
monitored stations to each pixel according to a neighborhood criterion. With n low (e.g. n = 20), the 
catchment area of the stations being limited, the stations are climatologically coherent. On the other 
hand, the statistics are not very accurate (Joly et al., 2011). With high n (e.g. n = 100), the statistics are 
strengthened but the catchment area of the stations becomes very large and the probability of integrating 
different climatic zones increases.  This poses a problem for the consistency of the models especially in 
rural areas where the density is 1 station per 1700 km². In this study, parameter n was set to 40, to 
provide the best empirical trade-off between statistical and geographical characteristics. Pixels 
characterized by the same corpus of n stations are grouped together in the same polygon. France is thus 
segmented into a total of 13,434 polygons. 

Regressions provide the parameters that describe these relationships. There are two types of 
parameters: the intercept and the slope of each explanatory variable included in the regression. The PM10 
concentration at any point in the study area can be estimated from these two coefficients. ܲ10ܯ = ܽଵ ଵܺ + ܽଶܺଶ +⋯+ ܽܺ +b (1) 

Where PM10ij denotes the monitored PM10 concentration at point ij, 

 X1, X2, Xn = variables included in the multiple regression, 

 a1, a2, …, an = slope of variables X1, X2, …, Xn,  

 b = intercept. 

Then, the analysis by multiple regression and the application of coefficients to the pixels in order to 
estimate PM10 concentrations is performed once for the global regression and as many times as there are 
polygons for the local regressions. The parameters obtained by multiple regression are used to compute 
the estimated PM10 concentrations and their corresponding residuals are calculated by cross validation 
(Plutowski et al. 1994; Stone 1974). Two goodness-of-fit measures (RMSE and R² calculated using the 
Bravais-Pearson R) are computed to assess the performance of each model. 

Upon completion of the regression analysis, 325 residuals are obtained for each of the 366 days. Joly 
et al. (2013) have shown that the application of an autoregressive process can reduce these residues. In 
time series such as daily PM10 concentrations, Neal et al. (2014) have demonstrated that the value 
recorded on any day at each station is dependent on the values recorded the day before. Physical 
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mechanisms such as inertia account for this property of bodies that tend to stabilize or to repeat the same 
patterns over the course of time. This general principle holds for the climatic characteristics of a location 
which are, in part, dependent upon those of the previous day. The autoregressive process aims to 
estimate the residuals of the day d (response variables) by those of day d-1 (explanatory variable). 

2.2.2 Downscaling  

The objective of downscaling is to improve the resolution and quality of the PM10 fields simulated 
by MOCAGE. The downscaling of PM10 concentration is based, for each of the days analyzed, on the 
resolution of equation (1) whose regression parameters are adopted as such, while the value of the 
intercept returned by the regression is replaced by the value of PM10 from MOCAGE: 

10ܯܲ  = ܽଵ ଵܺ + ܽଶܺଶ +⋯+ ܽܺ +  10ெைீா (2)ܯܲ

 in which the variables X and a are identical to those of the regression (1) while PM10MOCAGE 
replaces b.  

The R² and RMSE (Root Mean Square Error calculated by cross validation) are used to measure the 
quality of fit. 

3  Results 

3.1 Monitored PM10 concentration overview  

The national-averaged annual mean concentration measured in France in 2016 is 18.2 μg.m-3 and 
the three quartiles (Q1 to Q3) are 13.1, 16.9, and 22.1 μg.m-3. 

Among the 366 daily averages, the lowest value was 8.0 μg.m-3, on January 31 and the highest was 
47.1 μg.m-3 (December 1). High daily values (median > 40 μg.m-3) occurred three times, especially in 
December. On the other hand, values are low from April to November with a quartile 3 rarely exceeding 
30 μg.m-3. The average daily amplitude (calculated from data from the 325 monitoring stations) is 46.6 
μg.m-3. The lowest amplitude (22.1 μg.m-3 on May 1) reflects high spatial homogeneity of PM10 
concentrations throughout the country; however, the maximum amplitude (144.8 μg.m-3 on December 
1) reflects very high spatial heterogeneity.  

