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Abstract 

This study investigated the influence of temperature (4, 8 and 12°C) on development and survival of 
brown trout (Salmo trutta) fry. The three aims of this study were: (a) to propose a typology of 
malformations; (b) to compare malformation types between live and dead fry and (c) to establish 
relationships between temperature and malformation occurrences. It was found 20 single malformations 
and 39 combinations of two or more malformations. Comparison between dead and live fry at different 
de-velopment stages (hatching, emergence and first food intake) showed that malformations of yolk sac 
were predominant at hatching and then decreased, while malformations of skeleton or multiple 
malformations were higher thereafter. All dead fry, and only 14% of live fry were malformed. Dead fry 
were mainly characterized by yolk sac malformations and multiple malformations whatever the 
temperature. Live fry showed a higher rate of skeleton malformations at 12°C, and the different types of 
malformations were equally represented at two other temperatures (4 and 8°C). To conclude, it is 
suggested that some malformations (yolk sac at hatching, yolk sac associated with skeleton 
malformations at emergence and skeleton at first food intake or combinations of malformations at all 
stages)might be lethal as they were founding dead fry and that temperature influences differently the 
occurrence of malformations. 

 Introduction  __________________________________________________________________  

Different terms such as deformity, defect, or malformation are 
indistinctly used to qualify a structural abnormality of the body 
(Boglione, Gavaia, et al., 2013; Boglione, Gisbert, et al., 2013). 
The term malformation is restricted for fish larvae to an 
abnormality of the whole body (jaw, lordosis, kyphosis, 
scoliosis, yolk sac oedema) and deformity addressed more 
precisely bones defects (compression, fusion of vertebral 
bodies) (Witten, Gil-Martens, Huysseune, Takle, & Hjelde, 
2009). Most often, bone defects are identified by X-rays 
(Aunsmo et al., 2008; Witten, Gil-Martens, Hall, Huysseune, & 
Obach, 2005; Witten et al., 2009). Because in this study, only 
visual examination of the fry under a stereomicroscope on 
photographs was used to identify abnormalities of the body, 
only the word malformation will be used. Malformations can 
affect survival. For instance, yolk sac malformations cause 
significant lower survival rate of Japanese eel fry (Anguilla 
japonica) (Kurokawa, Shibahara, Gen, Nomura, & Tanaka, 
2013). Generally, the high mortality rate due to malformations 
occurring during early life stages, partly explains why they are 
so rare in adults. For instance, Cobcroft and Battaglene (2013) 
showed that the prevalence of malformations of the verte-bral 
column in several marine species, decreased with age, due to 
the deadly nature of these malformations. In only 2% or 3% of 
adult wild salmonids, few skeletal malformations seemed not 
to be lethal (Gill & Fisk, 1966; Poynton, 1987). Andrades, 

Becerra, and Fernandez-Llebrez (1996) showed that about 
27% of sea bream (Pagrus major) fry at hatching showed spin 
malformations and 81% of these died soon after hatching. 

