A. Silverio, P. Cavallo, R. De-rosa, and G. Galasso, Big health data and cardiovascular diseases: a challenge for research, an opportunity for clinical care, Front. Med, vol.6, 2019.

M. Zeller, Air pollution and cardiovascular and cerebrovascular disease: epidemiologic data, Presse Med, vol.35, issue.06, pp.74844-74852, 2006.

S. Bansilal, J. M. Castellano, and V. Fuster, Global burden of CVD: focus on secondary prevention of cardiovascular disease, Int. J. Cardiol, vol.201, issue.1, pp.31026-31029, 2015.

O. Sorop, Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening, Cardiovasc. Res, vol.114, pp.954-964, 2018.

A. J. Trask, Dynamic micro-and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome, J. Appl. Physiol, vol.113, pp.1128-1140, 2012.

J. Adjedj, Coronary microcirculation in acute myocardial ischaemia: from non-invasive to invasive absolute flow assessment, Arch. Cardiovasc. Dis, vol.111, pp.306-315, 2018.

D. Matsunaga, J. Yi, C. A. Puliafito, and A. H. Kashani, OCT angiography in healthy human subjects, Ophthalmic Surg. Lasers Imaging Retina, vol.45, pp.160-20141, 2014.

L. Mimoun, P. Massin, and G. Steg, Retinal microvascularisation abnormalities and cardiovascular risk, Arch. Cardiovasc. Dis, vol.102, pp.449-456, 2009.

S. B. Seidelmann, Retinal vessel calibers in predicting long-term cardiovascular outcomes: the atherosclerosis risk in communities study, Circulation, vol.134, pp.1328-1338, 2016.

M. P. Nagele, Retinal microvascular dysfunction in heart failure, Eur. Heart J, vol.39, pp.47-56, 2018.

R. Poplin, Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning, Nat. Biomed. Eng, vol.2, pp.158-164, 2018.

L. Arnould, Association between the retinal vascular network with Singapore "I" Vessel Assessment (SIVA) software, cardiovascular history and risk factors in the elderly: The Montrachet study, population-based study, PLoS ONE, vol.13, p.94, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01820065

R. J. Tapp, Associations of retinal microvascular diameters and tortuosity with blood pressure and arterial stiffness: United Kingdom Biobank, Hypertension, vol.74, pp.1383-1390, 2019.

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography, JAMA Ophthalmol, vol.133, p.3616, 2014.

F. Coscas, Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography, Investig. Ophthalmol. Vis. Sci, vol.57, pp.211-223, 2016.

, Scientific RepoRtS |, vol.10, 2020.

L. Arnould, The EYE-MI pilot study: a prospective acute coronary syndrome cohort evaluated with retinal optical coherence tomography angiography, Invest. Ophthalmol. Vis. Sci, vol.59, pp.4299-4306, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02627093

C. A. Curcio, D. Kar, and . Commentary-on-lavia, progress of optical coherence tomography angiography for visualizing human retinal vasculature, Retina, vol.39, p.1, 2019.

N. Cheung, Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis, J. Am. Coll. Cardiol, vol.50, pp.48-55, 2007.

A. and G. , Retinal vascular density as a novel biomarker of acute renal injury after acute coronary syndrome, Sci. Rep, vol.9, 2019.

J. Yu, K. Xiao, J. Huang, X. Sun, and C. Jiang, Reduced retinal vessel density in obstructive sleep apnea syndrome patients: an optical coherence tomography angiography study, Invest. Ophthalmol. Vis. Sci, vol.58, pp.3506-3512, 2017.

L. Arnould, Influence of cardiac hemodynamic variables on retinal vessel density measurement on optical coherence tomography angiography in patients with myocardial infarction, J. Fr. Ophtalmol, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02628310

J. Wang, Retinal and choroidal vascular changes in coronary heart disease: an optical coherence tomography angiography study, Biomed. Opt. Express, vol.10, pp.1532-1544, 2019.

