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Abstract: Gene duplication is an important evolutionary mechanism allowing to provide new
genetic material and thus opportunities to acquire new gene functions for an organism, with major
implications such as speciation events. Various processes are known to allow a gene to be duplicated
and different models explain how duplicated genes can be maintained in genomes. Due to their
particular importance, the identification of duplicated genes is essential when studying genome
evolution but it can still be a challenge due to the various fates duplicated genes can encounter. In this
review, we first describe the evolutionary processes allowing the formation of duplicated genes but
also describe the various bioinformatic approaches that can be used to identify them in genome
sequences. Indeed, these bioinformatic approaches differ according to the underlying duplication
mechanism. Hence, understanding the specificity of the duplicated genes of interest is a great asset
for tool selection and should be taken into account when exploring a biological question.

Keywords: gene duplication; bioinformatic tools; paralogous genes; genome evolution; synteny

1. Introduction

The eukaryotic genome organization is complex and contains different types of sequences with
much of them being non-coding sequences that may have an important impact on genome functioning
and regulation. Moreover, genomes are highly dynamic with several ongoing processes allowing
the creation of genetic novelty necessary for species to evolve and adapt to changing environments.
Among the different possibilities, gene duplication is a very important mechanism providing new
genetic material and opportunities to acquire new functions [1].

In particular, numerous examples have described the role of duplication in some cases of adaptation
to environmental conditions [2]. For example, gene duplication has played a role in nutrient transport
under stress conditions, in protection against heat, cold, or salty environments, in the resistance to
drugs and pesticides, but also in the adaptation to domestication. Gene duplication can also be involved
in speciation, especially via whole genome duplication (WGD) as it is suspected in plants, where a
correlation has been observed between WGD and increased rates of speciation or divergence [3].
In particular, this mechanism is thought to have generated the new flowering plant Mimulus peregrinus
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within the last 140 years [4]. Although less numerous than in plants, some examples also exist in
animals such as in Drosophila where the hybrid-male sterility gene Odysseus was formed by gene
duplication [5]. On the other hand, duplication may also have important deleterious effects in humans
and can be associated with some diseases [6]. For example, the analysis of human genes linked to
diseases made it possible to show that 80% of them have been duplicated in their evolutionary history,
the disease-associated mutation being associated with only one of the duplicated copies [7]. Recently,
the analysis of the evolution of cancer suppression in mammals revealed that species known to be
resistant to cancer contain the most cancer gene copies [8].

Duplicated genes are also called paralogs in contrast to orthologs, to refer to their homologous
relationship, i.e., the fact that they descend from a common ancestor via a duplication event rather
than a speciation event. The terminology concerning duplicated genes can be complex and depends
upon different factors (for a review, see [9]). In particular, it may be difficult to assess precisely the
evolutionary relationships between duplicated genes since duplication is often followed by speciation
and gene loss. Several definitions have been proposed to integrate more or less precise ideas concerning
the mechanism of formation and the evolutionary relationship among paralogs. For example, ohnologs
correspond to paralogs that have been created by WGD [10]. Three new definitions, pro-ortholog,
semi-ortholog, and trans-homolog, were proposed to account for situations in which one or both
lineages that lead to two present-day genes involve gene duplication [11]. In that respect, a pro-ortholog
is a gene that is orthologous to the ancestor of a set of paralogs of the gene under consideration
whereas a semi-ortholog is one of the descendants of an ortholog of the gene under consideration,
after that gene has duplicated. Trans-homologs can be defined as genes related to each other via two
independent duplication events from the same ancestral gene. Moreover, it is also possible to link
paralogous relationships to speciation events with the definition of in-paralogs and out-paralogs [12].
When paralogs from a given lineage have evolved by gene duplication that happened after a speciation
event, they can be referred to as in-paralogs. On the opposite, paralogous genes which have evolved by
duplication events happening before a speciation event, can be referred to as out-paralogs. Many other
terms, although less used, have been proposed to take into account chromosomal position retention,
the combination of vertical and horizontal transmissions or to highlight paralogous genes appearing to
be orthologs due to differential gene loss [9].

In a genome, duplicated genes can thus be formed by various mechanisms and may have different
ages and fates. This makes their bioinformatic identification all the more difficult since according to the
methods used, different duplicated gene datasets will be identified inside the same organism. In this
review, we thus aim at describing the evolutionary processes implicated in the formation and the fate
of duplicated genes as well as the different bioinformatic approaches that can be used to identify them
in genome sequences. The question of deciphering the evolutionary relationships among duplicated
genes will not be discussed in detail, for reviews on the subject see [13,14].

2. Evolutionary Processes Leading to the Formation and the Fate of Duplicated Genes

2.1. How to Make New from Old: Duplication Mechanisms

Duplicated genes can appear under various forms which are the consequences of the mechanisms
that generated them. Some of the mechanisms can be particularly well documented but it is not always
the case, at least for some organisms. According to the mechanism, the results concerning the gene
content can be different since it can either involve individual genes or all genes on entire chromosomes
(Figure 1).
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Figure 1. The different types of duplications. (A) Whole genome duplication which implies complete 
chromosome duplication. (B) Tandem duplications which produce identical adjacent sequences. (C) 
Retroduplication, which produces a retrocopy of a gene devoid of introns and with a polyA tail. (D) 
Transduplication in which a DNA transposon acquires fragments of genes. (E) Segmental duplica-
tions which correspond to long stretches of duplicated sequences with high identity. 

2.1.1. Whole Genome Duplication (WGD) 

In the first mechanism, duplicated genes arise from the duplication of complete chromosomes, 
which correspond to what is called whole genome duplication (WGD) (Figure 1A). In that case, all 
chromosomes from a genome will be duplicated, leading each gene from the genome to exist in two 
copies. This type of duplication has been well documented in plants and is defined as polyploidiza-
tion, for which it is possible to distinguish the mechanism of hybridization between different species 
(allopolyploidization) or inside a given species (autopolyploidization) [15]. Different mechanisms 
have been shown to produce this outcome such as polyspermy, non-reduced gametes or incomplete 
mitosis during the early stage of embryo development [16]. Gene duplication, independently of the 
mechanism of formation, is largely present in plant genomes since on average 64.5% of genes have 
been recognized as duplicated in an analysis that considered 41 genomes and used the same meth-
odology to build gene families, with a range going from 45.5% in a moss to 84.4% in the apple tree 
[17]. It is possible to estimate that several WGD events took place during the evolution of plant spe-
cies, the most ancient happening in the ancestor of all seed plants about 319 million years ago and 
another more recent before the diversification of angiosperms 192 million years ago [18]. A large 
number of WGD are also consecutive to recent events. For example, the wheat group has evolved 
through different complex hybridizations among species from the plant genera Aegilops and Triti-
cum followed by genome doubling. The most recent event giving birth to allotetraploid wheat (two 
different diploid parental species) has been proposed to occur about 300,000 to 500,000 years ago, 
while an allohexaploid wheat (three different diploid parental species) was formed only about 10,000 
years ago [19]. Another domesticated plant, the Oilseed crop (Brassica napus L.) originated between 
around 6700 to 51,000 years ago by hybridization between two species, which were themselves pol-
yploids [20–23]. The consequences of the different types of hybridization, and thus WGD, are that 

Figure 1. The different types of duplications. (A) Whole genome duplication which implies complete
chromosome duplication. (B) Tandem duplications which produce identical adjacent sequences.
(C) Retroduplication, which produces a retrocopy of a gene devoid of introns and with a polyA
tail. (D) Transduplication in which a DNA transposon acquires fragments of genes. (E) Segmental
duplications which correspond to long stretches of duplicated sequences with high identity.

2.1.1. Whole Genome Duplication (WGD)

In the first mechanism, duplicated genes arise from the duplication of complete chromosomes,
which correspond to what is called whole genome duplication (WGD) (Figure 1A). In that case,
all chromosomes from a genome will be duplicated, leading each gene from the genome to exist in two
copies. This type of duplication has been well documented in plants and is defined as polyploidization,
for which it is possible to distinguish the mechanism of hybridization between different species
(allopolyploidization) or inside a given species (autopolyploidization) [15]. Different mechanisms
have been shown to produce this outcome such as polyspermy, non-reduced gametes or incomplete
mitosis during the early stage of embryo development [16]. Gene duplication, independently of
the mechanism of formation, is largely present in plant genomes since on average 64.5% of genes
have been recognized as duplicated in an analysis that considered 41 genomes and used the same
methodology to build gene families, with a range going from 45.5% in a moss to 84.4% in the apple
tree [17]. It is possible to estimate that several WGD events took place during the evolution of
plant species, the most ancient happening in the ancestor of all seed plants about 319 million years
ago and another more recent before the diversification of angiosperms 192 million years ago [18].
A large number of WGD are also consecutive to recent events. For example, the wheat group has
evolved through different complex hybridizations among species from the plant genera Aegilops and
Triticum followed by genome doubling. The most recent event giving birth to allotetraploid wheat
(two different diploid parental species) has been proposed to occur about 300,000 to 500,000 years
ago, while an allohexaploid wheat (three different diploid parental species) was formed only about
10,000 years ago [19]. Another domesticated plant, the Oilseed crop (Brassica napus L.) originated
between around 6700 to 51,000 years ago by hybridization between two species, which were themselves
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polyploids [20–23]. The consequences of the different types of hybridization, and thus WGD, are that
many plants arising from these processes have very large genomes. On the contrary, in other organisms,
there are still some debates concerning the occurrence of WGD versus several more local duplications.
This is the case in vertebrates in which the “2R hypothesis”, originally proposed by Susumu Ohno [1],
assumes the existence of two rounds of WGD in their early evolution. The “2R hypothesis” has been
the subject of numerous studies to prove this theory. This has led to numerous works published during
the last twenty years either in favor of the “2R hypothesis”, or in favor of only one round of WGD,
or rejecting any idea of WGD (see for a review [24]). The main reason explaining the difficulty to
determine whether two rounds of WGD happened or not very anciently comes from two phenomena
which could blur the signal. Both phenomena make it harder to detect ancient WGD either through the
loss of signal (fractionation) or increased complexity (diploidization). The fractionation is characterized
by a heavy loss of duplicated genes following WGD [25]. The diploidization refers to the chromosomal
rearrangements and segment loss often observed after WGD when the genome goes back to a diploid
state [26]. Indeed, a return to diploidization involves the transition to disomic inheritance as it has
been proposed in Salmonid species, for example [27]. In a recent work, 61 animal genomes were used
to reconstruct the gene order of the ancestral Amniota genome, to identify duplicated genes produced
by the 2R in this genome, and to reconstruct the timeline of events conducting a pre-vertebrate genome
going from 17 chromosomes to 54 after the occurrence of two successive WGD [28]. Although a lot of
arguments seem now to be more in favor of the “2R hypothesis”, the question is still not completely
resolved. Very recently, an investigation using phylogenetic approaches and tree topology comparisons
of gene families containing at least three members and located on several human chromosomes led to
the conclusion that small-scale duplication (SSD) events scattered on all the animal history were more
likely to be involved in vertebrate genome evolution rather than WGD [29].