Early life stages appeared to be the most prone to malforma-
tions. Many authors have observed an increase in 
malformations due to biotic factors, among which stress on 
brood stock during vitellogenesis (Alix, Zarski, Chardard, 
Fontaine, & Schaerlinger, 2017; Divanach, Papandroulakis, 
Anastasiadis, Koumoundouros, & Kentouri, 1997; Haya, 
1989), genetic origin (Divanach et al., 1997; Paperna, 1978)‚ 
or gamete quality (Nowosad & Kucharczyk, 2019; Nowosad, 
Sikora, & Kucharczyk, 2018; Samarin et al., 2017). 
Malformations, even when they are not directly lethal, 
contributed to an increased susceptibility to predation or 
diseases (Boglione, Gisbert, et al., 2013; Koumoundouros, 
2010; Koumoundouros, Oran, Divanach, Stefanakis, & 
Kentouri, 1997). Abiotic factors may also affect development 
resulting in malformed individuals, such as salinity (Lee & 
Menu, 1981), water turbulence (Chatain, 1994), radiations 
(UV-B) (Blaustein, Kiesecker, Chivers, & Anthony, 1997; 
Romansic, Waggener, Bancroft, & Blaustein, 2009), presence 
of toxic waterborne metals, and pesticides (Fernandez, 
Garvaia, Laize, & Cancela, 2018), even though temperature 
seems to be one of the most important (Abdele et al., 2004; 
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Lahnsteiner & Mansour, 2012; Loffler, Ott, Ahnelt, & Keckeis, 
2008; Meeuwig, Bayer, & Seelye, 2013; Schultz & Bonar, 
2009; Treasurer, 1983). Some malformations were more 
numerous at high incubation temperatures than the optimal 
temperature in numerous fish species (Kurokawa et al., 2013; 
Lahnsteiner, 2012; Sfakianakis et al., 2006; Wang & Tsai, 
2000; Wiegand, Hataley, Kitchen, & Buchanan, 1989). In 
freshwa-ter fish species, temperature above the thermal 
tolerance has often resulted in larval malformations (Camus & 
Koutsikopoulos, 1984; Herzig & Winkler, 1986; Rana, 1990; 
Steinarsson & Björnsson, 1999; Wang & Tsai, 2000; Wiegand 
et al., 1989). The main malformations observed during the 
early life stages were located on the skeleton, especially 
lordosis (Kihara, Ogata, Kawano, Kubota, & Yamaguchi, 2002; 
Kurokawa et al., 2013; Lahnsteiner, 2012; Linares-Casenave, 
Werner, Van Eenennaam, & Doroshov, 2013; Sfakianakis et 
al., 2006). 

Brown trout (Salmo trutta) is a cold stenothermal species 
(Teletchea, Fostier, et al., 2009; Teletchea, Gardeur, Kamler, 
& Fontaine, 2009) and its fry are very sensitive to temperature 
changes (Lahnsteiner, 2012; Ojanguren & Braña, 2003; 
Realis-Doyelle‚ Pasquet, Charleroy, Fontaine, & Teletchea, 
2016). Previous studies showed that there was an optimal 
temperature for survival rate between 6 and 8°C (Lahnsteiner, 
2012; Ojanguren & Braña, 2003; Realis-Doyelle et al., 2016) 
at hatching, emergence and first food intake (Realis-Doyelle et 
al., 2016), and the main observed malformations were on the 
skeleton (Lahnsteiner, 2012), but there is a lack of knowledge 
on the possible link between the presence of mal-formations 
and fry survival. 

This study aimed at (a) realizing a typology of malformations 
of brown trout fry, (b) comparing malformations between live 
and dead fry at different development stages, and (c) studying 
the influence of the temperatures on the occurrence of these 
malformations during the early development. 

 

 Material and Methods  __________________________________________________________ 

2.1. Animal acclimation and rearing  

Brown trout fertilized eggs were obtained from the Institute for 
Nature and Forest (INBO), Bosonderzoek (Belgium). Breeders 
(seven females and seven males) were caught in earthen 
ponds, on 19 December 2013. The water temperature of the 
ponds was 8°C. The eggs were obtained by stripping of the 
females and fertilization was done. Fertilized eggs were 
transferred on the same day to the University of Lorraine 
(Nancy-France). The temperature during transport was 
maintained to 8° C. Eggs were put into three incubators, each 
containing eight individual racks (44 × 11 × 7 cm) (around 650 
eggs per rack). In each rack, the eggs of all the females were 
mixed. At their arrival, eggs were acclimated to 8° C water and 
acclimated to the other temperatures (4 and 12° C) by a kinetic 

of 1°C H−1 (Peterson & Martin-Robichaud, 1989). Three 
temperatures were therefore tested: 4, 8 and 12° C. The 
photoperiod was 16L/8D. Both temperature and dissolved 
oxygen were checked daily (range of probe was 0.1° C for 
temperature and dissolved oxygen remained at 9 mg/L). Water 
quality (ammonia, nitrite, and pH) was checked each week. 
Total ammonia and nitrite concentrations in each tank were 
kept below 0.05 and 0.010 mg/L respectively and pH remained 
at 8 (SD = 0.5) (Realis-Doyelle et al., 2016). 

