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A B S T R A C T   

Near infrared (NIR) spectroscopy allows rapid estimation of quality traits in fresh fruit. Several portable spec
trometers are available in the market as a low-cost solution to perform NIR spectroscopy. However, portable 
spectrometers, being lower in cost than a benchtop counterpart, do not cover the complete near infrared (NIR) 
spectral range. Often portable sensors either use silicon-based visible and NIR detector to cover 400–1000 nm, or 
InGaAs-based short wave infrared (SWIR) detector covering the 900–1700 nm. However, these two spectral 
regions carry complementary information, since the 400–1000 nm interval captures the color and 3rd overtones 
of most functional group vibrations, while the 1st and the 2nd overtones of the same transitions fall in the 
1000–1700 nm range. To exploit such complementarity, sequential data fusion strategies were used to fuse the 
data from two portable spectrometers, i.e., Felix F750 (~400–1000 nm) and the DLP NIR Scan Nano 
(~900–1700 nm). In particular, two different sequential fusion approaches were used, namely sequential 
orthogonalized partial-least squares (SO-PLS) regression and sequential orthogonalized covariate selection (SO- 
CovSel). SO-PLS improved the prediction of moisture content (MC) and soluble solids content (SSC) in pear fruit, 
leading to an accuracy which was not obtainable with models built on any of the two spectral data set indi
vidually. Instead, SO-CovSel was used to select the key wavelengths from both the spectral ranges mostly 
correlated to quality parameters of pear fruit. Sequential fusion of the data from the two portable spectrometers 
led to an improved model prediction (higher R2 and lower RMSEP) of MC and SSC in pear fruit: compared to the 
models built with the DLP NIR Scan Nano (the worst individual block) where SO-PLS showed an increase in R2

p 
up to 56% and a corresponding 47% decrease in RMSEP. Differences were less pronounced to the use of Felix 
data alone, but still the R2

p was increased by 2.5% and the RMSEP was reduced by 6.5%. Sequential data fusion is 
not limited to NIR data but it can be considered as a general tool for integrating information from multiple 
sensors.   

1. Introduction 

Pear (Pyrus communis L.) fruit are widely grown across the world. Key 
quality parameters such as moisture content (MC) and soluble solids 
content (SSC) are used to decide on an optimal harvest timing and to 
monitor fruit quality during the storage operations [1–4]. Similarly, for 
a variety of quality parameters in fresh fruit, destructive as well as 
non-destructive measurements (usually with instruments employing 

near infrared (NIR) spectroscopy) are widely used [5–12]. A drawback 
to the destructive measurements is that they are time consuming and 
involve a multi-step procedure, requiring the use of multiple in
struments, such as refractometer, hot air oven dryer, weighing balance 
etc. In addition, destructive measurements should be done on selected 
samples of harvested fruit and as such lead to production losses as an 
economic factor and food loss as a sustainability/societal problem. NIR 
spectroscopy is a non-destructive technique that can be applied to 
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plant-attached fruit [13]. However, conventional diffuse NIR spectros
copy does not provide an absolute value and a calibration step is 
required to quantify the property of interest, which is always associated 
with a prediction error [14–16]. Prediction error can be high or low 
depending on the sensitivity of the instrument, which in turn is related 
to the spectral range investigated, and on the calibration model. 
Furthermore, in the case of fresh fruit several external factors such as 
cultivars, season and temperature of the sensor may also affect the 
model performances. 

Portable NIR spectrometers are commonly used to analyze the 
quality properties of fresh fruit [3,17–22]. However, a main limitation 
with portable NIR spectrometers is that almost all of them are not 
designed to cover a wide NIR spectral range. Indeed, the portable 
spectrometers most commonly available on the market operate either in 
the 400–1000 nm or in the 900–1700 nm spectral ranges. This is because 
different optical detectors are required to measure the different spectral 
regions efficiently. In the case of the 400–1000 nm range (visible and 
near-infrared, VIS-NIR), silicon (Si)-based detectors are commonly used 
while InGaAs detectors covers the 900–1700 nm (short wave infrared, 
SWIR) [23]. Typically, since InGaAs detectors are far more expensive, 
Si-based detectors are the preferred choice for the portable spectrome
ters as they are lower cost. Si-based detectors can be used to calculate 
spectral indices to show changes in plant pigments in the VIS region 
while in the 700–1000 nm spectral range the MC, sugar, fat or protein 