2.1.2. Tandem Duplications

At smaller scales, local events called tandem duplication, create a novel copy of a gene next
to it producing tandemly arrayed genes (TAGs) (Figure 1B). The molecular mechanism involved
consists in unequal crossing overs, which can produce regions containing one or several genes,
depending on the position of the breakage on the chromosomes [30]. These unequal crossing overs are
either the result of homologous recombination between sequences (on homologous chromosomes or
on sister chromatids) or of non-homologous recombination by replication-dependent chromosome
breakages [31]. When multiple occurrences of unequal crossovers happen, it might lead to increasing
or decreasing copy numbers in gene families. The molecular mechanism allowing the recombination
depends on the sequences that promote the exchange between chromosomes or chromatids, which can
be long direct repeats (>100 bp) and short ones (>12 bp) [32]. When repeats are long, the tandem
duplication can arise via the homologous recombination whereas when they are short, duplication
arises by single-strand annealing, template switching, or non-homologous end joining. This type of
duplication leads to the formation of clusters of duplicated genes sometimes representing specific
gene families. For example, this mechanism has been shown to confer soybean resistance against cyst
nematode (Heterodera glycines) at Rhg1, a quantitative trait locus on chromosome 18, by changing the
copy number variation that increases the gene expression [33]. In maize, thousands of tandem gene
duplicates were identified that correspond to about 10% of the annotated genes [34]. Some of them
may contribute to a phenotypic variation such as the White Cap locus, which provided the possibility to
select white-grain color [35].

2.1.3. Duplications Via the Action of Transposable Elements

Duplicated sequences can also be formed by the action of transposable elements (TEs) according to
different ways. TEs are repeated sequences with the ability to move from one position to another along
and across chromosomes and which may represent a very large proportion in genomes, going from
about 3% in yeast to more than 80% in maize [36,37]. When they are mobilized, some of them can drag
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host sequences with them or can target the gene transcript, all of these having the consequence to
duplicate the host sequences. There are two mechanisms by which TEs can promote duplication of
complete genes or part of genes as a direct consequence of their transposition: The retroposition and
the transduplication (Figure 1C,D). The retroposition mechanism consists of the reverse transcription
of a messenger RNA from a host gene into a cDNA then inserted in another location of the genome by
the action of the enzymes of a retrotransposon [38]. Genes submitted to this mechanism are located
in the 3′ side of retrotransposons and benefit from a transcription read-through initiated inside the
TE [39,40]. This new gene, that is called a retrocopy, has particular features such as the presence
of a polyA tail in its 3′ end, the loss of introns, and the presence of target site duplication at both
extremities which are the signature of its insertion. Retrocopies have been discovered in different
organisms such as in mammals, and especially in the human genome where thousands of them have
been identified [41,42]. Although less numerous, retrocopies have also been identified in insects
such as in Drosophila melanogaster [43,44], or in the mosquito Anopheles gambiae [45]. Interestingly, it
has been observed a bias in the location in the genome of these retrocopieswhich move from the X
chromosome toward the autosomes in the insects [43,45]. In mammals, X chromosomes seem to have
generated and recruited more retrocopies than the other chromosomes [46]. This type of duplicated
gene is also found in plant genomes. For example, in the rice genome (Oryza sativa), between 491
and 1235 retrocopies were identified according to the methodology [47,48]. In Arabidopsis thaliana,
271 retrocopies were identified [48]. The other mechanism that involves TEs, the transduplication,
happens when DNA transposons incorporate unspliced fragments of different genes, although the
true mechanism is still unknown [49]. The gene fragments may still contain introns. First discovered
in maize, this mechanism has then been documented only in plants such as A. thaliana, Japanese
morning glory, soybean, and rice [49–54]. In rice especially, a particular type of DNA transposons
called Pack-MULE, which represent about 3000 insertions in the genome, has been shown to contain
sequence fragments derived from more than a thousand genes [54].

2.1.4. Segmental Duplications

At a larger scale, segmental duplications, also called “low copy repeats”, correspond to very long
stretches of duplicated sequences that can span between 1 to 200 kb and that share a sequence identity
higher than 95% (Figure 1E; [55]). They have been first observed in several eukaryotic organisms such
as the yeast [56] and humans [57]. These duplications are formed from the replicative transpositions
of small portions of chromosomes. However, the exact mechanism is unclear and the fact that these
duplications do not generate tandem repeats and that no short direct repeats at junction have been
found suggests that neither unequal crossing-overs nor double-stranded breakages followed by repair
are involved [55]. It has been proposed that in yeast, the segmental duplications could result from
replication accidents [58] and that most of these sequences present a certain level of instability that
can be rescued when translocation within another chromosome happens [59]. In Drosophila, high
enrichment in TEs at segmental duplication extremities have been observed, indicating their possible
implication in the duplication formation by homologous repair ends [60]. Similarly in mammals,
particular types of TEs were found to be enriched at the junction of segmental duplications [61,62].
In the human genome, the sequence divergence of the duplicated segments has been used to estimate
their evolutionary age which corresponds to the divergence between the New and Old World monkeys,
35 million years ago [63]. Segmental duplications account for an average of 13.7% of the total human
genome, located in pericentromeric and subtelomeric regions [64]. Moreover, some chromosomes seem
to be enriched in duplicated segments of this type such as the Y chromosome where they represent
50.4% of this chromosome [64]. In other mammals such as rat, mouse, or dog, this type of duplication
is less abundant [64]. The comparative analysis of several genomes of Lepidoptera species made it
possible to determine a large variation in the content of segmental duplications, going from 1.2% in the
silkworm (Bombyx mori) to 15.2% in the postman butterfly (Heliconius melpomene) [65].
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2.1.5. Differences among Duplication Types

Notable differences depending on the formation mechanisms in terms of function, expression,
evolutionary constraints, and protein interactions have been reported. For example, in yeast duplicated
genes issued from WGD are associated with different sets of functions when compared to duplicated
genes generated by SSDs [66,67]. This has also been shown in plants [68–72]. In Arabidopsis and rice,
for example, TAGs were found to be enriched with genes that encode membrane proteins and with
functions in “abiotic and biotic stress” when compared to other duplicated genes. TAGs were also
underrepresented in genes involved in transcription and DNA or RNA binding functions compared to
non-TAG duplicated genes [73]. More recently, Acharya et al. [74] reported a higher multifunctionality,
estimated by the number of GO and Pfam annotations, for WGD duplicated genes compared to SSD
genes in humans. They also observed a significantly higher proportion of essential genes among the
WGD genes relative to SSD genes.

It has also been observed that duplicated genes differ in divergence of expression according to the
mode of duplication. In Arabidopsis and in poplar, for example, WGD genes were found to display
a lower divergence of expression than other duplicated genes [71,75]. In a study deciphering more
deeply the different types of duplicated genes, Wang et al. [48] observed that in Arabidopsis and rice,
WGD genes and TAGs displayed a lower divergence of expression than proximal, retrotransposed
dispersed, and DNA based transposed duplicated genes.

In a recent study in Angiosperms, WGD duplicated genes were shown to be under stronger
constraints to diverge at the sequence and expression level relative to SSDs [76]. It has also been
observed that among WGD genes, those that are also involved in local duplications showed higher
non synonymous substitution rates (Ka) and selection rates (Ka/Ks) than nonlocally duplicated WGD
genes indicating that they evolve faster [77].

When considering protein-protein interactions (PPI) networks, it has been observed that the
fraction of shared PPI between paralogous genes was higher when the genes shared the same function
and showed a higher co-expression [78]. Among duplicated genes, WGD gene pairs displayed a higher
fraction of shared PPIs than other duplicated gene pairs [78]. Arsovski et al. [79] examined the density
of Arabidopsis DNaseI footprints, which are locations of protein binding sites, in the 1000 bp flanking
upstream and downstream sequences of duplicated genes. They found that WGD duplicated genes
had more footprints than TAGs. Moreover, WGD duplicated genes formed denser and more complex
regulatory networks than TAGs when genome-wide regulatory networks were analyzed.

In summary, mechanisms that can lead to the formation of duplicated genes are various. The fates
encountered by the new duplicated genes are also distinct and may depend on several factors.

2.2. Evolutionary Fates of Duplicated Genes

2.2.1. Pseudogenization and Neo-Functionalization

After their formation, duplicated genes can encounter various fates (for a complete review on
this matter, see [80]). The most likely is the pseudogenization or the complete loss of one copy since
only one gene copy will continue to be under purifying selective constraints for its current function,
leaving the other one free to accumulate deleterious mutations. These pseudogenes can be conserved
in the genome. For example, A. thaliana and the rice contain thousands of pseudogenes in their
genomes [81]. In humans, the olfactory receptor gene families have been shown to be composed of
between 60–70% pseudogenes whereas in dogs pseudogenes represent less than 20% in those gene
families, explaining the reduced sense of smell in humans [82,83]. Sometimes, however, the process of
mutation accumulation can drive to a completely different outcome. Different models of population
genetics have been proposed to highlight evolutionary mechanisms explaining the different fates of
duplicated genes allowing them to be maintained in organisms (for specific reviews on this subject,
see [84,85]). It has been proposed that three main steps are needed for duplicated genes to be
maintained: Phase 1 consists of the origin of a genetic change through mutation, phase 2 corresponds
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to the fixation period when the mutation segregates in the population, and phase 3 corresponds to
the preservation period where the duplication is conserved. Although infrequent, a mutation can
provide a new allele giving rise to a new function for the gene copy. If this function is advantageous,
it will be subjected to distinct selective constraints leading to its fixation in the population, in a process
called neo-functionalization. There are two models to explain this mechanism. The Dyhkhuzen-Hartl
model proposes that the mutations at the duplicated gene are fixed by drift and later, during a
change in the environment, the new gene will become advantageous for the organism [86], whereas
the “Adaptation model” proposes that an adaptive mutation is fixed at one of the duplicated locus
because it is immediately advantageous [85]. Various examples of neo-functionalization have been
described. The analysis of the copper transporter gene family, which contains the two genes Ctr1 and
Ctr2, suggested that the metazoan Ctr2 arose several hundred million years ago via a duplication
event of the Ctr1 genomic locus. The resulting Ctr2 then lost the ability to transport copper but
gained the ability to regulate Ctr1 cleavage [87]. In mammals, the family of retinoic acid receptors
(RARs), which play a role in the embryonic development, contains three duplicated genes, RARα, β,
and γ, with RARβ having kept the ancestral RAR role, while the two others have diverged both in
ligand-binding capacity and in expression patterns suggesting that neo-functionalization occurred at
both the expression and the functional levels for these genes [88]. A wide transcriptomic analysis in
maize made it possible to determine that 13% of all gene pairs generated by WGD have been submitted
to regulatory neo-functionalization in leaves [89]. The analysis of a gene family containing three
members in the D. melanogaster genome made it possible to show that the family was created by two
rounds of tandem gene duplication in the last five million years and that the two new duplicated
copies have diverged in function from the parental copy [90].

