Z. Duxbury, Pathogen perception by NLRs in plants and animals: Parallel worlds, vol.38, pp.769-781, 2016.

J. D. Jones, R. E. Vance, and J. L. Dangl, Intracellular innate immune surveillance devices in plants and animals, Science, vol.354, p.6395, 2016.

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

M. Bernoux, Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model, Plant Cell, vol.28, pp.146-159, 2016.

D. Frost, Tobacco transgenic for the flax rust resistance gene L expresses allelespecific activation of defense responses, Mol. Plant Microbe Interact, vol.17, pp.224-232, 2004.

S. Cesari, Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.10204-10209, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637802

T. Maekawa, Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death, Cell Host Microbe, vol.9, pp.187-199, 2011.

S. J. Williams, Structural basis for assembly and function of a heterodimeric plant immune receptor, Science, vol.344, pp.299-303, 2014.

X. Zhang, Multiple functional self-association interfaces in plant TIR domains, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.2046-2052, 2017.

M. T. Nishimura, TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.2053-2062, 2017.

A. Bentham, H. Burdett, P. A. Anderson, S. J. Williams, and B. Kobe, Animal NLRs provide structural insights into plant NLR function, Ann. Bot, vol.119, pp.827-702, 2017.

E. M. Kofoed and R. E. Vance, Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity, Nature, vol.477, pp.592-595, 2011.

Y. Zhao, The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus, Nature, vol.477, pp.596-600, 2011.

L. Zhang, Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization, Science, vol.350, pp.404-409, 2015.

Z. Hu, Structural and biochemical basis for induced self-propagation of NLRC4, Science, vol.350, pp.399-404, 2015.

J. L. Tenthorey, The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion, Science, vol.358, pp.888-893, 2017.

G. S. Salvesen and V. M. Dixit, Caspase activation: the induced-proximity model, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.10964-10967, 1999.

J. Wang, Reconstitution and structure of a plant NLR resistosome conferring immunity, Science, vol.364, p.5870, 2019.

J. Wang, Ligand-triggered allosteric ADP release primes a plant NLR complex, Science, vol.364, p.5868, 2019.

G. Wang, The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants, Cell Host Microbe, vol.18, pp.285-295, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02636006

M. Hu, J. Qi, G. Bi, and J. Zhou, Bacterial effectors induce oligomerization of immune receptor ZAR1 in vivo, Mol. Plant, vol.13, pp.793-801, 2020.

M. R. Swiderski, D. Birker, and J. D. Jones, The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction, Mol. Plant Microbe Interact, vol.22, pp.157-165, 2009.

P. F. Sarris, A plant immune receptor detects pathogen effectors that target WRKY transcription factors, Cell, vol.161, pp.1089-1100, 2015.

Y. Ma, Distinct modes of derepression of an Arabidopsis immune receptor complex by two different bacterial effectors, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.10218-10227, 2018.

K. Essuman, TIR domain proteins are an ancient family of NAD + -consuming enzymes, Curr. Biol, vol.28, 2018.

K. Essuman, The SARM1 Toll/Interleukin-1 Receptor domain possesses intrinsic NAD + cleavage activity that promotes pathological axonal degeneration, Neuron, vol.93, p.5, 2017.

L. Wan, TIR domains of plant immune receptors are NAD + -cleaving enzymes that promote cell death, Science, vol.365, pp.799-803, 2019.

S. Horsefield, NAD + cleavage activity by animal and plant TIR domains in cell death pathways, Science, vol.365, pp.793-799, 2019.

H. Guo, Phosphorylation-regulated activation of the Arabidopsis RRS1-R/RPS4 immune receptor complex reveals two distinct effector recognition mechanisms, Cell Host Microbe, vol.27, pp.769-781, 2020.

D. Takemoto, N-terminal motifs in some plant disease resistance proteins function in membrane attachment and contribute to disease resistance, Mol. Plant Microbe Interact, vol.25, pp.379-392, 2012.

T. Qi, NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.10979-10987, 2018.

B. , Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1, New Phytol, vol.222, pp.966-980, 2019.

A. Schultink, T. Qi, A. Lee, A. D. Steinbrenner, and B. Staskawicz, Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1, Plant J, vol.92, pp.787-795, 2017.

K. H. Sohn, The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana, PLoS Genet, vol.10, p.1004655, 2014.

H. Wei, S. Chakravarthy, J. N. Worley, and A. Collmer, Consequences of flagellin export through the type III secretion system of Pseudomonas syringae reveal a major difference in the innate immune systems of mammals and the model plant Nicotiana benthamiana, Cell. Microbiol, vol.15, pp.601-618, 2013.

C. A. Diebolder, E. F. Halff, A. J. Koster, E. G. Huizinga, and R. I. Koning, Cryoelectron tomography of the NAIP5/NLRC4 inflammasome: Implications for NLR activation, Structure, vol.23, pp.2349-2357, 2015.

M. Matyszewski, Cryo-EM structure of the NLRC4 CARD filament provides insights into how symmetric and asymmetric supramolecular structures drive inflammasome assembly, J. Biol. Chem, vol.293, pp.20240-20248, 2018.

Y. Li, Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.10845-10852, 2018.

N. Aarts, Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.10306-10311, 1998.

B. J. Feys, Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity, Plant Cell, vol.17, pp.2601-2613, 2005.

A. V. García, Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response, PLoS Pathog, vol.6, p.1000970, 2010.

D. Lapin, A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors, Plant Cell, vol.31, pp.2430-2455, 2019.

J. Gantner, J. Ordon, C. Kretschmer, R. Guerois, and J. Stuttmann, An EDS1-SAG101 complex is essential for TNL-mediated immunity in Nicotiana benthamiana, Plant Cell, vol.31, pp.2456-2474, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02176959

E. Weber, C. Engler, R. Gruetzner, S. Werner, and S. Marillonnet, A modular cloning system for standardized assembly of multigene constructs, PLoS One, vol.6, p.16765, 2011.

C. Y. Chen, C. W. Lin, C. Y. Chang, S. T. Jiang, and Y. P. Hsueh, Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology

, J. Cell Biol, vol.193, pp.769-784, 2011.