O. S. Akbari, K. D. Matzen, J. M. Marshall, H. Huang, and C. M. Ward, A synthetic gene drive system for local, reversible modification and suppression of insect populations, Curr. Biol, vol.23, pp.671-677, 2013.

O. S. Akbari, H. J. Bellen, E. Bier, S. L. Bullock, and A. Burt, Safeguarding gene drive experiments in the laboratory, Science, vol.349, pp.927-929, 2015.

N. Alphey and M. B. Bonsall, Interplay of population genetics and dynamics in the genetic control of mosquitoes, J. R. Soc. Interface, vol.11, 2014.

G. A. Backus and J. A. Delborne, Threshold-dependent gene drives in the wild: spread, controllability, and ecological uncertainty, Bioscience, vol.69, pp.900-907, 2019.

J. J. Bull, C. H. Remien, R. Gomulkiewicz, and S. M. Krone, Spatial structure undermines parasite suppression by gene drive cargo, PeerJ, vol.7, 2019.

A. Burt, Site-specific selfish genes as tools for the control and genetic engineering of natural populations, Proc. Biol. Sci, vol.270, pp.921-928, 2003.

J. Champer, A. Buchman, and O. S. Akbari, Cheating evolution: engineering gene drives to manipulate the fate of wild populations, Nat. Rev. Genet, vol.17, pp.146-159, 2016.

J. Champer, J. Liu, S. Y. Oh, R. Reeves, and A. Luthra, Reducing resistance allele formation in CRISPR gene drive, Proc. Natl. Acad. Sci. USA, vol.115, pp.5522-5527, 2018.

J. Champer, E. Lee, E. Yang, C. Liu, and A. G. Clark, A toxin-antidote CRISPR gene drive system for regional population modification, Nat. Commun, vol.11, p.1082, 2020.

V. Courtier-orgogozo, B. Morizot, and C. Boëte, Agricultural pest control with CRISPR-based gene drive: time for public debate: Should we use gene drive for pest control, EMBO reports, vol.18, pp.878-880, 2017.

V. Courtier-orgogozo, A. Danchin, P. Gouyon, and C. Boëte, Evaluating the probability of CRISPR-based gene drive contaminating another species, Evol Appl, vol.2020, pp.1-18, 2020.
URL : https://hal.archives-ouvertes.fr/mnhn-02559844

V. L. Del-amo, A. L. Bishop, J. B. Bennett, X. Feng, and J. M. Marshall, A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment, Nat. Commun, vol.11, pp.1-12, 2020.

A. Deredec, A. Burt, and H. C. Godfray, The Population Genetics of Using Homing Endonuclease Genes in Vector and Pest Management, Genetics, vol.179, pp.2013-2026, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02663881

J. E. Dicarlo, A. Chavez, S. L. Dietz, K. M. Esvelt, and G. M. Church, Safeguarding CRISPR-Cas9 gene drives in yeast, Nat. Biotechnol, vol.33, pp.1250-1255, 2015.

D. W. Drury, A. L. Dapper, D. J. Siniard, G. E. Zentner, and M. J. Wade, CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations, Sci. Adv, vol.3, 2017.

M. P. Edgington, T. Harvey-samuel, and L. Alphey, Population-level multiplexing: A promising strategy to manage the evolution of resistance against gene drives targeting a neutral locus, Evol Appl, vol.2020, pp.1-10, 2020.

K. M. Esvelt, A. L. Smidler, F. Catteruccia, and G. M. Church, Emerging technology: concerning RNA-guided gene drives for the alteration of wild populations, vol.3, 2014.

C. G. Extavour and M. Akam, Mechanisms of germ cell specification across the metazoans: epigenesis and preformation, Development, vol.130, pp.5869-5884, 2003.

V. M. Gantz and E. Bier, The dawn of active genetics, BioEssays, vol.38, pp.50-63, 2016.

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem, vol.81, pp.2340-2361, 1977.

L. Girardin, V. Calvez, and F. Débarre, Catch me if you can: a spatial model for a brake-driven gene drive reversal, Bull. Math. Biol, vol.81, pp.5054-5088, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02620480

D. Gurwitz, Gene drives raise dual-use concerns, Science, vol.345, pp.1010-1010, 2014.

P. Heyn, M. Kircher, A. Dahl, J. Kelso, and P. Tomancak, The earliest transcribed zygotic genes are short, newly evolved, and different across species, Cell Rep, vol.6, pp.285-292, 2014.

C. E. Juliano, S. Z. Swartz, and G. M. Wessel, A conserved germline multipotency program, Development, vol.137, pp.4113-4126, 2010.