2.2. Samplings  

Three periods were considered: from fertilization to hatching 
time (P1), from hatching to emergence (P2), defined when 
50% of fry moved from the bottom of each rack into the water 
column, and from emergence to first food intake (P3) defined 
as 50% of the fry got their first food intake (Figure 1). Dead fry 
were removed every day using a pipette to produce weak 
water movement. The number of dead fry at the end of each 
period (P1, P2 and P3) was the sum of the number of dead fry 
per day during the duration of the corresponding period. We 
used this sampling strategy for dead fry in order to minimize 
the number of lost individuals because dead fry disappeared 
rapidly. For each temperature, 128 (16 per rack) live fry were 
sampled at the end of each period, except at the end of P3 for 

12° C, where we removed only 77 fry, because the mortality 
rate was too high. The comparison between dead and live fry 
was done at the end of each period. The study was conducted 
in accordance with the Animal Ethics Committee of the 
University of Lorraine (no. C54-547-18). 

 

FIGURE 1 Schematic representation of sampling timing on live 
and dead fry 

2.3. Malformations  

All sampled fry were conserved on paraformaldehyde at 4% 
(pH = 6.9) and after in freezer (4°C). Malformations were 
identified under X10 objective microscope (OPTIKA 
microscope, SZP-10 with camera MICROVISION Instruments, 
Lw1235C-GT1 coupled with the software Archimed 
MICROVISION Instruments 6.0.14). It was identified 20 single 
malformations (Figure 2) and 39 combinations (multiple 
malformations). 

The typology of malformations (Figure 2) was based on the 
works of Afonso et al. (2000), Holm et al. (2005), Jezierska, 
Ługowska, and Witeska (2009) and Lahnsteiner (2012). 
Skeleton malformations included scoliosis, lordosis and 
kyphosis. Scoliosis corresponds to a lateral malformed, zig-
zag shape (Afonso et al., 2000) or lateral concave curvature of 
the lumbar region of the skeleton (Holm et al., 2005). Lordosis 
is a dorsal malformation, forming a V shape (Afonso et al., 
2000) or a concave curvature of the lumbar region of the 
skeleton (Holm et al., 2005). Kyphosis is a ventral 
malformation, forming a ‘3’ horizontal shape (Afonso et al., 
2000) or a convex curvature of the thoracic region of the skel-
eton (Holm et al., 2005). The yolk sac malformation is here 
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only oedema defined as an accumulation of body fluid in the 
region separating the yolk sac from the digestive tube (Holm 
et al., 2005) or between yolk and the yolk syncytium layer (Alix, 
Chardard, Ledoré, Fontaine, & Schaerlinger, 2015). The other 
malformations considered were: on the head, it concerned the 
jaws, with prognathism (the lower jaw was longer than the 
upper one) or retro-prognathism, and the eye, with no eye, or 
only one, or multiple eyes more than two. The fins may be also 
affected with no fin or atrophied caudal or dorsal fins. 
Haemorrhages (on the yolk sac or between yolk sac and fry 
body) and twin forms (two or three fry for one yolk sac or two, 
three or four heads for one body) could appear (Figure 2). Fry 
were classified as single or multi-malformed; that is, when fry 
showed at least two malformations simultaneously (e.g. 
lordosis and yolk sac malformation or kyphosis and no eye or 
yolk sac malformation). Live or dead fry that had no visible 
malformation were considered as well formed. 

2.4. Parameters  

The dead or live malformed fry were distributed among four 
categories: those on the skeleton, on the yolk sac, others, and 
multiple malformations. For each temperature, the total 
number of dead fry at the end of each period was calculated 
as the sum of dead fry per day during the length of the period. 
For dead fry, the percentage of malformations at the end of 
each period of development (P1, P2 and P3) and for each 
temperature was calculated by dividing the number of 

malformed fry of each categories by the number of dead fry. 
For live fry, the percentage of malformed fry of each category 
was obtained by dividing the number of malformed fry by the 
number of sampled fry (n = 128 for each temperature and at 
the end of each period, except for 12° C at first food intake (P3) 
where n = 77). We also calculated the percentage of fish with 
single (or multiple) malformations, for each period at each 
temperature. 