J. M. Simonett, Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus, Acta Ophthalmol, vol.95, pp.751-755, 2017.

T. Y. Chui, D. A. Vannasdale, A. E. Elsner, and S. A. Burns, The association between the foveal avascular zone and retinal thickness, Invest. Ophthalmol. Vis. Sci, vol.55, pp.6870-6877, 2014.

G. Lynch, Within-subject assessment of foveal avascular zone enlargement in different stages of diabetic retinopathy using en face OCT reflectance and OCT angiography, Biomed. Opt. Express, vol.9, pp.5982-5996, 2018.

A. Van-campenhout and J. Golledge, Osteoprotegerin, vascular calcification and atherosclerosis, Atherosclerosis, vol.204, pp.321-329, 2009.

A. El-asrar and A. M. , Osteoprotegerin is a new regulator of inflammation and angiogenesis in proliferative diabetic retinopathy, Investig. Ophthalmol. Vis. Sci, vol.58, pp.3189-3201, 2017.

J. V. Patel, H. S. Lim, G. I. Varughese, E. A. Hughes, and G. Y. Lip, Angiopoietin-2 levels as a biomarker of cardiovascular risk in patients with hypertension, Ann. Med, vol.40, pp.17795-86, 2008.

L. Rochette, The role of osteoprotegerin and its ligands in vascular function, Int. J. Mol. Sci, p.5, 2019.

A. G. Semb, Osteoprotegerin and soluble receptor activator of nuclear factor-kappaB ligand and risk for coronary events: a nested case-control approach in the prospective EPIC-Norfolk population study 1993-2003, Arterioscler. Thromb. Vasc. Biol, vol.29, p.1, 2009.

W. Zhang, The association of depressed angiogenic factors with reduced capillary density in the Rhesus monkey model of myocardial ischemia, Metallomics, vol.8, pp.654-662, 2016.

S. J. Lee, Angiopoietin-2 exacerbates cardiac hypoxia and inflammation after myocardial infarction, J. Clin. Investig, vol.128, pp.5018-5033, 2018.

C. Lavia, Vessel density of superficial, intermediate, and deep capillary plexuses using optical coherence tomography angiography, Retina, vol.39, p.3, 2019.

Y. Oshima, Different effects of angiopoietin-2 in different vascular beds: new vessels are most sensitive, FASEB J, vol.19, pp.963-965, 2005.

D. M. Sampson, Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography, Invest. Ophthalmol. Vis. Sci, vol.58, pp.17-21551, 2017.

E. Von-elm, The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies, J. Clin. Epidemiol, vol.61, issue.11, p.8, 2007.

M. Li, Retinal microvascular network and microcirculation assessments in high myopia, Am. J. Ophthalmol, vol.174, pp.56-67, 2017.

M. Zeller, Prevalence and impact of metabolic syndrome on hospital outcomes in acute myocardial infarction, Arch. Intern. Med, vol.165, pp.1192-1198, 2005.

M. Al-sheikh, T. C. Tepelus, T. Nazikyan, and S. R. Sadda, Repeatability of automated vessel density measurements using optical coherence tomography angiography, Br. J. Ophthalmol, vol.101, pp.449-452, 2017.

L. Spina, C. Carnevali, A. Marchese, A. Querques, G. Bandello et al., Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings, Retina, vol.37, p.6, 2017.

P. I. Manalastas, Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes, J. Glaucoma, vol.26, pp.851-859, 2017.

R. G. Akwii, M. S. Sajib, F. T. Zahra, and C. M. Mikelis, Role of Angiopoietin-2 in vascular physiology and pathophysiology, vol.80504, p.71, 2019.

J. F. Santibanez, M. Quintanilla, and C. Bernabeu, TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions, Clin. Sci, vol.121, pp.233-251, 2011.

L. Rochette, The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases, Pharmacol. Ther, vol.182, pp.115-132, 2018.

E. Hagstrom, Growth Differentiation Factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease, Clin. Chem, vol.63, p.0, 2017.

B. Dieplinger and T. Mueller, Soluble ST2 in heart failure, Clin. Chim. Acta, vol.443, pp.57-70, 2015.