K. Kyrou, A. M. Hammond, R. Galizi, N. Kranjc, and A. Burt, A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes, Nat. Biotechnol, vol.36, pp.1062-1066, 2018.

C. M. Leitschuh, D. Kanavy, G. A. Backus, R. X. Valdez, and M. Serr, Developing gene drive technologies to eradicate invasive rodents from islands, J. Responsib. Innov, vol.5, pp.121-138, 2018.

F. Li and M. J. Scott, CRISPR/Cas9-mediated mutagenesis of the white and Sex lethal loci in the invasive pest, Drosophila suzukii, Biochem. Biophys. Res. Commun, vol.469, pp.911-916, 2016.

M. Li, T. Yang, N. P. Kandul, M. Bui, and S. Gamez, Development of a confinable gene drive system in the human disease vector Aedes aegypti, p.51701, 2020.

J. M. Marshall and B. A. Hay, Confinement of gene drive systems to local populations: a comparative analysis, J. Theor. Biol, vol.294, pp.153-171, 2012.

J. M. Marshall and O. S. Akbari, Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology, ACS Chem. Biol, vol.13, pp.424-430, 2018.

M. Montenegro-de-wit, Gene driving the farm: who decides, who owns, and who benefits?, Agroecol. Sustain. Food Syst, vol.43, pp.1054-1074, 2019.

J. Min, A. L. Smidler, D. Najjar, and K. M. Esvelt, Harnessing gene drive, Journal of Responsible Innovation, vol.5, pp.40-65, 2018.

T. Nagylaki and J. F. Crow, Continuous selective models. Theor, Popul. Biol, vol.5, pp.257-283, 1974.

, Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values, 2016.

C. Noble, J. Olejarz, K. M. Esvelt, G. M. Church, and M. A. Nowak, Evolutionary dynamics of CRISPR gene drives, Sci. Adv, vol.3, 2017.

C. Noble, B. Adlam, G. M. Church, K. M. Esvelt, and M. A. Nowak, Current CRISPR gene drive systems are likely to be highly invasive in wild populations, vol.7, 2018.

C. Noble, J. Min, J. Olejarz, J. Buchthal, and A. Chavez, Daisy-chain gene drives for the alteration of local populations, Proc. Natl. Acad. Sci, vol.116, pp.8275-8282, 2019.

G. Oberhofer, T. Ivy, and B. A. Hay, Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide RNAs, Proc. Natl. Acad. Sci. USA, vol.115, pp.9343-9352, 2018.

K. A. Oye, K. Esvelt, E. Appleton, F. Catteruccia, and G. Church, Regulating gene drives, Science, vol.345, pp.626-628, 2014.

R. R. Raban, J. M. Marshall, and O. S. Akbari, Progress towards engineering gene drives for population control, J. Exp. Biol, vol.223, p.208181, 2020.

N. O. Rode, A. Estoup, D. Bourguet, V. Courtier-orgogozo, and F. Débarre, Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks, Conserv. Genet, vol.20, pp.671-690, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02338278

M. J. Scott, F. Gould, M. Lorenzen, N. Grubbs, and O. Edwards, Agricultural production: assessment of the potential use of Cas9-mediated gene drive systems for agricultural pest control, S98-S120, vol.5, 2018.

H. Tanaka, H. A. Stone, and D. R. Nelson, Spatial gene drives and pushed genetic waves, Proc. Natl. Acad. Sci, vol.114, pp.8452-8457, 2017.

R. L. Unckless, P. W. Messer, T. Connallon, and A. G. Clark, Modeling the Manipulation of Natural Populations by the Mutagenic Chain Reaction, Genetics, vol.201, pp.425-431, 2015.

R. L. Unckless, A. G. Clark, and P. W. Messer, Evolution of Resistance Against CRISPR/Cas9 Gene Drive, Genetics, vol.205, pp.827-841, 2017.

M. R. Vella, C. E. Gunning, A. L. Lloyd, and F. Gould, Evaluating strategies for reversing CRISPR-Cas9 gene drives, Sci. Rep, vol.7, p.11038, 2017.

S. H. Webster, M. R. Vella, and M. J. Scott, Development and testing of a novel killer-rescue self-limiting gene drive system in Drosophila melanogaster, Proc. R. Soc. B, vol.287, 2020.

B. Wu, L. Luo, and X. J. Gao, Cas9-triggered chain ablation of cas9 as a gene drive brake, Nat. Biotechnol, vol.34, pp.137-138, 2016.