content in fresh produce can be correlated to the 3rd overtones of the 
OH, CH and NH bonds [24]. This is because the 700–1000 nm spectral 
range captures the 3rd overtones related to the OH, CH and NH bonds 
which can be correlated to different chemical constituents [1,25]. 
Moreover, radiation in the 400–1000 nm range has a greater penetration 
depth than that of higher wavelengths [26]. However, a drawback of 
using the VIS-NIR region is that the NIR part (700–1000 nm) is char
acterized by the presence of weak and highly overlapping signals (3rd 
overtones) which makes model building and model opti
mization/selection (for instance, to choose the optimal complexity in 
partial least-squares regression) a challenging task. On the other hand, 
the spectral range >1000 nm contains the signals corresponding to the 
1st and the 2nd overtones, which appear as comparatively 
less-overlapped and stronger bands, making model optimization easier. 
However, at wavelengths >1000 nm the penetration depth is less 
compared to the VIS-NIR range and this could be a limitation when 
analyzing fresh fruit [26]. Each of the two spectral ranges (400–1000 nm 
and 900–1700 nm) therefore has its own distinct benefits as well as 
disadvantages, but in general, they carry complementary information. 
Accordingly, the best way to exploit such complementarity (e.g. to 
achieve improved predictions) would be to integrate/combine infor
mation from both the spectral ranges. 

Integration of multiple sensors to predict fruit quality parameters is 
gaining attention [27–29] as fruit quality has many different dimensions 

Fig. 1. Graphical representation of the spectroscopic data and of the distribution of the reference measurements for the training and test samples. (A) Spectra for 
calibration (red) and test set (green) from Felix, (B) spectra for calibration (red) and test set (green) from DLP NIR scan Nano, (C) histogram representing calibration 
(blue) and test set (orange) for moisture content (MC %), and (D) histogram representing calibration (blue) and test set (orange) for soluble solids content (SSC %). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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and no single non-destructive sensor can perfectly explain a range of 
fruit properties. In combination, multiple sensors can enhance model 
performance and in the same way combing multiple spectral ranges can 
lead to better and more accurate models [30]. To take maximum 
advantage from the combination of data from multiple spectral sensors, 
it is necessary to use processing strategies collectively referred to as 
multi-block data analysis [31–36]. In particular, a highly effective 
technique to integrate data from multiple sources that is increasingly 
used is sequential and orthogonalized partial-least squares regression 
(SO-PLS) [37]. SO-PLS is based on the sequential extraction of the in
formation from the data of different sensors. SO-PLS was successfully 
applied to fuse spectroscopic data from different instruments to provide 
models with significantly better performance than models based on the 
data from a single sensor [38–40]. The concept of sequential modelling 
coupled to orthogonalization can also be used to identify a minimum set 
of variables (wavelengths) within each block, that are relevant to 
accurately predict the response(s) of interest. This approach is called 
sequential and orthogonalized covariance selection (SO-CovSel) as 
recently proposed in the literature [41]. SO-CovSel is a multi-block 
variable selection technique [41], which extends the covariance selec
tion (CovSel) approach for feature reduction [42] to a multi-block sce
nario, borrowing the concepts of sequential inclusion of the matrices to 
be fused after orthogonalization from SO-PLS. 

Thus, the aim of the present work was to demonstrate the use of the 
sequential data fusion strategies SO-PLS and SO-CovSel to integrate 
spectra from two portable spectrometers operating in different NIR 
ranges, in order to predict two quality attributes (MC and SSC) of pear 
fruit. The two portable spectrometers were the Felix handheld spec
trometer and the DLP NIR Scan Nano. 