The minimum and maximum of the 325*366 daily monitored values are 0.4 and 194.2 μg.m-3 found 
in a rural station and in the Paris region, respectively. In 2016, 1.85% and 0.11% of the monitored data 
exceeded the information (50 μg.m-3) and alert (80 μg.m-3) thresholds for human health protection, 
respectively.  

3.2 PM10 estimation by global regression 

The three most frequently selected variables in the 366 global daily multiple regressions are road-
traffic emissions (94%), plant combustion emissions (59%), and elevation (57%). Then come valley 
depth, agricultural emissions, and magnitude of positive landforms with a frequency close to 30%. 
Industrial emissions are rarely significant (9%). 

Estimating PM10 concentrations by global regression provides poor results. The topographic variables 
and the emission variables provide low explanatory power: the R² is on average 0.17 and 0.13 
respectively (Tab. 1). The multiple regressions grouping the seven variables (3 topographic + 4 emission 
inventory) slightly improve the scores which remain modest (R² = 0.27). Note that this value is not the 
sum of the previous two because of the collinearities between variables. The situation changes after the 
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autoregressive process: the annual average of R² is 0.49. The RMSE of the global regressions is between 
8.3 and 7.7 μg.m-3 depending on the model (tab. 1). 

 Topography 
(T) 

Emissions (E) T + E T+E + autoregressive 
term 

R² average -
GLOB

0.06 0.13 0.17 0.49 

R² average -LOC 0.46 0.53 0.57 0.74 

Table 1. Mean of the R² depending on the four local regressions steps 

3.3 PM10 estimation by local regressions 

The hierarchy that has been described for global regressions is roughly respected with the exception 
of industrial emissions, which are much more frequently significant (from 9% to 24%). Conversely, 
topographic variables are significant in only 13% of cases. The local regressions produce excellent 
results: R² values reach 0.74 as an annual average when the regressions relate to the seven explanatory 
variables and when the autoregressive process is used. The residues are low on average (RMSE = 4.7 
μg.m-3), but, on certain days and at certain stations, they can be high: the minimum is -32.3 μg.m-3 while 
the maximum reaches 67.6 μg.m-3. The highest errors (<-10 and >10 μg.m-3) have respective frequencies 
of 0.9 and 1.6%. However, 87% of the errors are between -4.9 and +4.9 μg.m-3.  

3.4 MOCAGE outputs and downscaling 

In 2016, the correlation coefficient (R²) between the monitored PM10 concentration and the PM10 
concentrations simulated by MOCAGE is 0.15. In 81% of the cases, daily R² values are less than 0.2. 
They are higher than 0.5 in 1.4% of cases. Downscaling using the topographic and emission variables 
associated with the autoregressive process improves the estimate since the R² annual mean is 0.23. If 
5% of the daily R² are less than 0.2, 38% are now greater than 0.5, the maximum being 0.81. 

Residuals (1.6 μg.m-3 as an annual average) indicate that the downscaling process does not produce 
statistical bias. They can be occasionally high: the greatest errors (< -10 μg.m-3 and +10 μg.m-3) have a 
frequency of 9.2 and 16% respectively. However, 60% of errors range from -4.9 to + 4.9 μg.m-3. The 
RMSE of the downscaling estimates is 9.2 μg.m-3. 

3.5 Mapping of PM10 concentration in the most polluted situation  

The case study selected for PM10 mapping is that of December 1, the most polluted day of the year 
2016: the minimum, Q1, median, Q3, and maximum PM10 concentrations observed among the 325 
stations are 3.2, 31.0, 40.4, 55.0, and 148.0 μg.m-3 respectively. The R² between the 325 monitored PM10 
concentration and the values simulated by MOCAGE is 0.46 (Fig. 3); but MOCAGE, which does not 
currently represent all aerosol species, returns much lower values than the monitored ones: the average 
is only 24.3 μg.m-3 (as against 47.1) and the maximum is just over 56.0 μg.m-3 (as against 148.0). 