2.2.2. Sub-Functionalization and Functional Redundancy

Alternatively to the possibilities of pseudogenization and neo-functionalization, the duplicated
genes can be submitted to sub-functionalization. In this process, accumulation of mutations drives
the subdivision of the ancestral gene function among the duplicated genes. The complementarity
can come from a change in the regulatory sequences, leading the two copies to have different
expression patterns that will recapitulate the ancestral one when taken together, for example [91].
Several models have been proposed to explain this mechanism. In the first model called
duplication–degeneration–complementation (DDC) the two gene copies will acquire complementary
functions through independent mutations, which will lead to the need of the two copies to fulfill the
original function by drift rather than by selective constraints [91]. Another possibility is described
by the “gene sharing” model in which the acquisition of two expression domains could predate the
duplication, with each copy losing one of the two afterward [92,93]. A close model corresponds to
the “specialization” model [94] which proposes that an ancestral function is split among paralogs that
will be expressed in different tissues or developmental stages. These two last models predict that the
duplication will be followed by advantageous mutations in all duplicated genes with positive selection
patterns detectable in their sequences. Moreover, it is supposed that the ancestral gene is able to fulfill
the function of all duplicated genes but not so well. Numerous examples of sub-functionalization
have been identified in eukaryotes. For example, in mammals, the Agouti-melanocortin system is
represented by the Agouti protein (ASIP) and the Agouti-related protein (AgRP) whose expression
patterns with distinct physiologic functions were acquired through sub-functionalization such that the
current expression pattern and function of each protein correspond to a subset of the ancestral gene [95].
In tomato, two members of the gene family encoding phytochromes, which are light receptors playing
a role in plant development, exhibit both common and non-redundant functions suggesting that they
have sub-functionalized since their duplication [96]. Finally, it is also possible for the two copies of a
gene to be both maintained in the genome by dosage subfunctionalization, each expressing the ancestral
function, leading to a functional redundancy [97,98]. A model proposed to explain this possibility
stipulates that expression reduction could help the retention of duplicates and the conservation of
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their ancestral function [99]. Several cases have been identified such as, for example, two members
of the mammalian HOX gene complex, Hoxa3 and Hoxd3, implicated in the embryonic development,
that have been shown to display a similar function in mice [100]. In the yeast S. cerevisiae, duplicated
genes were shown to maintain functional redundancy for several million years [101].

2.2.3. The Fates of Duplicated Genes Depend on Different Factors

These different fates can be conditioned by the mechanism that led to the formation of the
duplicated genes. Indeed, it was suggested that tandem duplication could more often produce
duplicated genes having differential partitioning of regulatory sequences which implies that both
genes would be necessary to recapitulate the ancestral expression pattern [102]. In A. thaliana, it was
proposed that pseudogenes are more often derived from tandem duplications although this could be a
bias due to the higher proportion of this type of mechanism compared to others in this organism [70].
The fate of retrocopies is often to become pseudogenes because of the lack of regulatory sequences [38].
However, it is sometimes possible for retrocopies to recruit other regulatory sequences allowing them
to develop a new function. The structure of these retrogenes is usually chimeric with coding or
regulatory features not present in the original genes [43,103–106]. Moreover, it has been observed
in mammals that retrocopies located on the same chromosome than their parental gene have more
chance to remain active indicating a role for the genomic context to maintain their expression [107].
In plants, a positive correlation has been observed between the size of gene family and the number of
pseudogenes, with large families being more subjected to gene loss [81]. However, the gene function
is also an important factor in the fate of duplicated genes. Indeed, in A. thaliana, pseudogenes tend
to have functional counterparts in disease resistance, specialized metabolism cell wall modification,
and protein degradation, whereas transcription factor and receptor-like kinase gene families are devoid
of pseudogenes [70,81]. Other factors may also influence the fate of duplicated genes such as the
number of protein interactions [76,108] as well as particular structural features [109]. According to the
organisms, the outcome and formation mechanism of duplicated genes can also be different. In human
and mouse, for example, the relative contributions of two types of duplication mechanisms made it
possible to show that tandem duplications contributed more to duplications in the entire genome than
retroposition, except for the two-copy gene families, and generated duplicated genes with more chance
to be retained [110]. At another scale in primates, recent duplicated genes originated more often from
segmental duplication than in other mammals in which the main mechanism to generate them rather
corresponds to tandem duplication [111]. WGD in humans was proposed to have generated duplicated
genes functionally more divergent but with a higher proportion of essential genes, which is the opposite
trend to what was observed in yeast [74]. In Drosophila, young duplicated genes were shown to be
preferentially subjected to neo-functionalization, implying the retention of almost two-thirds of these
duplicated genes [112]. In plants, where most duplicated genes are derived from WGD and tandem
duplication, a functional bias can be observed in genes according to their mechanism of formation [70].
Thus, genes involved in responses to environmental stimuli and upregulated in stress conditions are
rather generated by tandem duplication, which implies that this mechanism is important for adaptive
evolution in changing environments. Recently, a model was proposed to explain the gene retention
after WGD in Paramecium species by dosage constraints, i.e., the majority of duplicated genes keep
their ancestral function and are retained to produce the requested amount of proteins to perform this
ancestral function [98].

In the next section, we will present in detail some of the current bioinformatic methodologies
available to identify and analyze duplication in genomes with the goal to emphasize their advantages
and weaknesses according to the situation.

3. Bioinformatic Approaches to Identify Duplications in Genomes

The identification of duplication within or between genomes is a complex process. Many algorithms
have been developed for this purpose and different approaches can be used that have different aims
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and computation costs. Moreover, some of them are more suitable to search for a particular duplication
event, are more optimized for large genomes, can deal with multiple genomes, or can handle genomes
that have undergone multiple duplication and rearrangement events. In addition, there may be
difficulties in the installation, the configuration, the launch, and the parsing of the results. This means
for the user that programming skills may be required to use some of these softwares. There are also
variations in the input data and the pre-processing requirements, the computing time or the associated
visualizations, all of this making the choice of a tool not easy. Moreover, these tools do not all identify
the same type of duplication and may therefore, be more or less adapted according to the biological
question investigated. In summary, there is no stand-alone software that can solve all these problems
and the choice of the tool will depend on computer skills but also on the genomes being compared and
the biological questions being asked. In the following sections, we will present the different types of
algorithms highlighting their specificities, advantages and weaknesses, with a focus on some tools that
will be presented in more detail.

3.1. Paralog Detection

As said before, homologs are genes that share a common ancestry and are divided between
orthologs (derived by speciation) and paralogs (derived by duplication). Based on this definition,
the search for duplicated genes can be done through the identification of paralogous relationships.
Therefore, it can be conducted by either identifying homologous genes in a given genome, which by
definition can only be paralogous, or between multiple genomes before distinguishing orthologs from
paralogs. Several approaches exist to this aim that we will present below.

3.1.1. Homology Assessment

Homology, even if defined by a few words, is a challenging concept to be detected through
bioinformatic tools (for a broad overview, see [13,113]). The only material given to us to infer common
ancestry that may have started millions of years ago is the sequences of contemporary organisms.
A notable exception to this limit came with the rise of paleogenomics which aims at sequencing
genomes of extinct species through preserved elements such as ancient seeds or fossilized body
parts [114]. However, even if paleogenomics provides useful information, the amount of material is
scarce compared to the number of contemporary species. Two methods are typically used to assess the
homology between genes: The sequence similarity and the gene structure. Both methods rely on the
idea that common ancestry (i.e., homology) is the most likely explanation when two genes share a
strong similarity and/or structure. The limitations of these methods account for the aforementioned
problem of inferring history through present traces: Divergence becomes difficult to detect when the
distance between species increases. Hence, when two genes share sequence similarity or structure, it is
a strong indication of homology, but when two genes do not share those, it hardly says anything about
their homology.

The sequence similarity can be tested with a sequence alignment algorithm. The most popular ones
such as BLAST [115], Psi-BLAST [116], and HMMER3 [117] are heuristic methods. Thus, they might
not give the best results, but they drastically save computational time compared to a classical method
such as the Smith and Waterman algorithm [118] even though some implementations have tried to
make it faster as PARALIGN [119] or SWIMM [120]. In the case of homology, the alignment is generally
performed on protein sequence instead of the gene. This allows a greater sensitivity since amino
acid substitutions occur less frequently than nucleotide substitutions allowing silent mutations and
because introns generate a lot of noise [121]. With these methods, the homology is tested against
a cutoff on three different metrics: E-value, bit-score, or percent identity. The e-value is a statistic
representing the expected number of times a given alignment score would occur by chance given the
length and number of sequences being aligned. It is the most widely used metric as a first step to assess
homology. Since the e-value is dependent on the database size, a potential caveat when setting a cutoff

is to apprehend how the results might change for different databases. The bit-score is another metric
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measuring the sequence similarity given the raw score and the score system used but independent
of the length or the number of sequences being aligned. The bit-score might be preferred in the case
of a comparison between alignments since it relies only on the two sequences being aligned. Finally,
percent identity is a straightforward metric giving how many amino acids are identical in the local
alignment. When assessing homology on a genome-wide scale, the difficulty resides in setting the right
cutoff for these metrics. For instance, to capture duplicates that diverged in function, the threshold
needs to be relaxed, but with the risk of increasing the number of false positives. Based on empirical
results, a 30% identity is generally accepted as a significant cutoff for protein homology [122]. However,
countless identified homologs have an identity percentage lower than 30%. The same problem arises
when using only e-value or bit-score. To allow better identification, more complex similarity-based
metrics were developed. For example, Rost [123] proposed a formula based on the homology-derived
secondary structure of proteins (HSSP) curve defined by Sander and Schneider [122] and considering
the number L of aligned residues between two proteins to define a curve to separate true and false
positives. Two proteins are then considered homologous if the proportion p of identical residues over
L aligned residues is higher than the cutoff point defined by the formula. Li et al. [124] proposed a
rewording of Rost’s formula to define different sets of duplicated genes with different stringencies in
human. Since a gold standard cutoff is impossible to determine, a variety of values are used, sometimes
combining different metrics leading to different results (Table 1).
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Table 1. Estimation of the amount of duplicated genes in different species.