2. Materials and methods 

2.1. Samples and reference measurements 

Two hundred forty pear samples coming from 11 different orchards 
(20 fruits each from 10 orchards, and 40 fruits from the remaining one) 
were used in the study. The pear fruits were measured immediately after 
harvest. Additional description of the samples and the measurements 
can be found in [4]. NIR spectroscopy measurements were recorded on 
the intact pear; afterwards, a cylindrical disc was cut at the position of 
the largest diameter of the fruit and it was further divided into four equal 
quadrants. The two sub-samples withdrawn from the same side of the 
pear on which the NIR spectra were collected, were used for the quan
tification of MC and SSC, using the reference methods. In particular, the 
determination of MC was conducted by weighing (XS10001L, 
Mettler-Toledo GmbH, Giessen, Germany) the subsample before and 
after hot-air oven drying (at 80 ◦C for 24 h with FP 720, Binder GmbH, 
Tuttlingen, Germany), while SSC was assessed measuring the refractive 
index of the juice extracted from the other sub portion, with a handheld 
refractometer (HI 96801, Hanna Instruments Inc, Woonsocket, RI, USA). 

2.2. Data acquisition 

2.2.1. Felix handheld spectrometer 
The VIS-NIR spectral measurements were carried out with a portable 

spectrometer Felix F-750 (Camas, WA, USA), which utilizes a Carl Zeiss 
MMS-1 spectrometer to record the reflected light in the spectral range 
310–1135 nm. Illumination is provided by a xenon tungsten lamp, with 
a built in white painted reference standard used to calibrate each scan. 
Data acquisition was performed by placing the fruit belly directly on the 
optical window support of the instrument and manually pressing the 

Fig. 2. Partial least-squares (PLS) modelling for the calibration of moisture content (MC %) based on individual spectral matrices. Model built on data from Felix 
handheld spectrometer: Results on the calibration (A) and test (B) sets. Models built on data from DLP NIR Scan Nano device; Results on the calibration (C) and test 
(D) sets. 
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scan button on the Felix device: each recorded spectrum was the result of 
the average of 6 consecutive scans. The data were radiometrically cali
brated with the in-built white reference standard. The data were auto
matically normalized by the built-in software of the Felix device and the 
raw reflectance spectra were extracted as excel files utilizing the “Data- 
Viewer” software from Felix (Camas, WA, USA). Due to the presence of 
high noise at extreme wavelengths, the spectral range was reduced from 
310-1135 nm to 400–1135 nm. 

2.2.2. DLP NIR Scan Nano 
The SWIR measurements (900–1700 nm) were performed with a DLP 

NIR Scan Nano (Texas Instrument, USA). On each fruit, the SWIR 
spectrum was acquired immediately after collecting the VIS-NIR spec
trum and exactly on the same position, by directly placing the sample on 
the sensor head of the DLP NIR Scan Nano. The measurements per
formed were in diffuse reflectance mode. The data were radiometrically 
calibrated with the in-built mathematical transformation for estimating 
the absorbance. The output of the sensor were the absorbance spectra. 
Spectral sampling resolution was 6.35 nm and the integration time was 
8 ms. Each recorded spectrum was the result of the average of 5 
consecutive scans. The measurements were controlled using the PC 
software provided, which automatically corrects for the dark and white 
references and outputs the absorbance measurements. 

2.3. Data processing 

Data processing involved four main steps, i.e., spectral pre- 
processing, building calibration models for the prediction of MC and 
SSC with the separate spectral matrices using standard PLS regression, 
verifying whether the joint processing of both spectral matrices through 
sequential and orthogonalized PLS (SO-PLS) regression could lead to 
better results than those obtained with single data blocks and identifying 

which spectral variables in each wavelength range supplied relevant and 
complementary information for the prediction of the two quality attri
butes through the use of SO-CovSel. All the analyses were performed 
using MATLAB 2017b (The Mathworks, Natick, MA, USA). 

2.3.1. Spectral pre-processing 
In the case of VIS-NIR data, the spectral range was reduced and 

restricted to the NIR bands (700–1135 nm), in order to remove the 
possible influence of fruit color, but retaining the wavelength interval 
corresponding to the 3rd overtones of OH and CH bonds, likely to be 
related to MC and SSC. The full range (900–1700 nm) provided by the 
DLP NIR Scan Nano was used. Then, the same combination of pre- 
processing was applied to both spectral data sets. Firstly, spectra were 
smoothed with a Savitzky-Golay filter (2nd order interpolating poly
nomial and 15 points window). Later, to remove the effects of light 
scattering, variable sorting for normalization (VSN) technique [43], 
which can be considered as a weighted analogue of the standard normal 
variate (SNV) transform, was used. 