2.5. Statistical analysis  

The use of different sampling methods: every day (for dead 
fry) or just at the end of the period (for live fry) did not allow us 
to compare directly the percentages of malformations at the 
end of each period and for each temperature. So the 
distributions of the different types of malformations were 
analysed separately for live and dead fry, but with the same 
statistical procedure. A chi-squared test was use to analyse 
occurrence of malformations for each status (dead or live) and 
periods. It was analysed the effect of temperature, period and 
the interaction between the two with a two-way table for 
contingency with a log linear test (Sokal & Rolhf, 1995). When 
the interaction temperature-period was significant, we did 
piece-wise comparisons on temperatures with a χ2 test. All 
statistical analyses were realized with the software Statistica 
(version 10). All the results were considered significant at the 
level of p < 0.05. 

 

 Results  ______________________________________________________________________ 

3.1. Typology of the malformations  

Overall, 348 dead fry were analysed, which represented 3% of 
the population (n = 25) at 4° C, 8% (n = 108) at 8° C and 30% 
(n = 214) at 12° C from hatching to first food intake (P1 to P3) 
(Table 1). All dead fry had malformations: 192 single 
malformations (55%) and 155 multiple malformations (45%). 
The malformations from hatching to first food intake were 
represented by 55% of single malformations (21% on skeleton, 
30% on yolk sac, and 4% of other malformations, Figure 3a). 
Among the 999 live fry sampled, 7% (n = 73) displayed single 
malformation; no multiple malformations were observed. From 
hatching to first food intake, the number of live fry malformed 
represented 9% (n = 32) of the population at 4° C, 3% (n = 11) 
at 8° C and 26% (n = 78) at 12° C (Table 1). Malformations of 
the skeleton represented 54% of the total followed by, others 
malformations 27%, and yolk sac malformations 19% (Figure 
3b). 

3.2. Influence of temperature and stages on 
malformations of live fry  

The interaction between temperature and period was 
significant (χ2 = 63.5, df = 8, p < 0.001) (Table 2). At hatching, 
the majority of malformations was on yolk sac (59%) at 4° C, 
belonged to other groups (40% of twin forms and 20% of head 
malformations) at 8°C, and were found on skeleton (75% only 
by scoliosis) at 12° C. At emergence for all temperatures, the 
majority of malformations was on skeleton, and represented 
by scoliosis (80% of the malformations at 4° C, 100% at 8° C, 
and 83% at 12°C). At first food intake, the malformations were 
more numerous on skeleton and represented by scoliosis 
(57% at 4° C, 44% at 8° C and 89% at 12° C) (Table 2). 

At hatching, most malformations concerned the yolk sac 
(47%). At emergence and first food intake, malformations were 
mainly found on skeleton (Figure 4a).The percentage of these 
types of malformations was different between temperatures 
(χ2 = 52.0, df = 2, p < 0.001). At 4 and 8°C, the malformations 
were equally distributed (30%–40 %) between the three main 
types (skeleton, yolk sac and others). At 12°C most 
malformations (82%) were on skeleton (Figure 4b) and not on 
yolk sac. 

3.3. Influence of temperature and stages on 
malformations of dead fry  

The interaction between temperature and periods was 
significant (χ2 = 63.5, df = 8, p < 0.001). At hatching, the 
majority of malforma-tions were single malformations on the 
yolk sac for all temperatures (55% at 4° C, 76% at 8° C and 
79% at 12° C) (Table 3). At emergence, the majority of 
malformations were multiple malformations (62% at 4° C, 52% 
at 8° C and 67% at 12° C) (Table 3). In this case, multiple 
malformations were mainly on skeleton and yolk sac 
malformations except at 8° C, where the association between 
yolk sac and head malformations (27%) or lordosis (27%) were 
dominant. At first food intake, the majority of the malformations 
were on the skeleton (53% including 30% lordosis and 23% 
kyphosis) at 4°C. At 8° C, the skeleton malformations were 
also more numerous (36% including 27% lordosis and 9% 
kyphosis). At 12° C, multiple malformations predominated with 
an association between skeleton and yolk sac oedema (60%) 
or between three malformations (9%) (Table 3). 