Figure 3. Scatter plot between the 325 monitored PM10 versus the values simulated by Mocage 
and the values predicted by downscaling; case of December 1, 2016 

The southeast quarter of France is used to illustrate the results of the models. This regional zoom shows 
the value of the method in providing regional estimates of PM10 based on national information. Indeed, 
health agencies have a regional scope of intervention. The PM10 simulated by MOCAGE (Fig. 4A) 
shows that the highest values (≥ 30 μg.m-3) are located around Lyon with a clear extension to the south, 
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along the Rhône valley and eastward to Marseille. Areas with lower pollution levels are located in the 
mountainous and rural areas.  

After downscaling, the average downscaled values are 56.3 μg.m-3 and the R² is 0.80 (Fig. 3). The 
spatialization of PM10 concentration remains virtually unchanged in its main features (Fig. 4B). In detail, 
it should be noted that pollution in the main cities (Lyon, Marseille, Nice, etc.) and the Arve valley, one 
of the most polluted valleys in France, is prominent. The map shows more spotted areas, reflecting the 
contrast in emissions. The Rhône-Saône river valley (north and south of Lyon) stands out because of the 
road network which is taken into account in the multiple regression.  

Figure 4: Restitution of PM10 simulated by MOCAGE for December 1, 2016 by (A) kriging and (B) 
downscaling. 

3.6 Population at risk of exceeding the 50 and 80 μg.m-3 threshold in France 

 Mocage kriged Mocage downscaled LUR geomatic 
method

pixels > 50 μg.m-3 (%) 0.5 8.3 13.7 

pixels > 80 μg.m-3 (%) 0.07 0.7 3.0 

Population exposed > 50 
μg.m-3 

5 880 300 10 434 500 13 901 000 

Population exposed > 80 
μg.m-3 

2 484 400 4 467 200 7 833 400 

Table 2. Percentage of PM10 exceeding the information and recommendation (50 μg.m-3) and alert 
(80 μg.m-3) thresholds on December 1, 2016 and number of inhabitants affected by these exceedances. 

The proportion of pixels with a value above the information and alert threshold (50 and 80 μg.m-3, 
respectively) on December 2, 2016 is 0.5% and 0.07% with the MOCAGE raw forecast (tab. 2). It rises 
to 8.3% and 0.7% after downscaling. Using French 200 m gridded population data 
(https://www.insee.fr/fr/statistiques/2520034), the number of people to be alerted after exceeding the 
information and recommendation threshold of 50 μg.m-3 also depends on the model used: fewer than 
5.9 million people with the MOCAGE raw forecast versus more than 10 million with the downscaling 
forecast. Alerts would be triggered for fewer than 2.5 million people with MOCAGE, but for almost 4.5 
million with the downscaling technique. These estimates at d+1 allow decision-makers to take 
appropriate measures to prevent adverse health effects from exposure to PM10 (Beloconi et al. 2018). 

4  Discussion   

The LUR geomatic method used, and based on a set of explanatory variables, provides the best 
estimate spatial variations of PM10 concentrations at country scale with a 250 m of resolution by using 
the so-called local regression with autoregression. The combination of methods (global and local 
regressions, autoregressions, alone or associated) and explanatory variables (PM10 emissions register, 
topographic variables) makes it possible to forecast PM10 concentrations (explained variables) with 
different qualities of estimates. 

 
4.1 Quality of regression estimates  
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The global regression estimates provide low results: topography (R² = 0.17) and emission sources 
(R² = 0.13) account for little of the spatial variation in PM10 concentrations across France. The global 
approach cannot describe phenomena that depend on local conditions (Stadlober 2008; Czarnecka and 
Nidzgorska-Lencewicz 2017). After autocorrelation, the estimates result in an R² and RMSE of 0.49 and 
7.7 μg.m-3. These two indicators are similar to those derived from statistical adjustments intended to 
correct bias in the output of numerical models. But the estimates of the latter are based on annual or 
seasonal averages with resolutions of several kilometers while ours are daily with a resolution of 250 
m. As an example, let us mention the estimate of PM10 concentrations in Great Britain and the 
Netherlands which provide R² values between 0.3 and 0.4 (Vienneau et al. 2010). In a similar experiment 
concerning variation in PM10 concentrations throughout the EU in 2001, the model explains 46% of the 
variation in PM10 with RMSE =5.19 μg.m- 3 (Beelen et al. 2009). At a European scale and with a 
resolution of 20 km, the mean daily RMSE for April and June is around 13 and 7 μg.m-3 with values as 
low as 8 and as high as 20 μg.m- 3 (Hamm et al. 2015). In similar work, Denby et al. (2005) provide an 
optimal estimate of the PM10 spatial distribution over Europe at 35x25 km resolution using a statistical 
interpolation method; the total RMSE of the mean daily concentrations of PM10 at the validation stations 
is 9.2 μg.m-3.  