2.3.2. Partial least-squares regression 
Partial least-squares (PLS) regression is probably the most commonly 

used chemometric technique for calibration, especially when dealing 
with NIR spectroscopic data [44,45]. This is at least partly due to its 
effectiveness in dealing with multi-collinearities or ill-conditioned data 
matrices in general, which derives from its use of latent variables (LVs) 
instead of original spectral intensities as predictors. Indeed, PLS com
presses the relevant spectroscopic variation into a reduced number of 
orthogonal scores, obtained by projecting the data onto directions of 
maximum covariance with the response variables. In the present work, 
the quality of the regression model was evaluated through the calcula
tion of the coefficient of determination (R2) and root mean squared error 
(RMSE), while the optimal number of LVs were using 10-fold cross 

Fig. 3. Partial least-squares (PLS) modelling for the calibration of soluble solids content (SSC %) based on individual spectral matrices. Model built on data from Felix 
handheld spectrometer: Results on the calibration (A) and test(B) sets. Models built on data from DLP NIR Scan Nano device; Results on the calibration (C) and test 
(D) sets. 
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validation procedure with LVs carrying minimum RMSE. The PLS 
regression analysis was implemented on the free open-source MATLAB 
based chemometrics toolbox called MBA-GUI [46]. 

2.3.3. Sequential orthogonalized partial least-squares regression 
Sequential and orthogonalized PLS (SO-PLS) belongs to the family of 

multi-block PLS-based approaches. The main ideas behind the method 
are the sequential incorporation of the predictor matrices. SO-PLS as
sesses the incremental contributions of the different blocks, and the 
orthogonalization step removes redundant information [37]. In the 
simplest multi-block scenario, with two predictor matrices, SO-PLS in
volves the following steps: at first, a PLS regression model between the 
data from the first sensor (X1) and the responses Y is calculated, 
yielding, among other outcomes, the scores T1. Then, the data from the 
second sensor (X2) and the Y block are orthogonalized with respect to T1 
and a second PLS model is fitted between the Y-residuals and the 
orthogonalized second block of predictors (if the number of blocks is 
larger than two, these steps are iterated until the last predictor matrix is 
incorporated). Eventually, all the block scores (here T1 and T2) are 
concatenated and a final ordinary least-squares regression model is 
calculated between the concatenated scores and the response(s). Here it 
is worth stressing once again that one of the main benefits of SO-PLS is 
its sequential nature which, together with the orthogonalization step, 
allows a straightforward evaluation of whether incorporating a new 
block really brings additional information, to significantly improve the 
model quality, or not. The SO-PLS regression analysis was implemented 
on the free open-source MATLAB based chemometrics toolbox called 
MBA-GUI [46]. 

2.3.4. Sequential and orthogonalized covariance selection 
In this case, explanation of the basic steps of the So-CovSel algorithm 

will refer to the simplest multi-block scenario (which corresponds to the 

data discussed in the present paper), i.e. the situation where two blocks 
of predictors are used to model the response(s) Y. CovSel is first used to 
extract the relevant variables from the first block; then the second block 
and the responses are orthogonalized with respect to the selected pre
dictors and a second round of CovSel is operated between the orthogo
nalized second matrix and the Y residuals to identify another subset of 
relevant variables. Eventually, all the selected wavelengths are com
bined into a single predictor matrix Xsel, and the final predictive model is 
built by correlating the response matrix with Xsel through ordinary least- 
squares regression. The SO-CovSel regression analysis was implemented 
on the free open-source MATLAB based chemometrics toolbox called 
MBA-GUI [46]. 

3. Results 

3.1. Data description 

For the Felix device, data are output as reflectance (Fig. 1A), while 
the DLP NIR Scan Nano directly returns absorbance values (Fig. 1B). The 
spectra were partitioned into calibration and test set, which are high
lighted in the Figure in red and green, respectively, using the Kennard- 
Stone algorithm [47]. At both wavelength ranges, the profiles present 
broad but identifiable bands, ascribable to the contributions of the main 
constituents of the food matrix such as water and sugar. For both 
properties, the distributions of the reference values in the calibration 
and the test set were comparable: indeed; in the case of MC (Fig. 1C), the 
calibration and test set reference values were 84.26 ± 2.74% and 84.22 
± 2.86%, respectively; for SSC (Fig. 1D), the calibration and test set 
reference values were 12.76 ± 2.56% and 12.65 ± 2.29%, respectively. 