Species No. of Considered
Genes

No. of Estimated
Duplicated Genes

% Estimated
Duplicated Genes Methodology Duplicated Gene Types References

Arabidopsis
thaliana

25,557 11,937 46.7
All-against-all nucleotide sequence similarity searches using BLASTN

among the transcribed sequences. Sequences aligned over >300 bp
and showing at least 40% identity were defined as pairs of paralogs.

Not specified, all
paralogous pairs were

searched
[125]

27,558 12,761 46.3 *

All-against-all protein sequence similarity search using BLASTP
(e-value cutoff of e-10). Sequences alignable over a length of 150

amino acids with an identity of 30% were defined as paralogs. Gene
families were built through single-linkage clustering.

Not specified, genes
families were obtained [69]

25,972 10,483–17,406 40.4–67

All-against-all protein sequence similarity search using BLASTP
(e-value cutoff of 1.0). For each pair of genes, blast-hits were merged
to compute the total length and the global similarity of the aligned

regions. Two datasets were constructed with respectively 30 and 50%
sequence identity over respectively 70 and 90% protein length. Gene

families were built through single-linkage clustering.

Not specified, genes
families were all obtained

(gene families)
[73]

22,810 21,622 94.8 *

All-against-all protein sequence similarity search using BLASTP (top
five non-self protein matches with e-value of 10e-10 were considered).

Genes without hits that met a threshold of e-value 10e-10 were
deemed singletons. Pairs of WGD duplicates were downloaded from
published lists. Single gene duplications were derived by excluding
pairs of WGD duplicates from the population of gene duplications.

Tandem duplications were defined as being adjacent to each other on
the same chromosome. Proximal duplications were defined as

non-tandem genes on the same chromosome with no more than 20
annotated genes between each other. Single gene

transposed-duplications were searched for from the remaining single
gene duplications using syntenic blocks within and between 10

species to determine the ancestral locus. If the parental copy had more
than two exons and the transposed copy was intronless, the pair of

duplicates was classified as coming from a retrotransposition. Other
cases of single gene-transposed duplications were classified as DNA

based transpositions. Dispersed duplications corresponded to the
remaining duplications not classified as WGD, tandem, proximal, or

transposed duplications.

WGD, tandem, proximal,
DNA based transposed,

retrotransposed, and
dispersed duplications

[48]
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Table 1. Cont.

Species No. of Considered
Genes

No. of Estimated
Duplicated Genes

% Estimated
Duplicated Genes Methodology Duplicated Gene Types References

Homo sapiens
(human)

33,869–>19,727 12,981 65.8

All-against-all protein sequence similarity search using BLASTP with
the BLOSUM62 matrix and the SEG filter [126], TribeMCL with the
default parameters. Tandem duplications were then searched for

among families.

Gene families (tandem
duplications searched

among families)
[127]

13,298 11,386 85–97 All-against-all protein sequence similarity search using BLASTP with
cutoff expectation <2 and <10-e3.

Not specified, distant
duplicates [128]

31,126 14,473 46.5 * Ensembl family database and genes >300 nt. Tandem duplications
were then searched for among families.

Gene families (tandem
duplications searched for

among families)
[129]

20,415 15,569 76.3 Pooling of different datasets from [130] and all-against-all protein
sequence similarity search using BLASTP. WGD and SSD [131]

22,447 11,740 52.3 * Ensembl version 77, >50% sequence identity, and high confidence for
paralogy. WGD and SSD [74]

Mus
musculus
(mouse)

21,305 14,043 65.9

All-against-all protein sequence similarity search using BLASTP with
the BLOSUM62 matrix and the SEG filter [126], TribeMCL with the
default parameters. Tandem duplications were then searched for

among families.

Gene families (tandem
duplications searched for

among families)
[127]

27,736 16,091 58.01 Ensembl family database and genes >300 nt. Tandem duplications
were then searched for among families.

Gene families (tandem
duplications were

searched for among
families)

[129]
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Table 1. Cont.

Species No. of Considered
Genes

No. of Estimated
Duplicated Genes

% Estimated
Duplicated Genes Methodology Duplicated Gene Types References

Rattus
norvegicus

(rat)

18,468 12,466 67.5
All-against-all protein sequence similarity search using BLASTP with

the BLOSUM62 matrix and the SEG filter [126], TribeMCL with the
default parameters. Tandem duplications were then searched for.

Gene families (tandem
duplications searched for

among families)
[127]

27,194 16,446 60.48 * Ensembl family database and genes >300 nt. Tandem duplications
were then searched for among families.

Gene families (tandem
duplications searched for

among families)
[129]

Oryza sativa
(rice)

18,562 9149 49.3

All-against-all nucleotide sequence similarity searches using BLASTN
were done among the transcribed sequences. Sequences aligned over

>300 bp and showing at least 40% identity were defined as pairs
of paralogs.

Not specified, all
paralogous pairs were

searched
[125]

42,534 8244–19,322 19.4–45.4

All-against-all protein sequence similarity search using BLASTP
(e-value cutoff of 1.0). For each pair of genes, blast-hits were merged
to compute the total length and the global similarity of the aligned

regions. Two datasets were constructed with respectively 30 and 50%
sequence identity over respectively 70 and 90% protein length. Gene

families were built through single-linkage clustering.

Not specified, genes
families were all obtained

(gene families)
[73]

27,910 21,461 76.9 *

All-against-all protein sequence similarity search using BLASTP (top
five non-self protein matches with e-value of 10e-10 were considered).

Genes without hits that met a threshold of e-value 10e-10 were
deemed singletons. Pairs of WGD duplicates were downloaded from
published lists. Single gene duplications were derived by excluding
pairs of WGD duplicates from the population of gene duplications.

Tandem duplications were defined as being adjacent to each other on
the same chromosome. Proximal duplications were defined as

non-tandem genes on the same chromosome with no more than 20
annotated genes between each other. Single gene

transposed-duplications were searched for from the remaining single
gene duplications using syntenic blocks within and between 10

species to determine the ancestral locus. If the parental copy had more
than two exons and the transposed copy was intronless, the pair of

duplicates was classified as coming from a retrotransposition. Other
cases of single gene-transposed duplications were classified as DNA

based transpositions. Dispersed duplications corresponded to the
remaining duplications not classified as WGD, tandem, proximal,

or transposed duplications.

WGD, tandem, proximal,
DNA based transposed,

retrotransposed, and
dispersed duplications

[48]

* These values have been calculated according to the information provided in the corresponding reference article.
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When not working on a genome-scale but on specific sequences, homology imputation can be
reinforced by looking at the gene structure. Domains shared by proteins are strong indicators of
homology. Conserved domains can be found in databases such as Pfam [132] or InterPro [133] and
searched against sequences of interest. This method is also a great tool to unravel complex evolution such
as gene splitting and fusion for multi-domain proteins but require a time consuming manual expertise.

When searching for duplicated genes within a genome, assessing homology inside this genome is
enough. However, when comparing multiple genomes, a link needs to be made between homologs of
the different genomes. This raises the issue of resolving ortholog and paralog relationships. For this,
a different kind of method needs to be applied. At first, methods to identify orthologous genes were
only constructing orthologous groups because they focused on one-to-one ortholog relationships across
multiple species. However, with the addition of one-to-many and many-to-many relationships, paralogs
were included. Therefore, it could be argued that these methods are eligible to detect duplicated genes
across multiple genomes. They are generally split into two categories: The graph-based methods and
the tree-based methods [14,134]. Generally, graph-based methods construct a homology graph then
build clusters of genes based on the types of inferred relationships. On the contrary, tree-based methods
identify clusters of genes before constructing a tree along which the types of relationships are inferred.

3.1.2. Multispecies Graph-Based Methods

In graph-based methods, each gene is a vertex and a homology relationship is depicted by an
edge. These edges are first drawn by assessing sequence similarity in the various forms described
before. At this step, edges only correspond to potential homology relationships which can be orthology,
paralogy, or noise. The noise can be removed by the clustering step. Depending on the clustering
method, some paralogous relationships can also be removed. It is important to note that for the
resolution of ortholog and paralog relationships, all these methods consider that for a given speciation
event, in-paralogs are less diverged than orthologs that are less diverged than out-paralogs.

One of the first proposed clustering methods was the identification of triangle patterns inside a
graph where at least three genomes are used [135]. It relies on the idea that two similar genes from
two genomes, which are also similar to a third gene from another genome are highly susceptible to be
orthologs. Then, triangles sharing similar edges are added to the same group until no other can be
added. These groups, called clusters of orthologous groups (COGs) can therefore contain paralogs.
However, the nature of the paralogs included in a group is hard to control. Hence, another way to
detect paralogs based on graph exploration was proposed with InParanoid [136]. Here, two genes from
different species with a best reciprocal hit are defined as orthologs and will be used as a seed for the
group. Any gene having a better score with the seed gene of the same species than with the seed
gene from the other species is included inside the group as an in-paralog relative to the speciation
event. Thus, only in-paralogs in regard to the speciation event considered should be added, allowing a
better control over the group formation. The method Hieranoid expanded this idea with the use of a
guiding species tree for a better scalability when using many species [137]. The algorithm enlarges
groups by exploring the guiding tree. It first runs InParanoid between two closely related species.
Then, it creates a pseudo-species where each identified homologous group is represented by either a
consensus sequence or a Hidden Markovian Model profile, depending on the number of sequences.
InParanoid is then used again between the pseudo-species and the next closest neighbor. The process is
repeated until all species are included in the analysis. By keeping track of groups formed at each step,
it is possible to identify the speciation event encompassing any in-paralog pairs. Acting as a synthesis
between InParanoid and COGs, both eggNOG [138] and OrthoDB [139] start by identifying groups of
in-paralogs for each species then link them between species using triangulation.

Considering that the InParanoid method was reliable to detect “ancient” paralogs but not “recent”
ones, Li et al. added steps and proposed another method, OrthoMCL [140]. It begins by the same
ortholog seed approach but with the constraint that in-paralogs must have a better score with the
seed genes from their respective species than with any other sequences from any species. In addition,
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a Markovian Cluster algorithm is run to simulate a random walk on the graph with each edge
having a transition probability depending on the similarity score. This makes it possible to identify
robust subgraphs and notably separate diverged paralogs. Using also a similar approach than
InParanoid, the method OrthoInspector starts by constructing species-wise in-paralogous groups. Inside
a species, an in-paralogous group is inferred for each protein [141]. Inside a species, a group of
potential in-paralogs is inferred for each protein. When two proteins are potential in-paralogs, only
the intersection of their respective potential groups is conserved as the final in-paralogous group.
Therefore, if we have three proteins A, B, and C, they will belong to the definitive in-paralogous group
(A, B, C) if and only if all three potential in-paralogous groups constructed for each protein give (A,
B, C). This stringent method creates groups of lowly diverged in-paralogs. In-paralogous groups or
single proteins are then grouped between species based on best-reciprocal hits.