The percentage of malformation was different between the 
periods. At hatching, malformations (70%) were mainly found 
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on the yolk sac, but at emergence and first food intake, multiple 
malformations including lordosis and yolk sac malformations 
were much higher (62% and 51% respectively; Figure 5a). The 
percentage of malformations was different between 
temperatures ( χ2 = 73.3, df = 2, p < 0.001). At 4 and 8°C, the 

majority of malformations was represented by multiple malfor-
mations (40% and 36% respectively) and yolk sac 
malformations (35% and 31% respectively). At 12°C, the 
majority of malformations were represented mainly by multiple 
malformations (55%) (Figure 5b). 

 Discussion  ___________________________________________________________________  

This study highlights a higher percentage of malformations on 
dead (100%) compared to live fry (7%). For the dead fry, 
multiple malformations were the most common whatever the 
temperature and periods of life, mainly a combination of 
skeleton and yolk sac malformations. For live fry, the scoliosis 
was the most common malformation whatever the temperature 
and periods. The comparison of the distribution of the different 
types of malformations between each period showed that 
malformations of the yolk sac were predominant at hatching 
and then decreased followed by multiple malformations or 
malformations of the skeleton at emergence and first food 
intake. This fact could be explained by the consumption of yolk 
sac during early development. Malformations on dead fry at 4 
and 8°C followed the same pattern of distribution with higher 
yolk sac oedema and multiple malformations; at 12°C multiple 
malformations were more numerous. For live fry, skeleton 
malformations were the more numerous at 12°C, and for the 
other temperatures (4 and 8°C) the malformations were 
equally distributed. 

The first periods of life are the most sensitive to temperature 
variations because their thermal tolerance range is reduced 
compared to juveniles and adults (Pörtner & Peck, 2010). Yet, 
we have no information on the types of lethal malformations in 
the early stages of life. Indeed, only two studies were carried 
out on malformations on dead fry according to the temperature 
during the endogenous phase. Pittman, Skiftesvik, and Harboe 
(1989) reared halibut (Hippoglossus hippoglossus L.) larvae at 
three temperatures (4, 6 and 9°C). Only 16.8% of dead fry 
were analysed because of their decomposition and about 50% 
of these dead fry had malformations. The difference with 
present results could be explained by the important effort of 
sampling during the experimentation (100% of dead fry 
between hatching and first food intake were analysed). 
Moreover, the main malformations observed during the 
experiment of Pittman et al., 1989 were on jaw (18%), and on 
yolk sac at the highest temperature (9°C). In this study, 
malformations of the jaws on dead fry accounted for only 0.8%. 
Comparing with our study, it was hypothesized that some 
malformations may affect the general development 
characteristics for many species (the yolk sac is common) but 
also particular malformations in some species (i.e. flat fish: 
malformations of the head). Koumoundouros, Maingot, 
Divanach and Kentouri(2002) had studied only kyphosis on 
sea bass (Dicentrarchus labrax L.) and the impact of these 
malformations on fish mortality. In their study, they sampled 
dead fish randomly at 45 days post hatching and compared 
with live fry of the same size (TL = 17mm). They found that 
52.6% of kyphosis on dead and 26.4% on live fry: the skeleton 
was dorsally interrupted, with the corresponding neural pro-
cesses twisted, resulting in a significant compression of the 
neural tube. They concluded that the incidence of this 
deformity decreased exponentially over time due to the high 
mortality of affected fish by early kyphosis. In this study it was 
found kyphosis malformations principally on dead fry (at 4°C), 
which is consistent with the conclusions of Koumoundouros, 
Maingot, Divanach, and Kentouri (2002). In conclusion, 

kyphosis seems to be a lethal deformity, and a decrease in 
temperature increases its presence in the population. Indeed, 
we showed an increase in multiple malformations on dead fry 
at 12°C. Moreover, we can make the assumption that yolk sac 
oedema malformation could be lethal at hatching for all 
temperatures because the percentage decreases strongly 
after this stage and we could assume that fry died before, 
because they were not able to use their yolk. 