Fig. 4. SO-PLS fusion of Felix and DLP NIR Scan Nano data for the prediction of moisture content (MC %) and soluble solids content (%). MC: (A). Number of LVs 
extracted from each data block. Results on the calibration (B) and validation (C) sets. SSC: (D). Number of LVs extracted from each data block. Results on the 
calibration (E) and validation (F) sets. R2 explain the coefficient of determination and RMSEC and RMSEP are the root mean squared error for calibration and 
prediction respectively. 
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3.2. Partial least-squares regression on individual spectroscopic matrices 

PLS models were first separately built on the individual data matrices 
resulting from each of the two spectroscopic sensors (Felix and DLP NIR 
Scan Nano). The models for the prediction of MC had an optimal 
complexity of 11 LVs in the case of Felix data and of 10 LVs when built 
on spectra recorded by DLP NIR Scan Nano; the corresponding results 
are graphically displayed in Fig. 2. Both models provide good MC pre
diction results, the one built on the Felix data shows a 20.5% higher R2

p 
and a 25% lower RMSEP when compared to those obtained from the DLP 
NIR Scan Nano. For the prediction of SSC, the models built on the spectra 
recorded on the Felix or on the DLP NIR Scan Nano devices had an 
optimal complexity of 11 and 9 LVs, respectively; the corresponding 
results are shown in Fig. 3. The SSC model obtained using the Felix 
spectra showed a 56% higher R2p and a 44% lower RMSEP when 
compared to those based on the DLP NIR Scan Nano data. 

3.3. Data fusion with SO-PLS 

The results reported in the previous section show that good models 
for the prediction of MC and SSC can be obtained by calibrating NIR data 
(particularly the Felix ones) with single-block PLS regression. A multi- 
block approach based on sequential and orthogonalized partial least- 
squares regression (SO-PLS) was used to integrate the complementary 
data from the two spectroscopic sensors to try to achieve better cali
bration performance and also a deeper understanding/interpretation of 
the models. When fusing the data matrices, one of the advantages of the 
SO-PLS method is that it is scale-invariant, meaning that no scaling of 
the blocks is needed prior to integration. The order in which the blocks 

are introduced into the model can be relevant and, in the present case, 
the optimal choice was found to be Felix data first and DLP NIR Scan 
Nano afterwards. The results of SO-PLS multi-block analysis for the 
calibration of MC and SSC are shown in Fig. 4, respectively. In both 
predictive models, most of the scores are extracted from the Felix block, 
which was the one giving the better performance when used individu
ally. The sequential multi-block approach showed better predictive 
ability with higher R2

p and lower RSMEP values when compared to 
building calibration models on individual data matrices, thus confirming 
that integrating the information from the two spectral matrices sub
stantially improves the regression performance. For MC prediction, 
compared to the models built on the Felix or DLP NIR Scan Nano data 
individually, R2

p were increased by 2.5% and 23%, respectively and 
RMSEP were reduced by 6.5 and 30%, respectively. Similarly, for SSC 
prediction, compared to the models built on the Felix or DLP NIR Scan 
Nano data individually, the RMSEP were reduced by 6% and 47%, 
respectively. R2

p improved in the case of the DLP NIR scan Nano (by 
56%) but not in the case of Felix. 

3.4. Wavelength selection with SO-CovSel 

The use of SO-PLS demonstrated that the integration of the infor
mation from two spectroscopic ranges could lead to an improvement in 
the accuracy of the predictions of quality attributes in pears. To gain 
further insight into the variables mostly correlated with the responses, 
the recently proposed SO-CovSel technique was employed. The main 
results of SO-CovSel in the prediction of MC and SSC are graphically 
summarized in Figs. 5 and 6. In general, the predictive accuracy is lower 
than that obtained with SO-PLS (i.e. using all the spectral variables), but 