Finally, two other methods add an interesting consideration regarding homologs. Aiming to
tackle a well-known problem of sequence alignment, OrthoFinder [142] allows a reliable incorporation
of short sequences. Indeed, alignment score is correlated with the sequence length, which is a
problem for short sequences giving high scores even when not related. OrthoFinder proposes a
normalization of the alignment score after a grouping according to the sequence lengths into equally
sized bins. This normalization makes the score for short and really long sequences less dependent
on the sequence size. Another interesting method, OMA [143], proposes to detect falsely imputed
orthology inferences due to paralogs with differential gene loss. The detection is performed by using a
third species containing both paralogs which acts as an evidence of non-orthology. OMA is also more
permissive in the grouping of paralogs because it takes into account that paralogs may evolve faster
than orthologs [144].

When studying genes, especially across species, representing their evolutionary relationships as a
tree is easier to analyze. However, constructing such a tree is done at the cost of computational time.
In addition, different strategies can be adopted for the tree reconstruction.

3.1.3. Multispecies Tree-Based Methods

In tree-based methods, homology is assessed according to the various forms described before,
then groups of homologs are constructed across species. Genes from these groups are aligned to build
gene trees. Paralog and ortholog relationships are then resolved by the reconciliation of the gene trees
and the associated species tree. Therefore, in these methods, the detection of duplicated genes is only
performed at the first step. The tree construction only influences the evolutionary history used to
explain the appearance of such duplications.

In regards to the homolog grouping strategy, tree-based methods are generally more inclusive
than graph-based methods. Indeed, after the group construction, they use all the sequences from all the
species to infer paralog and ortholog relationships. Therefore, they can extract more information and
are less restricted by false homology prediction and thus are able to capture more diverged homologs.
Most of them construct homologous groups by clustering all genes that have a significant alignment
score, defined differently according to the method used such as TreeFam [145], BranchClust [146],
HOGENOM [147], or PhylomeDB [148]. Some tree-based methods use pre-processed homologous
groups and are only used to reconcile the gene and species trees such as Orthostrapper [149],
Softparsmap [150], or LOFT [151]. Therefore, graph-based methods can be used as an entry-point to
combine the power of both methods.

When reconciling the gene and species trees, all these methods use the Maximum Parsimony
principle [152]. This is translated by minimizing the number of duplication events, which are assumed
to be rare events. A notable exception is PrIME-GSR [153] that tries to take into account the duplication
and loss of genes through a probabilistic model. Apart from this exception, tree-based methods differ
according to the type of species tree they accept, how they root the gene trees, and how tree uncertainty
is assessed. Since it does not affect duplication detection, they are not as thoroughly explored as the
graph-based method (for a complete review, see [14]).
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3.2. Detection of Syntenic Blocks (WGD-Segmental Duplications)

A syntenic block can be defined as a region of the genome spanning a number of genes that are
orthologous and co-arranged compared to another genome [154]. Two regions of a genome with a
number of homologous genes co-arranged with each other can also be defined as a syntenic block.
Here, we focus on this second definition because pairs of homologous genes between these pairs of
regions correspond to duplicated genes.

It can be interesting to access different databases storing pre-calculated syntenic blocks shared
between different species. This makes it possible for an easy and direct access to reliable information
without any computation. Nevertheless, these databases cannot include every contemporary species
nor information about recently released genomes. This implies that depending on the organism being
studied it can be necessary to manually identify syntenic blocks using different tools. To accurately detect
homologous chromosomal segments within a genome or between different ones, many approaches
and tools are available. The choice of the tool depends on various parameters.

A first important parameter is the degree of preservation of duplicates in the compared genomes.
This will influence the level at which the study should be conducted, and thus will impact the choice
of the tool since each of them works at a particular level. For closely related genomes, synteny can
be studied at the DNA level using tools such as Satsuma [155] or SyMap 3.4 [156]. In the case of
more distant genomes, the DNA level cannot be used because the sequences will be too divergent.
A solution is to perform analysis at the protein level because coding genes may retain for a longer time
enough amino-acid sequence similarity and a similar relative order along chromosomes. Tools such as
MCScanX [157], i-ADHoRe [158], CYNTENATOR [159], or SynChro [160] search for syntenic blocks using
protein sequences and can therefore be adapted to this type of genome comparison. Finally, in the case
of more distant genomes, it is more appealing to use tools based on analyses at the protein level and on
the construction of profiles, graphs, or statistical models to help manage the evolutionary distance.

Four types of approaches can be applied to search for syntenic blocks. The first one is based
on the construction of a sparse matrix of homologous genes. The matrix is investigated to look
for dense diagonals which correspond to the syntenic blocks. Tools such as i-ADHoRe 3.0 [158],
DiagHunter [161], FISH [162], SyMAP [163], or Cinteny [164] implement this type of approach. The second
approach corresponds to different greedy algorithms that will be optimized by dynamic programming
at the benefit of computational costs. This type of algorithm operates by constructing chains of
collinear gene pairs, called anchoring genes. It is implemented in tools such as DAGchainer [165],
MCScanX [157], or LineUp [166]. An important sub-category of this approach consists of algorithms
based on aligning sequences using a modified Smith-Waterman algorithm as in ColinearScan [167]
or CYNTENATOR [159]. To continue, the graph approach aims at building graphs allowing the
identification of the syntenic blocks. To do this, local collinear alignments are constructed between
the input genomes. By combining the local alignments with the blocks, a graph can be constructed
which allows, after different analyses, the reconstruction of the syntenic blocks. This approach can
be found in tools such as DRIMM-Synteny [168] or Enredo [169]. Finally, another approach aims at
inferring syntenic blocks based on genomic rearrangements. This type of approach can be useful in the
reconstruction of ancestral genomes and has been implemented in different tools such as GASTS [170] or
PMAG++ [171,172]. This approach is not covered in the present review but has already been discussed
in another recent review article [173].

All these tools are able to answer different questions and their use depends on the number of
studied genomes as well as the level of divergence among them. Most of them have many critical
parameters, sometimes with important pre-processing requirements, which need to be mastered
before obtaining reliable results. Most of the tools are presented in a comprehensive format in Table 2.
Therefore, the purpose of this section is to examine in detail a representative sample of tools illustrative
of each approach.
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Table 2. Summary of the characteristics of different existing tools for identifying syntenic blocks.

Name Input Output Text Output Plots Main Algorithm Specificities Other Information Documentation Programming
Language Interface References

Gene
Orientation

Genome
Number

i-ADHoRe 3.0

BLASTP output or
gene families and

list of genes in a gff
like format

Tabulated text Graphical
visualization Custom Greedy Graph

Typical implementation
of the collinearity

strategy
Yes N Complete

C++
Wrapper in

Python

Command line
interface [158]

MCScanX-
Tranposed

BLASTP output and
a list of genes on

chromosomes
Tabulated text Graphical

visualization DAGChainer equivalent

Able to detect
transposed gene

duplications, detection
of the type of duplicates

No N Incomplete
and with errors C++

Command line
interface [157]

PhylDiag Species gene list and
gene tree Tabulated text Graphical

visualization DAGChainer equivalent

Uses gene trees to define
gene homologies. Takes

into account gene
orientations, and

tandem duplication
blocks

Yes 2 Complete Python Command line
interface [174]

SynChro

List of
protein-coding
genes and their

associated
amino-acid
sequences

Text files
containing
homology

relationships
(RBH and

non-RBH) and
syntenic blocks

description

Chromosomal
painting

representation,
genome-wide

dotplot

Computes Reciprocal
Best-Hits (RBH) to

reconstruct the
backbones of the

synteny blocks and
complete with non-RBH

syntenic homologs

Only one parameter: the
synteny block

stringency. Use
OPSCAN instead of

BLAST due to its
optimization to detect

RBH

only in
visualizations N Complete Python, bash Command line

interface [160]

Satsuma Nucleic sequences Tabulated text
Multiple

interactive
plots

Cross-correlation,
implemented as a fast

Fourier transform

Based on a search
strategy at a global level
and cross-correlation at

the local level

Yes 2 Short C++, on linux Command line
interface [155]

DAGchainer
Homologous genes

and associated
E-value

Tabulated text Dot plot

Identification of chains
of ordered gene pairs by

searching paths in
directed acyclic graph

Use of dynamic
programming making it
fast and highly reliable.

Many softwares are
based on this algorithm

No 2 Short C++, Perl

Command line
interface,

Graphical user
interface

[165]

ColinearScan

Any type of genetic
markers (physical or

genetic distance
between markers,

gene numbers)

Tabulated text
with syntenic

blocks and
associated

p-value

None

Dynamic programming
algorithm based on the

Smith-Waterman
algorithm

Statistical inference,
high computational

efficiency, and flexibility
of input data types

No 2 Not available C++, Perl Command line
interface [167]

CYNTENATOR
Sequences or

alignments and an
annotation file

Text file
gathering

alignments
None

Profile-profile alignment
setting, which is an

extension of the
Waterman-Eggert

algorithm

Implementing a
phylogenetic scoring

function
- N Complete C++

Command line
interface [159]
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Table 2. Cont.

Name Input Output Text Output Plots Main Algorithm Specificities Other Information Documentation Programming
Language Interface References

FISH

List of the linear
order and

orientation of
features on each

contig andlist of the
pairwise homologies

between features

Text file results Dot Plot

Dynamic programming
algorithm based on the

Smith-Waterman
algorithm

Modeling of the
probability of observing
segmental homologies

assumed by chance and
taking this model into

account to parameterize
the algorithm and the

statistical evaluation of
its output

Yes 2 Not available C++
Command line

interface [162]

DRIMM-Synteny

Set of anchors (e.g.,
local alignments or

pairs of similar
genes)

Text file where
each genome is
represented as a

shuffled
sequence of the
syntenic blocks

Dot Plot Construction of
A-Bruijn graph

Graph-based algorithm
allowing to identify

non-overlapping
syntenic blocks

No N Not available C# Command line
interface [168]

DiagHunter BLAST output

Two text files
containing gene

names and/or
coordinates

Dot Plot Homology matrix based
algorithm

Typical implementation
of the colinearity

strategy. Identifies
large-scale syntenic
blocks despite high

levels of background
noise

No 2 Short

Perl, and
requires the
BioPerl and

GD.pm
modules

Command line
interface [161]

OSfinder
Genomic locations

of anchor or BLASTP
results

Genomic
locations of
chains and

orthologous
segments

Dot Plot and a
synteny map

Machine Learning and
Markov Chains

Use Markov chain
models and machine
learning techniques.