 
The situation is much better with local regressions which take into account the topographic and PM10 

emission factors at a fine scale. The latter are not stationary but vary from one place to another across 
France. Thus, the influence of topography is more pronounced in mountainous areas (Largeron and 
Staquet 2016) and that of emissions in areas where dynamic or thermal turbulence is lowest. There is 
thus a spatial differentiation that is well described by local regressions, but poorly captured by global 
regressions. There is a second problem with global regressions. Because the explanatory variables fail 
to describe the spatial variation of PM10 concentrations, the (single) intercept calculated by regression 
is close to the mean. However, depending on atmospheric conditions, there are significant variations in 
particulate matter from one point to another. Another merit of the local regression is that it suitably fits 
the intercept to the local PM10 concentration.  

 
The downscaling carried out concerns the MOCAGE raw forecasts at day+1 and is part of a time 

scale analogous to high-resolution urban studies. It is also similar to the adaptations of the output of 
numerical models expressed as annual averages, which concern very large areas and most often entire 
countries. Downscaling improves the simulation given by CTM models. This has been reported many 
times in the literature (Konovalov et al. 2009; Denby et al. 2008; Hamm et al. 2015; Mok et al. 2015). 
It can also be seen in our experiment. The R² in downscaling (0.23) improves the score obtained from 
the MOCAGE raw forecasts (0.15). However, another benefit of downscaling is the increase in the 
MOCAGE raw forecast values, which are generally quite low, in part because organic secondary 
aerosols are not yet implemented in that CTM. The annual average of the MOCAGE values is 
10.7 μg.m- 3 compared to 19.8 μg.m-3 with downscaling (a value very close to the annual average of 
monitored data (18.4 μg.m-3).  

4.2 Monitored PM10 versus simulated PM10 (MOCAGE) 

There is a large difference in the quality of the estimates obtained from local regressions applied to 
monitored PM10 concentration and MOCAGE. The values provided by the numerical forecasts of the 
MOCAGE model are not of the same nature as the values of monitored PM10 concentrations. The CTM 
predicts the average concentrations in a cubic grid of several kilometers in the plane and tens of meters 
in height, while the monitored data concern a point concentration, very close to the ground where the 
boundary layer is often established (Zhang et al. 2017), in a much more complex environment. Part of 
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the difference between models and monitored data is therefore due to monitored data being much more 
precise than models in terms of their spatial representativeness. In addition, the MOCAGE data used in 
this study forecast for day+1, with several sources of uncertainty, such as meteorological forcing (Gillian 
et al. 2015), the emissions inventory (Frey and Zhao 2004), and the representation of the 
physicochemical processes. In addition, in the current parameterization, pollutants are injected vertically 
in a decreasing manner into the first five layers of the model regardless of the weather situation. In 
December 2016, however, since the boundary layer was very low, the injection was partially above the 
boundary layer, resulting in an increased negative bias.  

4.3 Accuracy of inputs 

Insufficient knowledge of pollutant sources and emission inventories can lead to significant bias and 
error in air quality estimations of mechanistic models (Chang and Anna, 2004; Borrego et al. 2008). 
Each monitored station is influenced by many sources (agricultural, industrial, road traffic, etc.), at 
varying distances, which contribute, in the form of different species (minerals, nitrates, organic carbon, 
etc.) to measured concentrations of PM10. It may be considered futile to attempt to precisely locate the 
sources influencing each station using a specific emission inventory. Depending on the processes 
involved in aerosol evolution (transport, sedimentation, deposition, scavenging, transformation, etc.), 
the radius of influence of the sources varies greatly with the type of emission, the species emitted, the 
weather conditions, and the local geography. 