Fig. 5. SO-CovSel multi-block wavelength selection for the prediction of moisture content (MC %). Wavelengths selected from (A). Felix, (B). DLP NIR Scan Nano. 
Prediction results on the calibration (C) and test (D) sets. R2 explain the coefficient of determination and RMSEC and RMSEP are the root mean squared error for 
calibration and prediction respectively. 
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still quite good. In both cases the number of selected variables is rather 
low, confirming the effectiveness of the SO-CovSel approach in identi
fying parsimonious subsets of relevant and non-redundant predictors. In 
particular, 10 wavelengths (9 from Felix + 1 from DLP NIR Scan Nano) 
were selected for the prediction of MC, and 11 wavelengths (10 from 
Felix + 1 from DLP NIR Scan Nano) for calibrating SSC. These findings 
are highly consistent with the results discussed in the previous sections, 
indicating that the Felix block is the one carrying a higher amount of 
information correlated with the responses. The fact that at least 1 var
iable was selected from the DLP NIR Scan Nano block indicates that the 
corresponding spectral range carries some complementary information 
which can be integrated with the Felix data. Indeed, the results highlight 
that the prediction of MC can be improved by adding the absorbance at 
around 1450 nm collected with the DLP NIR Scan Nano (corresponding 
to the 2nd overtone of water), to the 9 variables selected in the VIS-NIR 
range (Fig. 5). Similar considerations can be made for the prediction of 
SSC, where the SO-CovSel model selected a single predictor corre
sponding to the signal at around 1500 nm (interpreted as the 2nd 
overtone of C–H bonds) from the DLP NIR Scan Nano block and directly 
correlated to the SSC. Moreover, since SO-CovSel provides a highly 
parsimonious wavelength selection, retaining at the same time a good 
predictive ability, its results could be exploited to design and build lower 
cost multispectral systems as it clearly indicates a discrete set of the most 
informative wavelengths. 

4. Discussion 

In the present work, data from two portable spectrometers (Felix and 
DLP NIR Scan Nano) were sequentially fused for improving the predic
tion of MC and SSC in individual pear fruit. The results show that both 

spectral ranges carry complementary information in terms of functional 
group overtones (OH and CH) responsible for predicting MC and SSC 
content in pear fruit. SO-PLS was able to extract complementary LVs 
from each spectral range and resulted in model with improved predic
tion performance (higher R2

p and lower RMSEP) compared to those 
obtained on the individual blocks. A major strength of the approach is 
that the sequential strategy first modelled the data from the Felix 
spectrometer and then, once it could not find any further improvement, 
it explored the DLP NIR Scan Nano data. In the real case scenarios, this 
approach is practical as it allows users to understand if there is a clear 
need of an additional sensor or if a single sensor is sufficient to predict 
the traits of interest. Moreover, since the sequential approach requires 
the order of the sensors to be defined [37], this means that the user can 
first test all the lower cost sensor options available and keep the costlier 
or more sophisticated sensors for the end. The sequential approach will 
explore all the sensors one by one (based on the defined order) and stop 
if no further improvement is observed. 

A recent study using the deviation data fusion strategy and a spectral 
range of 590–1091 nm, attained a R2

p and RMSEP of 0.81 and 0.59% 
respectively for predicting SSC in pears [5]. In the present work, the 
sequential fusion of data from two spectral ranges clearly obtained a 
higher prediction accuracy for SSC with an R2

p and RMSEP of 0.86 and 
0.47%, respectively. Another related study, performed to predict dry 
matter (DM) (in our study, MC was predicted) and SSC in pear fruit using 
the spectral ranges of 600–1000 nm and 1000–2500 nm separately, 
showed that a maximum R2

p = 0.77 (DM) and R2
p = 0.81 (SSC) could be 

obtained. In the case of a model built on the 1000–2500 nm spectral 
range minimum errors were obtained for pears with a RMSEP of 0.8% 
and 0.47% for DM and SSC, respectively [10]. Although these authors 
predicted DM and SSC for pear fruit using two spectral ranges 

Fig. 6. SO-CovSel multi-block wavelength selection for the prediction of soluble solids content (SSC %). Wavelengths selected from (A). Felix, (B). DLP NIR Scan 
Nano. Prediction results on the calibration (C) and test (D) sets. R2 explain the coefficient of determination and RMSEC and RMSEP are the root mean squared error 
for calibration and prediction respectively. 
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(600–1000 nm and 1000–2500 nm) by using different spectrometers, 
they did not explore the possibility of fusing the complementary infor
mation from the two wavelength intervals. One reason could be the lack 
of sequential fusion methods available at the time when the study was 
performed. The use of a sequential data fusion strategy employed in the 
present study, effectively exploited information from multiple data 
matrices, leading to a better predictive model performance, compared to 
those reported by Ref. [5,10]. 