Many authors observed on live fry an increase in skeleton 
malfor-mations due to temperature variations during the 
endogenous feeding period on different fish species (Kihara et 
al., 2002; Kurokawa et al., 2013; Lahnsteiner, 2012; Linares-
Casenave et al., 2013; Sfakianakis et al., 2006). For brown 
trout, Lahnsteiner (2012) showed that the fry reared at 8.5°C 
(temperature closed to the optimal) had more malformations of 
the skeleton than at extreme temperatures (3 and 13°C). 
Embody (1934) observed that with a temperature lower than 
3°C than the normal one (between 8 and 10°C), malformations 
of the skeleton appeared more quickly at 10°C. In this study, 
results showed that at 12°C, the percentage of skeleton 
malformations of fry (live or dead) was higher than at the other 
temperatures. Many authors pointed out the hypothesis that 
during hatching, fry are not able to modify the orientation of 
their column, which had been malformed by temperature 
(Blaxter, 1992; Cook, Guthrie, Rust, & Plesha, 2005; 
Lahnsteiner, 2011, 2012; Linares-Casenave et al., 2013; 
Yamagami, 1988). Malformations would also appear later 
during the training phase of swimming (Kihara et al., 2002; 
Sfakianakis et al., 2006), which in Salmonidae is linked to the 
emergence. Moreover, most of the time, swimming difficulties 
could be a consequence of the non-inflation of the gas bladder 
(Kitajima, Tsukashima, Fujita, Watanabe, & Yone, 1981). This 
could imply some difficulties in the swimming course and the 
fry tried to compensate the lack of stabilization and dynamism 
during swimming with pectoral fins. In conclusion, they swam 
in an oblique way that leads to malformations of the column 
(Koumoundouros et al., 2002). This could be explained by the 
overload of increase muscle at the midposterior region of the 
trunk exerted on vertebrae during these first stages of life; this 
could cause a progressive inflection of the axis of the 
notochord resulting in the malformed and fusion of the 
vertebrates (Boglione et al., 1994; Kitajima et al., 1981; 
Kranenbarg, Waarsing, Muller, Weinans, & Van Leeuwen, 
2005). Nevertheless, this deformity of the notochord would not 
involve a kyphosis but more probably a lordosis 
(Koumoundouros et al., 2002) expressed in the notochord in 
the embryo and is implied in the formation of axial skeleton. If 
the malformations on the skeleton seemed the more numerous 
whatever the period or the temperature, partly due to our 
method of observation, twin forms ranged from 0% to 18% of 
the malformations at a given stage and temperature. It is 
known that this type of malformation is rare (0.5% to 4% in the 
salmon Keta (Oncorhynchus keta) (Yamamoto, Kobayashi, & 
Kuramoto, 1996), or less than 0.01% in the whitefish 
(Coregonus maraena) (Nowosad & Kucharczyk, 2019). In the 
study of Yamamoto et al. (1996) on salmon Keta, a large 
increase in the temperature (from 8 to 18°C) lead to an 
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increase in twin forms. It was found also that it was especially 
a decrease in the temperature (from 8 to 4°C) that showed a 
higher percentage of twin forms. As suggested by Yamamoto 
et al. (1996), the presence of elements preventing the onset of 
the axial symmetry of the embryos could be responsible of this 
early malformation whatever the temperature. 

In summary, the comparison of the malformations observed 
between dead and live fry allows highlighting that: (a) dead fry 
were almost all malformed contrary to the live individuals, 
strongly suggesting the possible lethality of some 
malformations; (b) multiple malformations, malformations of 
the yolk sac as well as lordosis and kyphosis seemed to be 
lethal during the endogenous phase in common trout. The 
higher temperature increased possible lethal multiple 
malformations (at 12°C) during early life stages. 
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Table 1. Number of malformed dead and life fry collected at the different temperatures and stages (H = Hatching, EM 

= Emergence and FFI = First food intake) 
 

