M. Armand, B. Pasquier, M. André, P. Borel, M. Senft et al., Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract, American Journal of Clinical Nutrition, vol.70, issue.6, pp.1096-1106, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02420162

C. Atuma, V. Strugala, A. Allen, and L. Holm, The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.280, issue.5, pp.922-929, 2001.

B. H. Bajka, N. M. Rigby, K. L. Cross, A. Macierzanka, and A. R. Mackie, The influence of small intestinal mucus structure on particle transport ex vivo, Colloids and Surfaces B: Biointerfaces, vol.135, pp.73-80, 2015.

L. Bonnaire, S. Sandra, T. Helgason, E. A. Decker, J. Weiss et al., Influence of lipid physical state on the in vitro digestibility of emulsified lipids, Journal of Agricultural and Food Chemistry, vol.56, issue.10, pp.3791-3797, 2008.

F. Böttger, D. Dupont, D. Marcinkowska, B. Bajka, A. Mackie et al., Which casein in sodium caseinate is most resistant to in vitro digestion? Effect of emulsification and enzymatic structuring, Food Hydrocolloids, vol.88, pp.114-118, 2019.

C. Bourlieu, O. Ménard, K. Bouzerzour, G. Mandalari, A. Macierzanka et al., Specificity of infant digestive conditions: some clues for developing relevant in vitro models, Critical Reviews in Food Science and Nutrition, vol.54, issue.11, pp.1427-1457, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01454495

C. Bucci, G. Rotondano, C. Hassan, M. Rea, M. A. Bianco et al., Optimal bowel cleansing for colonoscopy: Split the dose! A series of metaanalyses of controlled studies, Gastrointestinal Endoscopy, vol.80, issue.4, pp.566-576, 2014.

R. A. Cone, Barrier properties of mucus, Advanced Drug Delivery Reviews, vol.61, issue.2, pp.75-85, 2009.

A. P. Corfield, D. Carroll, N. Myerscough, and C. S. Probert, Mucins in the gastrointestinal tract in health and disease, Frontiers in Bioscience: A Journal and Virtual Library, vol.6, issue.1, pp.1321-57, 2001.

J. D. Elashoff, T. J. Reedy, and J. H. Meyer, Analysis of gastric emptying data, Gastroenterology, vol.83, issue.6, pp.80145-80150, 1982.

A. Ermund, A. Schütte, M. E. Johansson, J. K. Gustafsson, and G. C. Hansson, Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.305, issue.5, pp.341-347, 2013.

D. G. Fatouros, I. Walrand, B. Bergenstahl, and A. Müllertz, Colloidal structures in media simulating intestinal fed state conditions with and without lipolysis products, Pharmaceutical Research, vol.26, issue.2, pp.361-374, 2009.

G. B. Gonzales, G. Smagghe, A. Mackie, C. Grootaert, B. Bajka et al., Use of metabolomics and fluorescence recovery after photobleaching to study the bioavailability and intestinal mucus diffusion of polyphenols from cauliflower waste, Journal of Functional Foods, vol.16, pp.403-413, 2015.

M. E. Johansson, H. Sjövall, and G. C. Hansson, The gastrointestinal mucus system in health and disease, Nature Reviews Gastroenterology and Hepatology, vol.10, issue.6, pp.352-361, 2013.

E. J. Lai, A. H. Calderwood, G. Doros, O. K. Fix, and B. C. Jacobson, The Boston bowel preparation scale: A valid and reliable instrument for colonoscopy-oriented research, Gastrointestinal Endoscopy, issue.3, pp.620-625, 2009.

S. K. Lai, Y. Wang, D. Wirtz, and J. Hanes, Micro-and macrorheology of mucus, Advanced Drug Delivery Reviews, vol.61, issue.2, pp.86-100, 2009.

S. K. Lai, Y. Y. Wang, K. Hida, R. Cone, and J. Hanes, Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.598-603, 2010.

O. Lieleg, I. Vladescu, and K. Ribbeck, Characterization of particle translocation through mucin hydrogels, Biophysical Journal, vol.98, issue.9, pp.1782-1789, 2010.

J. Y. Lock, T. L. Carlson, Y. Yu, J. Lu, E. C. Claud et al., Impact of developmental age, necrotizing enterocolitis associated stress, and oral therapeutic intervention on mucus barrier properties, Scientific Reports, vol.10, issue.1, p.6692, 2020.

A. Macierzanka, F. Böttger, N. M. Rigby, M. Lille, K. Poutanen et al., Enzymatically structured emulsions in simulated gastrointestinal environment: Impact on interfacial proteolysis and diffusion in intestinal mucus, Langmuir, vol.28, issue.50, pp.17349-17362, 2012.