One of the main benefits of the sequential data modelling ap
proaches, such as SO-PLS and SO-CovSel, is that they extract comple
mentary information from the different data blocks: even if they may 
carry relevant information, if some predictors in the second block are 
redundant with respect to the variables already extracted from the first 
block, they won’t be selected. This is also evident from the results of the 
present study: even if DLP NIR Scan nano covers a spectral range partly 
overlapped with that of Felix, none of the variables extracted from the 
Felix device is “duplicated” when the selection is operated on the spectra 
from DLP NIR Scan Nano. 

5. Conclusions 

The study showed that fusion of NIR and the SWIR data can improve 
model performance when the spectroscopic profiles are used to predict 
key quality parameters (MC and SSC) in pear fruit. In particular, by 
selecting the VIS-NIR block as the one to be modelled first, comple
mentary information related to 2nd overtones of functional groups 
present in the SWIR could be integrated to substantially improve the 
predictive ability of the MC and SSC models. Moreover, the introduction 
of a further variable selection step selection step identified a minimum 
set of predictors that still showed good model performance. This mini
mum set of predictors could be used to build lower cost multispectral 
sensors or be integrated into existing portable devices such as the Felix. 
In general, the sequential fusion of spectral data from the Felix and the 
DLP NIR Scan Nano instruments increased the R2

p by 2.5% and reduced 
the RMSEP by 6.5% compared to the best results obtained on data from a 
single device (in this case the Felix VIS-NIR spectrometer). Since most 
portable spectrometers currently available in the market work with a 
limited spectral range, their synergistic fusion should be explored to take 
advantage from the complementary information present in the different 
wavelength intervals. To this purpose, specifically designed multi-block 
chemometric techniques should be used. 

Author contribution 

Puneet Mishra: Conceptualization, Data curation, Investigation. 
Federico Marini: Formal analysis, Software, Visualization. Bastiaan 
Brouwe: Formal analysis, Writing - review & editing. Jean Michel Roger: 
Software, Writing - review & editing. Alessandra Biancolillo: Formal 
analysis, Methodology, Software. Ernst Woltering: Writing - review & 
editing. Esther Hogeveen-van Echtelt: Formal analysis, Writing - review 
& editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

We would like to thank Mariska Nijenhuis, Manon Mensink, Najim El 
Harchioui and Marcel Staal for their help in sample preparation and 
analysis for MC and SSC. Pear samples measurements with Felix sensor 
were part of a bigger study funded through Foundation TKI, The 
Netherlands Horticulture and Starting Materials and other private 
partners in the project (TU-16025 (1605-043) Humistatus). 

References 

[1] B.M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, 
J. Lammertyn, Nondestructive measurement of fruit and vegetable quality by 
means of NIR spectroscopy: a review, Postharvest Biol. Technol. 46 (2007) 99–118. 

[2] R.F. Lu, R. Van Beers, W. Saeys, C.Y. Li, H.Y. Cen, Measurement of optical 
properties of fruits and vegetables: a review, Postharvest Biol. Technol. 159 (2020), 
111003. 

[3] K.B. Walsh, V.A. McGlone, D.H. Han, The uses of near infra-red spectroscopy in 
postharvest decision support: a review, Postharvest Biol. Technol. 163 (2020) 
111139. 

[4] P. Mishra, et al., Improving moisture and soluble solids content prediction in pear 
fruit using near-infrared spectroscopy with variable selection and model updating 
approach, Postharvest Biol. Technol. 171 (2021), 111348, https://doi.org/ 
10.1016/j.postharvbio.2020.111348. 

[5] L.M. Yuan, F. Mao, X.J. Chen, L.M. Li, G.Z. Huang, Non-invasive measurements of 
‘Yunhe’ pears by vis-NIRS technology coupled with deviation fusion modeling 
approach, Postharvest Biol. Technol. 160 (2020), 111067. 