T (°C) Biological stages Number of malformed fry Number of collected fry 

Dead fry Live fry Dead fry Live fry 

4 H 29 17 29 128 

EM 51 5 51 128 

FFI 12 14 12 128 

8 H 38 5 38 128 

EM 72 2 72 128 

FFI 11 7 11 128 

12 H 28 8 28 26 

EM 72 6 72 19 

FFI 35 9 35 32 

  Total 348 73 348 845 
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Table 2. Percentage of malformations (typologies for each malformation) for live fry by temperatures and stages (H 

= hatching, EM = emergence and FFI = first food intake) 
 

T 

(°C) 

Biological 

stages 

Skeleton Yolk sac 

oedema 

Others 

Lordosis Kyphosis Scoliosis Twin 

form 

Head Haemorrhage 

4 H 0 0 12 59 6 12 12 

EM 0 0 80 0 20 0 0 

FFI 0 7 50 7 36 0 0 

8 H 0 0 20 20 40 20 0 

EM 0 0 100 0 0 0 0 

FFI 0 0 44 28 28 0 0 

12 H 0 0 75 0 25 0 0 

EM 0 0 83 0 17 0 0 

FFI 0 0 89 0 11 0 0 

 

 

 

  



8 

Table 3. Percentage of malformations (typologies for each malformation) for dead fry by temperatures and stages (H 

= hatching, EM = emergence and FFI = first food intake) 
 

T 
(°C) 

Biological 
stages 

Multi-malformations Skeleton Yolk 
sac 

oedema 

Others 

Skeleton/yolk Head/yolk 
sac 

Triple 
malformations 

Lordosis Kyphosis Scoliosis Twin 
form 

Head Haemorrhage 

4 H 14 0 0 0 17 0 55 7 7 0 

EM 59 0 2 9 5 0 22 4 0 0 

FFI 0 23 0 30 23 0 23 1 0 0 

8 H 1 0 0 18 0 0 76 5 0 0 

EM 22 27 3 27 5 2 10 0 0 5 

FFI 9 18 0 27 9 0 18 18 0 0 

12 H 1 0 0 20 0 0 79 0 0 0 

EM 46 6 15 15 4 0 11 0 0 2 

FFI 60 0 9 20 3 0 6 3 0 0 
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Figure 2. Types of simple (a–c) and multiple (d–g) malformations.  
a: vertebral malformations; a1: lordosis; a2: kyphosis; a3: scoliosis in abdominal region; a4: spin curved. b: yolk sac malformations; b1: yolk 

sac oedema; b2: yolk sac enlarged; b3: yolk sac oedema and enlarged. c: head malformations; c1: prognathism; c2: smaller eye diameter 

(microphthalmia). d: twin malformations; d1: triplet with tail merged; d2: multiple form and oedema yolk sac; d3: malformation with twin tail 

and double head. e: vertebral and yolk sac malformations; e1: lordosis and oedema yolk sac; e2: kyphosis and scoliosis abdominal region 

and oedema yolk sac. f: head and vertebral malformations; f1: three eyes and scoliosis; f2: spin curved and prognathism. g: three 

malformations; g1: lordosis and enlarged yolk sac and haemorrhage; g2: smaller eye diameter, oedema and enlarged yolk sac; g3: lordosis 

and no eye and oedema yolk sac. 
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Figure 3. Distribution of types of malformations for: a- dead fry; b- live fry. Skeleton, Yolk sac and other are single 

malformations. Differences obtained by χ2 considered significant between each typology at p < 0.05 were indicated 

by different letters 
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Figure 4. Distribution of types of malformations for live fry: (a) relatively to the development stages, and (b) relatively 

to the temperatures. Skeleton, Yolk sac and other are single malformations. Differences obtained by χ2 considered 

significant between two biological stages at p < 0.05 were indicated by different letters 
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Figure 5. Distribution of types of malformations for dead fry: (a) relatively to the development stages, and (b) 

relatively to the temperatures Skeleton, Yolk sac and other are single malformations. Differences obtained by χ2 

considered significant between two temperatures at p < 0.05 were indicated by different letters 
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