Automatically optimizes
the parameters used in

the Markov chain
models. Scoring scheme

based on stochastic
models

Yes N Complete C++
Command line

interface [175]

SyMap

Genome sequences
in FASTA format

and associated GFF
files

Homologous
genes, diagonals,

and identified
syntenic blocks.

Visualization
available and

interactive
DAGChainer

Interactive
visualizations.

Calculates synonymous
and nonsynonymous

mutation rates for
syntenic gene pairs
using CodeML of the

PAML package

No N Complete No
requirements

Web user
interface [163]
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Table 2. Cont.

Name Input Output Text Output Plots Main Algorithm Specificities Other Information Documentation Programming
Language Interface References

Cinteny
Information about
markers and the

homologous groups.
Tabulated text

Three
interactive

visualizations
Whole Genome

Synteny,
Chromosome
Level Synteny,

Synteny
Around a

Marker

Ternary search trees
(TST)

On-the-fly computations
allowing fast

parameters adjustments
Yes N Complete No

requirements
Web user
interface [164]

MultiSyn

Protein sequences in
FASTA format and
genome annotation

in BED

Output files
from MCScanX

Multiple
synteny plots MCScanX

Efficient tool for
non-programming

skilled users.
Precomputed data for 18

plant genomes

No N Not available No
requirement

Web user
interface [176]

OrthoCluster

Genome file and a
file storing

orthologous
relationships among

genes in all input
genomes

Cluster file, with
all the syntenic
blocks detected,

Stat file with
information

related to the
size distribution
of the syntenic

blocks

One associated
plot

Depth-first search
method, can also use

Cinteny or SyMap

Fast and easy to use.
Can be applied using

any types of markers as
an input as long as their

relationships can be
established

Yes N Complete C++

Web user
interface,

Command
Line

[177]

N: Theoretically arbitrary number of studied genomes.
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3.2.1. Approaches Based on the Construction of Homologous Gene Matrices

These approaches correspond to tools based on the search for syntenies using clustering of
neighboring matching gene pairs. The basic concept is to consider the homology in or between
genomes as a sparse matrix. In summary, homologous gene pairs are considered as 1, other cases are
encoded as 0. The goal is to detect syntenic regions by searching for dense diagonals of 1 in the matrix.
Tandem duplication can also be accounted for by detecting horizontal or vertical lines of 1.

The main advantage of this approach is that it is designed around a formal definition of the
syntenic blocks. Moreover, statistical validation can be performed on putative syntenic blocks to filter
out false positives. However, several weaknesses exist for this approach. To begin with, the important
impact of the parameters requires a good knowledge of the biological question asked. With this type
of approach different parameters are critical and need to be finely tuned. An example being the size of
the gap allowed between genes considered as belonging to the same block. This parameter can deeply
affect the results, and needs to be configured according to the specificity of the study. The size of the
gap depends mainly on the density of the matrix, i.e., the density of the pairs of homologous genes
between the segments constituting the matrix. On one hand, a small gap value results in many small
syntenic blocks that are more difficult to analyze. On the other hand, a high gap value produces long
blocks that are easier to analyze but allow for more false positives. Moreover, the metrics used to
estimate the distance between genes in a matrix are also an important setting. Two types of metrics
are often proposed: The Diagonal Pseudo Distance (used by i-ADHoRe and DiagHunter), and the
Manhattan Distance (used by FISH, SynMAP, or Cinteny). The Diagonal Pseudo Distance promotes
genes near the diagonal axis and therefore, the distance inflates rapidly the further away genes are from
this diagonal. In contrast, the Manhattan Distance tends to give smaller distances between aligned
genes on the vertical or horizontal axis. Other types of distances have been implemented in tools such
as PhylDiag [174] that uses the Euclidean Distance or the Chebyshev Distance in addition to the others
mentioned above. Thus, the choice of the distance is not easy and will impact the results as surely
as a wrongly set gap value. A benchmark analysis suggested that the Manhattan Distance gives the
best results among these four distances [174]. The importance of the configuration is really to be taken
into account when using this approach in an optimal way and makes these algorithms difficult to use
without a minimum of expertise on both the tool and the biological question. Moreover, statistical tests
to evaluate homologous regions are based on the assumption that the rate of gene loss is balanced
between homologous regions. This is not the case for many species. Furthermore, some differences
in terms of genome structure, especially the gene density and repetition in chromosomal regions,
both locally and at the genome level, are difficult to account for with this approach. Finally, matrices
can only compare genomes by pair, which implies that benefits of comparing multiple genomes at
once, including WGD studies or diverged synteny blocks, cannot be done. Moreover, this approach
cannot resolve multiple relationships between genes, detect inversions, nor non-overlapping syntenic
blocks. To finish, not all of these implementations can detect tandem duplication. In the already cited
tools, only i-ADHoRe and FISH can handle them. We will present these tools in more detail below.

i-ADHoRe (Iterative Automatic Detection of Homologous Regions) 3.0

i-ADHoRe [158] is one of the most used programs to find syntenic blocks and can be considered as
a state-of-the-art algorithm. In its latest version, i-ADHoRe enables the detection of genomic homology
through the identification of gene collinearity. This version is well optimized to handle a large number
of genomes, taking advantage of parallel computing.

The algorithm begins by assimilating tandem duplicated genes as a single representative. Then,
for each pair of genes, a sparse gene homology matrix is constructed. In this matrix, homologous
genes are considered as dots, making collinearity zones seen as dense diagonals. Gene clusters with
at least three homologous gene pairs are included in diagonals after a statistical validation taking
into account the overall background density of the matrix. In the case of multiple clusters found, a
correction for multiple testing is performed using the Bonferroni or False Discovery Rate (FDR) method.
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This part corresponds to the traditional homology matrix approach. The next part of the algorithm is
an optimization by dynamic programming.

Significant collinear regions found during this initial detection are aligned using the progressive
Needleman–Wunsch (pNW) algorithm or a greedy graph-based algorithm [178]. The results of this
alignment are stored into a profile, which contains the combined content of the two collinear regions
and constitutes a more sensitive probe to find new homologous regions including more degenerated
ones. Using this newly constructed profile, a search is performed in an iterative way. Thus, this profile
is used to search for new sequences that can be aligned with it. If possible, the new matches are added
to the profile. As long as new collinear regions can be added to a profile, these two steps are repeated.

The results are provided as text files and two associated plots: A dot plot and a set of graphs
representing each final aligned profile.

This tool has many key parameters that directly influence the quality of the results:

• prob_cutoff, is used to store the maximum probability for a cluster to be generated by chance. The
default value is 0.001.

• gap_size, indicating the maximum distance between genes in a cluster. The default value is 15.
• cluster_gap, indicating the maximum distance between individual base clusters in a cluster.

The default value is 20.
• q_value, storing the minimum r2-value which measures the quality of the linear

regression prediction.
• anchor_points, the minimum number of anchor points which is comprised between 3 and 6.

The main advantage of this tool is to allow the computation of multiple genomes thanks to different
optimizations including the use of parallel computation, an efficient statistical model to estimate
p-values of diagonals before including them, the use of greedy graph-based alignment algorithms,
and the use of ordered gene lists instead of genome sequence. This level of abstraction allows a more
efficient detection of collinearity and thus the divergent intergenic sequences will have less impact on
the algorithm.

OrthoCluster

In this category, OrthoCluster [177] appears as particular. It is not based on the classical approach
of homology matrix construction although it is using the same philosophy by identifying syntenies
via the clustering of neighboring matching gene pairs. This program is based on an algorithm
implementing a strategy of tree enumeration to detect orthologous gene clusters. This tool can
handle many genomes and makes it possible to overcome some of the weaknesses of the other
classical approaches. Indeed, it can detect four types of genome rearrangements including insertions,
transpositions, insertions/deletions, and reciprocal translocations via different algorithms. To detect
reciprocal translocations (exchange of DNA parts by recombination), OrthoCluster merges syntenic
blocks to build the longest possible blocks, identifying blocks not broken by duplications, inversions
or transpositions. To detect transpositions (regions moved from a chromosome and inserted into a
non-homologous chromosome), OrthoCluster searches in each adjacent syntenic block for a region
between their homologous syntenic block in the other genome. If a fragment of less than 50 genes
is found between them, a transposition is identified. Then, the detection of inverted segments in
the genome is performed by checking if the order of the genes is the same in each syntenic block.
If the gene order is inverted between the two, this region constitutes an inversion. Finally, in order to
detect insertion or deletion of genes, OrthoCluster compares the pairs of adjacent syntenic blocks in the
reference genome. Genes identified between these blocks are considered as insertions/deletions and
reported. It can also detect segmental duplications and resolve one-to-many relationships. Moreover,
the orientation and the order of genes are taken in to account. Nevertheless, this tool is limited to the
orthology detection and can therefore only be applied on closely related organisms.



Genes 2020, 11, 1046 22 of 38

The fine-tuned configuration of this tool is crucial to obtain reliable results. Eight parameters can
be defined by the user to set up the algorithm according to the needs:

• l max defining the upper bound on the number of genes in each cluster.
• l min defining the lower bound on the number of genes in each cluster.
• op maximal percentage of out-map genes allowed.
• ip defining the maximal percentage of mismatched in-map genes allowed.
• op and ip can control the number of genes involved in transpositions in synteny block.
• i maximal number of mismatched in-map genes allowed.
• o maximal number of out-map genes allowed.
• r to find order-preserving clusters.
• s to find strandedness-preserving clusters.

3.2.2. Algorithms Using Dynamic Programming Optimizations

This type of approach generally implements algorithms more costly in computation than the
homology matrix approaches. Some methods benefit from dynamic programming to build a chain of
collinear pairwised genes. In these methods, the dynamic programming algorithms are implemented
in the search for collinear genes, allowing an exhaustive and fast search. A scoring system is set up
allowing to build pairs of adjacent collinear genes, which constitute anchoring genes, and to penalize
the distance between them. The main advantage of a multi-alignment of collinear chromosomal regions
is its ability to reveal past WGD events and complex chromosomal rearrangement relationships. In this
type of approach, the syntenic blocks are composed of anchoring genes that are located at collinear
positions and between them non-anchoring genes that are assumed to have undergone mutations.
Nevertheless, the user needs to already know what to look for and the characteristics of the genomes
and syntenic blocks being studied.

MCScanX and MultiSyn

MCScanX [154] is one of the most used tools aiming at searching for syntenic blocks and is
implemented in the webtool MultiSyn [176], allowing biologists with no informatic skills to use this
approach. Moreover, this tool produces additional visualizations allowing a simplified analysis.