But one can also consider that a source impacts the measured concentration as a direct function of its 
proximity. The use of a more detailed resolution issuing register than the one used (2 km resolution) 
would substantially improve the estimates. In geomatics, the location of data is a crucial point. Its quality 
determines the quality of the results.  

4.4 Variation of R² and RMSE according to PM10 concentration 

 < 15 15 to 19.9 20 to 29.9 30 to 39.9 40 to 49.9 ≥50 

Nobs 75 123 109 36 17 6 

R² 0.71 0.73 0.75 0.76 0.80 0.81 

RMSE 2.5 2.8 3.6 4.9 6.1 6.5 

Amplitude 35.9 39.8 49.2 59.6 83.5 89.7 

Table 3. Number of data in each class (Nobs), daily amplitude of monitored PM10, R² and RMSE for 
six classes of the 366 daily PM10 values (μg.m-3) of quartile 3; local regressions. 

The 366 values of 3rd quartile of daily monitored PM10 concentration (and the R² and RMSE that 
characterize them) were arranged into five classes: < 15 μg.m-3, ..., ≥ 50 μg.m-3. It appears that the R² 
values are perfectly well-ordered: they increase as the PM10 concentration increases (tab. 3). Statistical 
results are therefore better when quartile 3 values exceed 40 μg.m-3 than when they are lower than 15 
μg.m-3, whatever the variables included in the regressions. RMSEs are even more orderly. 

Normally, RMSE values decrease when R² values increase. This is true for estimates relating to 
situations where the distribution of monitored data values is similar (mean, range of series). This is not 
the case here where the R² and RMSE characterize six ranges of non-homogeneous values. The estimates 
of low monitored data values (<15 μg.m-3) have a relatively low RMSE despite their relatively low R² 
because the range of the series concerned is also low: 36 μg.m-3. By comparison, the mean range of the 
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series with the highest observed values (> 40, > 50 μg.m-3) is much larger (83, 90 μg.m-3), resulting in 
a potential (and actual) higher error as well.  

5  Conclusion 

The LUR geomatic method used allows us to estimate PM10 concentrations in a large country, the 
whole of continental France (550 000 km²), at a fine scale (with 250 m resolution).  This method also 
allows us to respond to another problem: France is made up of very dissimilar areas: (1) rural zones 
where there are few if any air quality monitoring stations, (2) mountain areas where current spatial 
resolutions of 7 km are inadequate for displaying variations in pollution distribution due to the influence 
of topography, and (3) urban areas where the local emission sources are predominant in terms of PM10 
emissions. To achieve our objectives, disparate data were collected and homogenized in the form of 
tables and grids in a standardized format.  

This study indicates that the explanatory variables we used (topography and emission inventories) 
provide very poor results, explaining respectively merely 6% and 12% of PM10 distribution. In contrast, 
the use of local regressions increased these values significantly to 46% and 57%, respectively. This gain 
stems from the dispersion of PM10 concentrations, which is primarily a local phenomenon. But this 
phenomenon is also of a regional nature, as indicated by the strong link between monitored PM10 
concentrations and the intercept of local regressions. Finally, application of the autoregressive process 
shows that spatial patterns very frequently persist from one day to the next, which greatly improves the 
estimates. These estimates at d+1 show that it is possible to significantly improve the quality of forecasts 
as to when the information and recommendation threshold (50 μg.m-3) and the alert threshold (80 μg.m-

3) will be exceeded and at no additional costs for the public authorities responsible for pollution and 
health.  

This study provides several useful lessons for the future. In particular, the initial emission inventory 
values at medium resolution (approximately 2 km) were transferred to high resolution matrices (250 m) 
by dilatation smoothing. However, it would be advisable to use emission inventories on a spatially finer 
scale than is used here. The use of regional inventories and their spatial compilation would be a 
preferable solution. 

The same method could be applied to deeper, more detailed analysis on a smaller scale. For example, it 
would be very useful to explore the effect of local topography and built environment on the downscaling 
method. Improving aerosol modeling in numerical atmospheric chemistry models is a long-term task. 
Nevertheless, in the short term, downscaling PM10 concentration forecasts can be improved by 
identifying (i) finer-scale emission variables and (ii) other explanatory variables such as atmospheric 
variables, which are widely used to reduce the biases introduced by numerical models.  
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