A. Macierzanka, A. R. Mackie, B. H. Bajka, N. M. Rigby, F. Nau et al., Transport of particles in intestinal mucus under simulated infant and adult physiological conditions: Impact of mucus structure and extracellular DNA, PLoS ONE, vol.9, issue.4, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209676

A. Macierzanka, A. R. Mackie, and L. Krupa, Permeability of the small intestinal mucus for physiologically relevant studies: Impact of mucus location and ex vivo treatment, Scientific Reports, vol.9, issue.1, p.17516, 2019.

A. Macierzanka, N. M. Rigby, A. P. Corfield, N. Wellner, F. Böttger et al., Adsorption of bile salts to particles allows penetration of intestinal mucus, Soft Matter, vol.7, issue.18, pp.8077-8084, 2011.

A. Macierzanka, A. Torcello-gómez, C. Jungnickel, and J. Maldonado-valderrama, Bile salts in digestion and transport of lipids, Advances in Colloid and Interface Science, vol.274, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02561792

A. R. Mackie, A. Macierzanka, K. Aarak, N. M. Rigby, R. Parker et al., Sodium alginate decreases the permeability of intestinal mucus, Food Hydrocolloids, vol.52, pp.749-755, 2016.

A. Mackie, N. Rigby, P. Harvey, and B. Bajka, Increasing dietary oat fibre decreases the permeability of intestinal mucus, Journal of Functional Foods, vol.26, pp.418-427, 2016.

K. Maisel, L. Ensign, M. Reddy, R. Cone, and J. Hanes, Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse, Journal of Controlled Release, vol.197, pp.48-57, 2015.

J. Malagelada, G. F. Longstreth, W. H. Summerskill, and V. L. Go, Measurement of gastric functions during digestion of ordinary solid meals in man, Gastroenterology, vol.70, issue.2, pp.80010-80018, 1976.

O. W. Meldrum, G. E. Yakubov, M. R. Bonilla, O. Deshmukh, M. A. Mcguckin et al., Mucin gel assembly is controlled by a collective action of nonmucin proteins, disulfide bridges, Ca2+-mediated links, and hydrogen bonding, Scientific Reports, vol.8, issue.1, p.5802, 2018.

O. Ménard, C. Bourlieu, S. C. De-oliveira, N. Dellarosa, L. Laghi et al., A first step towards a consensus static in vitro model for simulating full-term infant digestion, Food Chemistry, vol.240, pp.338-345, 2018.

O. Ménard, T. Cattenoz, H. Guillemin, I. Souchon, A. Deglaire et al., Validation of a new in vitro dynamic system to simulate infant digestion, Food Chemistry, vol.145, pp.1039-1045, 2014.

O. Ménard, M. Famelart, A. Deglaire, Y. Le-gouar, S. Guérin et al., Gastric emptying and dynamic in vitro digestion of drinkable yogurts: Effect of viscosity and composition, Nutrients, vol.10, issue.9, p.1308, 2018.

M. Meral, G. Bengi, H. Kayahan, M. Akarsu, M. Soytürk et al., Is ileocecal valve intubation essential for routine colonoscopic examination?, European Journal of Gastroenterology & Hepatology, vol.30, issue.4, pp.432-437, 2018.

M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn et al., A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, vol.5, pp.1113-1124, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195466

M. Minekus, P. Marteau, R. Havenaar, and J. H. Huisintveld, A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine, Atla-Alternatives to Laboratory Animals, vol.23, issue.2, pp.197-209, 1995.

L. E. Rioux and S. L. Turgeon, The ratio of casein to whey protein impacts yogurt digestion in vitro, Food Digestion, vol.3, issue.1-3, pp.25-35, 2012.

A. N. Round, N. M. Rigby, A. Garcia-de-la-torre, A. Macierzanka, E. N. Mills et al., Lamellar structures of MUC2-rich mucin: A potential role in governing the barrier and lubricating functions of intestinal mucus, Biomacromolecules, vol.13, issue.10, pp.3253-3261, 2012.

E. H. Seo, T. O. Kim, M. J. Park, H. R. Joo, N. Y. Heo et al., Optimal preparation-to-colonoscopy interval in split-dose PEG bowel preparation determines satisfactory bowel preparation quality: An observational prospective study, Gastrointestinal Endoscopy, vol.75, issue.3, pp.583-590, 2012.

L. Szentkuti and K. Lorenz, The thickness of the mucus layer in different segments of the rat intestine, Histochemical Journal, vol.27, issue.6, pp.466-472, 1995.

H. M. Yildiz, C. A. Mckelvey, P. J. Marsac, and R. L. Carrier, Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids, Journal of Drug Targeting, vol.23, issue.7-8, pp.768-774, 2015.

Q. Zhang, G. Widmer, and S. Tzipori, A pig model of the human gastrointestinal tract, Gut Microbes, vol.4, issue.3, pp.193-200, 2013.