[6] X.J. Yu, H.D. Lu, D. Wu, Development of deep learning method for predicting 
firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR 
hyperspectral reflectance imaging, Postharvest Biol. Technol. 141 (2018) 39–49. 

[7] X.M. He, X. Jiang, X.P. Fu, Y.W. Gao, X.Q. Rao, Least squares support vector 
machine regression combined with Monte Carlo simulation based on the spatial 
frequency domain imaging for the detection of optical properties of pear, 
Postharvest Biol. Technol. 145 (2018) 1–9. 

[8] J.H. Wang, J. Wang, Z. Chen, D.H. Han, Development of multi-cultivar models for 
predicting the soluble solid content and firmness of European pear (Pyrus 
communis L.) using portable vis-NIR spectroscopy, Postharvest Biol. Technol. 129 
(2017) 143–151. 

[9] S.E. Adebayo, N. Hashim, R. Hass, O. Reich, C. Regen, M. Munzberg, K. Abdan, 
M. Hanafi, M. Zude-Sasse, Using absorption and reduced scattering coefficients for 
non-destructive analyses of fruit flesh firmness and soluble solids content in pear 
(Pyrus communis ’Conference’)-An update when using diffusion theory, 
Postharvest Biol. Technol. 130 (2017) 56–63. 

[10] S. Travers, M.G. Bertelsen, K.K. Petersen, S.V. Kucheryavskiy, Predicting pear (cv. 
Clara Frijs) dry matter and soluble solids content with near infrared spectroscopy, 
Lwt-Food Science and Technology 59 (2014) 1107–1113. 

[11] A.M. Cavaco, P. Pinto, M.D. Antunes, J.M. da Silva, R. Guerra, Rocha’ pear 
firmness predicted by a Vis/NIR segmented model, Postharvest Biol. Technol. 51 
(2009) 311–319. 

[12] T. Sun, H.J. Lin, H.R. Xu, Y.B. Ying, Effect of fruit moving speed on predicting 
soluble solids content of ’Cuiguan’ pears (Pomaceae pyrifolia Nakai cv. Cuiguan) 
using PLS and LS-SVM regression, Postharvest Biol. Technol. 51 (2009) 86–90. 

[13] P. Mishra, et al., Close-range hyperspectral imaging of whole plants for digital 
phenotyping: recent applications and illumination correction approaches, Comput. 
Electron. Agric. 178 (2020), 105780, https://doi.org/10.1016/j. 
compag.2020.105780. 

[14] P. Mishra, et al., SPORT pre-processing can improve near-infrared quality 
prediction models for fresh fruits and agro-materials, Postharvest Biol. Technol. 
168 (2020), 111271, https://doi.org/10.1016/j.postharvbio.2020.111271. 

[15] P. Mishra, et al., Two standard-free approaches to correct for external influences on 
near-infrared spectra to make models widely applicable, Postharvest Biol. Technol. 
170 (2020), 111326, https://doi.org/10.1016/j.postharvbio.2020.111326. 

[16] P. Mishra, et al., Partial least square regression versus domain invariant partial 
least square regression with application to near-infrared spectroscopy of fresh fruit, 
Infrared Phys. Technol. (2020), 103547, https://doi.org/10.1016/j. 
infrared.2020.103547. 

[17] P.P. Subedi, K.B. Walsh, Assessment of avocado fruit dry matter content using 
portable near infrared spectroscopy: method and instrumentation optimisation, 
Postharvest Biol. Technol. (2020), 111078. 

[18] X.D. Sun, P. Subedi, K.B. Walsh, Achieving robustness to temperature change of a 
NIRS-PLSR model for intact mango fruit dry matter content, Postharvest Biol. 
Technol. (2020), 111117. 

[19] X. Sun, P. Subedi, R. Walker, K.B. Walsh, NIRS prediction of dry matter content of 
single olive fruit with consideration of variable sorting for normalisation pre- 
treatment, Postharvest Biol. Technol. 163 (2020) 111140. 

[20] C.A.T. dos Santos, M. Lopo, R.N.M.J. Pascoa, J.A. Lopes, A review on the 
applications of portable near-infrared spectrometers in the agro-food industry, 
Appl. Spectrosc. 67 (2013) 1215–1233. 
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