The MCScanX algorithm takes place in three steps. The first step uses the results of an all-against-all
comparison using BLASTP [179] to find collinear blocks. BLASTP matches are sorted according to their
genomic positions. To handle tandem regions, all consecutive genes with a BLASTP match that are
separated by less than five genes, are collapsed into a single representative. Then, the highest scoring
chains of collinear gene pairs are searched for using dynamic programming. Non-overlapping chains
involving at least five collinear gene pairs are saved. In a pair of collinear blocks, two distinct genomic
locations with aligned collinear genes are assigned as anchors.

The second step makes it possible to assign each syntenic block to a gene class. To do that, all genes
are first assigned to the singleton class. Genes with BLASTP hits to other genes are assigned to the
class “dispersed duplicates”. If the hits are close enough, they are assigned to the class “proximal
duplicates”. If the hits are neighboring, they are assigned to the class “tandem duplicates”. To finish,
anchored genes are assigned to the WGD/segmental class.

In the last step, twelve downstream analyses can be performed using different scripts and
correspond to the computation of the nonsynonymous and synonymous rates (Ka and Ks),
the generation of various plots, the construction of gene families with associated analyses, the
detection of collinear tandem arrays, the computation of the number of intra- and inter-species collinear
blocks at each locus of reference genomes, and the display of statistics on gene numbers at different
duplication depths.

To be functional this tool needs to be configured using at least six parameters:

• match_score, defines a threshold used to validate a synteny block. Default value is 50.
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• gap_penalty, defines the penalty added when opening a gap. Default value is 21.
• match_size, defines the number of genes required to consider it as a collinear block. Default value

is 5.
• e_value, defines the statistical significance of the synteny block alignment. Default value is 1e-10.
• max_gaps, maximum number of gaps allowed. Default value is 25.
• overlap_window stores the maximum number of genes to collapse BLAST matches. Default value

is 5.

The special feature and strength of MCScanX is that each chromosome is used as a reference.
Thus, all collinear segments in pairs are mapped. This is followed by a multiple alignment procedure
of homologous genes, described as “transitive homology” [180]. This approach allows MCScanX to
match regions that were not initially detected based on their collinearity with the reference.

To conclude, this tool is powerful and allows performing many analyses, if the user has the ability
to install and configure it properly. MultiSyn eases the configuration step, the initial formatting of
the data and the analyses using a graphical interface. As a final advantage, this tool can be deployed
locally. As for i-ADHoRe, the use of ordered gene lists instead of a genome sequence allows getting
more reliable results at lower computational costs.

SynChro

SynChro [160] is based on Reciprocal Best-Hits (RBH) to construct syntenic blocks. This algorithm
is faster and easy to use thanks to its unique parameter (∆) which represents syntenic block stringency.
To go into more details, this algorithm is composed of three simple steps. In the first step, RBH are
identified using Opscan (http://wwwabi.snv.jussieu.fr/public/opscan/), a tool based on the FASTA
algorithm [181]. RBH can be defined as two genes whose best hit is mutual. In the second step,
the RBH makes it possible to define syntenic blocks using co-localizing RBH (defined by ∆) along the
chromosomes of two genomes as anchors. In the third step, syntenic blocks are completed by non-RBH
homologs. Genes are defined as non-RBH if they share 30% of similarity and if the ratio of the length
of the match between the two sequences and the length of the smallest sequence is greater than 0.5.

This tool provides various graphical outputs including dotplots, chromosome painting,
and synteny maps, as well as text results. Therefore, it makes it possible to obtain in a limited
computational time very good quality results with a fast handling in an “all in one” manner allowing
to easily visualize the results.

CYNTENATOR

CYNTENATOR [159] is a tool aiming at identifying conserved syntenic regions between distant
genomes. This tool is based on a progressive multiple gene order alignment. The main advantage of this
tool is its scalability allowing it to work on more than 10 genomes contrary to many other approaches.
Moreover, it makes it possible to get rid of heavy preprocessing steps due to its high flexibility.

To begin, a progressive pairwise alignment between genomes is performed. These alignments are
based on a user-defined phylogenetic tree that directs the order in which the genomes will be compared.
Only valid alignments gathering homologous regions of all species are retained for collinearity search
in the next genome. This filtering step helps lower the computational costs and allows determining
the gene order conservation between distant genomes. This step is followed by a pairwise alignment
using a Smith-Waterman local alignment weighted by the phylogenetic distance. The results of these
alignments constitute the syntenic blocks. The use of a progressive alignment algorithm makes it
possible to conduct studies on several large genomes while taking into account the phylogeny of the
studied species. The absence of a heavy pre-processing on the input data, except an all against all
homology score, allows to avoid bias.

http://wwwabi.snv.jussieu.fr/public/opscan/
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SyMap

SyMap [163] is a tool based on DAGChainer [165]. The advantage of this software is that its
interface via a web application allows the user to be free from any configuration and data preparation
via the code. In addition, this tool allows retrieving various additional information and in particular
the Ka/Ks ratio using PAML [182]. The intermediate results can be retrieved and the final results can
be visualized in an interactive dot-plot. Once the genomes have been added to the database and the
parameters have been defined, the computations are launched. The SyMap algorithm works as follows.
First, the genomes are aligned using an alignment software. Different tools can be used for this step,
including BLAST. Then, different filters are applied and in particular the condensation of tandemly
duplicated genes into a single occurrence and filtering out of repeated sequences. The syntenic blocks
within this homologous matrix are then searched for using DAGChainer. Finally, different visualizations
are constructed. The main advantages of this tool are its speed, the ease of use, and the visualizations.
However, some parameters are not configurable and it does not allow the study of more than two
genomes at the same time.

3.2.3. Approaches Based on Graphs

The principle of this type of algorithm is to construct a graph gathering all the pairs of homologous
genes shared by the compared genomes. These approaches aim at solving many problems raised by
the methods presented before, in particular the possibility of studying several large genomes and to
detect non-overlapping syntenic blocks. The previous approaches have difficulties decoding more
complex genomic architectures that have undergone phases of significant duplication followed by
reploidization. The search for non-overlapping syntenic blocks is of great interest because it makes it
possible to focus on rearrangements that happened after the duplication events. However, the search for
non-overlapping syntenic blocks is not just about simply decomposing overlapping blocks. Different
algorithms have been proposed to meet these needs. The first algorithms as GRIMM-Synteny [183] or
MAGIC [184] were suitable for small sets of genomes, but were not able to handle genomes with large
duplications and deletions, and were not able to find non-overlapping blocks. Later, Enredo [169] was
written to solve this problem. One last problem with the algorithms from the two previous approaches
is that as more and more genomes are integrated into comparative studies, the number of genes shared
between genomes decreases. This has a strong impact on the algorithms with the risk of rejecting the
blocks because they are statistically nonsignificant, as it happens with tools such as GRIMM-Synteny.

Typically, the algorithms used in the graph-based approaches follow different steps. First,
input genomes are locally aligned and the resulting alignments are used to construct a graph. Then,
the different sub-structures (depending on the initial graph structure) are searched for to find the
different segmentations of the genomes. The type of graph structure has a major influence on the
results. Indeed, some of them handle these problems with more or less success and can therefore not
find similar results. Four graph structures are predominant to analyze syntenic blocks.

The first structure corresponds to an alignment graph. The graph contains a vertex referring to
each character in the sequence and edges referring to aligned characters. It is then possible to obtain
collinear or noncollinear alignments by solving the maximum weight trace problem. Duplicated
regions are more easily visible in an alignment graph structure. Nevertheless, this structure does not
allow the user to get inversion information.

The second structure corresponds to A-Bruijn graphs that can be found in DRIMM-Synteny [168].
The main idea behind this graph is to merge aligned vertices. Thus, A-Bruijn graphs have one vertex for
each aligned sequence. The links represent only the sequence. The main problem with this approach is
represented by the short cycles, which tend to make local alignments hide a local collinearity. As an
alignment graph structure, it does not allow access to inversion information, meaning that it is not
possible to differentiate between the tandem repeats and palindromes.

The third structure, known as the Enredo graphs, can be found in Enredo [169]. It aims at managing
genomes partitioned into segments. The nucleotide alignments are then made. Thus, Enredo graphs
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have two vertices per set of aligned segments, a head vertex and a tail vertex. It is then possible to
eliminate various substructures from the Enredo graph in order to obtain the final segmentation of
the genome. An Enredo structure can help find non-overlapping blocks and is suitable to consider
non-overlapping inversions.

To finish, the Cactus graphs [185,186] have also been proposed. They are structures with vertices
for adjacencies and undirected edges for genome segments. This type of graph is Eulerian meaning
that there is a path that crosses all the nodes only once. This graph is also subdivided into independent
units where each edge is part at most of one cycle. The cactus structure is a unique sub structure that
allows an easy detection of short cycles.

These different graph structures allow the study of some particular sub-structures to identify
syntenic blocks. One of the most important corresponds to the collinear paths. These sub-structures are
a set of blocks that appear in genomes consecutively, without breaks and with the same orientation thus
representing syntenic blocks. A second sub-structure corresponds to the presence of microblocks within
larger regions that tend to introduce breaks into syntenic blocks. A third sub-structure corresponds to
the short cycles. They are the mark of rearrangement. Indeed, similarities between sequences make
them appear and thus break the collinearity. An important number of short cycles is problematic
because they can aggregate into complex networks and hide true collinear blocks. We will detail a little
bit more on one algorithm implementing the graph based approach below.

DRIMM-Synteny

This algorithm is the update of GRIMM-Synteny and aims at solving various problems from this
previous version. In particular, the suppression of blocks due to their statistical non-significance in the
case of the study of several distant genomes. The syntenic blocks that do not overlap are identified,
which allows, in a second step, to bypass the threading problem based on the use of an A-Bruijn graph
structure. This type of graph is an Eulerian and undirected multigraph. Edges are weighted by the
number of times a gene pair is consecutive in the analyzed genomes.

In DRIMM-Synteny, an A-Bruijn graph is constructed by collapsing together identically labeled
vertices from all genomes. From this graph, syntenic blocks can be found. In fact, a perfectly repeated
block corresponds to a path in the graph. Perfectly repeated regions that do not share genes with other
regions in the set of genomes being studied will appear as unconnected paths. These are referred to
as the maximum paths in the graph, satisfying the condition that all of their internal vertices have
only two neighboring vertices. This algorithm solves some existent problems known for this type of
approach using different subroutines. There may be small differences between the different syntenic
genes, which leads to short cycles. DRIMM-Synteny is able to detect them by computing a shaft at
maximum range. A heuristic then allows detecting the links that create them in order to remove them.
In addition, the presence of syntenic microblocks separate the long unbranched paths into several
subpaths, thus complicating the detection of the blocks. Finally, the short palindromic regions that can
be found within syntenic blocks form thornes that have the same effect as the microblocks.

3.3. Detection of Tandemly Arrayed Genes (TAGs)

Specific methods have been developed to handle specifically tandem duplication detection. TAGs
are gene family members that are tightly clustered on a chromosome [73]. The vast majority of the
methods are home-made pipelines available from the authors and may require programming skills.
A few tools, particularly those related to the identification of syntenic blocks, are able to help in the
identification of TAGs because they are generally summarized in a single occurrence of the dataset
to lower the statistical noise. In general, they are not dedicated methods but more trivial algorithms.
However, they have the advantage of being simpler to use. Most of these algorithms rely on protein
comparisons, making them dependent on genome annotation. However, there exists very few methods
that can deal with genomic sequences to search for long DNA tandem repeats. The advantage of these
latest methods is that they can detect pseudogenes that originated from duplication or short ORFs



Genes 2020, 11, 1046 26 of 38

generally missed by automatic genome annotation. We will first describe TAG detection in the genome
at protein level, then at DNA level.

3.3.1. Detection at Protein Level

These methods begin with the identification of homologous gene pairs. This can be done using
different algorithms, in most cases an all-by-all BLASTP comparison of the proteome against itself
or between the proteomes of two species, followed by a filtering using a threshold to retain only
homologous pairs. The difference between these approaches lies in the homology assessment and the
degree of sophistication to filter out false positives.

The most straightforward, but trivial, way is used in the first step of WGD detection algorithms
such as MCScanX or i-ADHoRe [157,158]. These algorithms take as input homologous gene pairs,
the preferred format being the BLASTP output. Then, the program classifies homologous pairs
according to their rank along the chromosome. If consecutive BLASTP matches have a common
gene and its paired genes are separated by fewer than five genes, these matches (forming a TAG)
are collapsed using a representative pair with the smallest BLASTP e-value. The advantage of this
approach is its speed but the drawback is that it can miss divergent homologous genes. Moreover,
even if few programming skills are required, a parsing step is still necessary to obtain the list of
identified TAGs.

To alleviate some problems related to the input (an all-against-all BLASTP), it is possible to use gene
families as input. They can be constructed by different algorithms summarized in Table 1. Then, a TAG
is defined as a block of adjacent genes belonging to the same family and separated by spacers that are
generally genes not belonging to the homologous family. Several definitions can be used for the allowed
number of spacers, mostly 0 or 1 but also ranging from 0 to 10 spacers [73,127,129,187]. The construction
of gene families allows incorporating more distantly related homologs than the previous approach. The
definition of homologous genes can be improved by merging all non-overlapping HSP of one hit [73].
The most widely used clustering algorithms are the single linkage algorithm, and more and more
Markov clustering (MCL) and its variants. It is an efficient approach but adjusting the inflation and
expansion parameters of MCL is not easy. The inflation parameter controls the flux between groups of
classification (i.e., the number of steps in the random walk along the similarity graph). The expansion
parameter controls the strength of links by strengthening them inside the clusters and weakening them
between clusters.

3.3.2. Detection at DNA Level

The vast majority of Tandem Repeat detection methods at DNA level deal with the identification
of short highly repeated sequences. They are used to mask sequences corresponding to TEs or/and
segments of low complexity before genome annotation or to explore the amplification of short
duplications associated with human diseases for example, or copy number variation (CNV) between
genotypes. These types of DNA duplication are not the focus of this review and will not be treated
in detail. Here, we give a list of some famous short DNA Tandem Repeat detection tools able to
deal with large datasets: DUSTMASKER [188], SEGMASKER [189], Tandem Repeat Finder (TRF) [190],
TANTAN [191] and more recently ULTRA [192], TARDIS [193], and dot2dot [194].

We will now focus on long tandem duplication detection because all studies on TAGs based on
protein similarity are biased by the quality of the available genome annotation. They exclude RNA genes
or degenerated copies [195]. However, duplicated pseudogenes are an important evolutionary residue
of a genome past activity [196]. A genome-wide approach has been proposed to take into account
pseudogenes in TAG detection [197]. It scans, using TBLASTN, each protein against its chromosomal
regions (the surrounding DNA sequences is three times longer than the CDS) and filter hits according
to a refined bit-score, called the BTF score, that takes into account all non-overlapping HSP of less
than 20% on the same strand. Then, it looks at CDSs in the ascending order of their chromosomal
positions to extract TAGs. This mixed approach (at DNA and protein levels) is implemented in Python
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2.4. The scripts are available from the authors and need a step of manual curation to eliminate false
positive TAGs, due to the presence of minisatellites.

This previous approach is based on proteins and therefore depends on genome annotation. It has
mainly been used on compact genomes [195]. ReD Tandem is an alternative method that circumvents
this limitation [195]. Indeed, the main problem of detecting TAGs at genomic level is that large
duplications despite being close, are far from being contiguous. The authors thus proposed to define
tandemly duplicated segments as paralogous segments of size l with adjacent copies separated by a
maximum distance T (in A. thaliana, the parameter values are l = 500 bp, T = 150 kb). The algorithm
begins with anchors (paralogous segments of size l) and chains then using DAGchainer or OSfinder [175]
into longer duplicated regions (called tandem units). Such alignable units are anchors of length l and
separated by less than L bases (L = 40 kb for A. thaliana). Then, the tandem units are assembled into
TAGs (i.e., tandem units separated by less than T bases, with T = 150 kb for A. thaliana). The C++ scripts
are available but need some computational skills to be installed. Nevertheless, this elegant approach
has allowed the authors to identify in A. thaliana several types of TAGs previously undetectable
for genome-wide approaches. In decreasing order of importance, these new TAGs correspond to
trans-elements genes, pseudogenes, pre-tRNAs, other RNAs, miRNAs, snoRNAs, and unknown
genes [195].

3.4. Databases Storing Syntenic Block or Homology Information

3.4.1. Syntenic Information

These databases have the advantage to not require computations and therefore no programming
skills for the user. Some of them also offer visualizations and search tools. The main disadvantage is that
they do not contain information from all organisms. Each of these databases provide particular features
but some elements are common. In some cases, it is possible to access all the syntenic blocks between
two organisms. The list of organisms is more or less extended depending on the database. Some of
them propose to visualize these blocks using various representations such as circular visualizations,
chromosome painting, or dot-plots. Some databases allow manually importing genomes to identify
blocks of synteny. In this case, different tools may be implemented for the identification and are more
or less easy to configure. For example, Ensembl [198] stores different information including syntenic
blocks generated by Pecan [169] as a multi-alignment algorithm and Enredo to detect syntenic blocks.
Synteny portal [199] and Genomicus [200] provide also syntenic blocks generated by inferCars [201] for
different species but also multiple visualizations. Finally, other databases exist including ECRbase [202]
with syntenic blocks generated from the DNA level. OrthoClusterDb [203] is a good example of what
can be found inside these databases. Two main possibilities are available. First, it allows online access
to the OrthoCluster tool [177] and to carry out identification of syntenic blocks on a remote server
using a graphical interface facilitating the configuration and the retrieval of the results. Another
possibility is to access different pre-computed syntenic blocks by OrthoCluster for different species.
Pre-computed species belong to different groups (Mammals, Pseudomonaceae, Drosophila, Plasmodium,
and Caenorhabditis) with 54 species available. The syntenic blocks can be visualized on a figure called
genome painting which allows visualizing the chromosomes of the compared species with a system of
colored segments highlighting the syntenic blocks. It is also possible to retrieve raw output files or to
access to syntenic blocks using an online genome browser.

3.4.2. Homology Relationships Databases

Dataset of duplicated genes without specification of the underlying mechanism of duplication
can be retrieved from public databases. These databases can be associated or not with a specific
methodology with available tools for a local use. The INPARANOID 8 database for example, provides
the InParanoid tool and proposes orthology analysis between 273 proteomes, mostly eukaryotic.
The dataset of orthologous and paralogous relationships between genes can be downloaded by pairs of
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species [204]. In HOGENOM, gene families are built from complete genomes from all three domains
of life [147]. Its clustering pipeline is based on the SiLiX clustering method [205]. Even if this database
is regularly updated, users can only retrieve families one by one according to keywords. The total
amount of paralogous genes in a species is only available upon request directly to the authors.

Ensembl Compara is a specific section of the Ensembl database providing cross-species resources
and analyses, at both the sequence and the gene levels. The main Ensembl database is dedicated to
chordate genomes and displays now counterparts for several groups of organisms (Ensembl Genomes,
Ensembl Bacteria, Ensembl Protists, Ensembl Fungi, Ensembl Plants, and Ensembl Metazoa). All these
databases are associated with the Ensembl Compara system. This system provides access to protein
gene families via a Perl API [198]. These families are built using all proteins from Ensembl through a
classical process using BLASTP for similarity searches and a MCL clustering with scores as weight for
edges in the initial graph. A final step aligns all sequences from a family using MAFFT [206]. It is to
note that the Ensembl Compara protein families correspond to the most similar proteins compared to
its gene tree section, where paralogous relationships are also available but in a tree format. Many other
repositories are available but our goal is not to be exhaustive. Among the most generalist, we can cite
PhylomeDB [148], OMA [207], OrthoDB [139], OrthoInspector [141], eggNOG [138], or the database
Homologene from the NCBI portal.

For plant comparative genomic, we can cite the databases PLAZA [208], GreenPhyl [209],
and Phytozome [210]. PLAZA 4.0 contains gene family data, phylogenetic trees, and gene colinearity
information. It comprises two instances, one for monocots (Monocots PLAZA 4.5) that includes data
from 39 species and one for dicots (Dicots PLAZA 4.0) that includes data from 55 species. The latest
PLAZA instance offers one or more REST-full APIs, depending on the Platform software version.
GreenPhyl 4 contains gene families and phylogenetic trees from 37 species. It has not been updated since
2015 but contains a section of manually annotated families comprising 2956 clusters. Other interesting
sections are transcription factors and families specific to species or phylum (family of homologous
genes found only in one species or excluding/including one phylum). Finally, the plant database
Phytozome13 (last update in May 2019) contains 184 assembled and annotated genomes. Inparanoid
pairwise orthology and paralogy groups have been calculated across all Phytozome proteomes and
families of related genes representing the modern descendants of putative ancestral genes have been
constructed at key phylogenetic nodes. The dataset can easily be downloaded or mined via a dedicated
tool named PhytoMine.

4. Conclusions

To conclude, when considering duplicated genes inside a given species, it appears clear that they
represent very different entities when taking into account their mechanism of formation, their fate,
and their age. This is particularly important when it comes to their identification and analysis. It is
indeed tempting to only detect all genes that are in several copies without taking into account the
evolutionary complexity behind them. This is why it is also important to be aware of the different
methodological approaches that can be used because this choice will greatly depend on the investigated
biological question.
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