D. J. Jenkins, T. M. Wolever, A. L. Jenkins, M. J. Thorne, R. Lee et al., The glycaemic index of foods tested in diabetic patients: A new basis for carbohydrate exchange favouring the use of legumes, Diabetologia, vol.24, issue.4, 1983.

B. J. Venn and T. J. Green, Glycemic index and glycemic load: measurement issues and their effect on diet?disease relationships, European Journal of Clinical Nutrition, vol.61, issue.S1, pp.S122-S131, 2007.

J. Galgani, C. Aguirre, and E. Díaz, Acute effect of meal glycemic index and glycemic load on blood glucose and insulin responses in humans, Nutrition Journal, vol.5, issue.1, 2006.

T. Butler, C. P. Kerley, N. Altieri, J. Alvarez, J. Green et al., Optimum nutritional strategies for cardiovascular disease prevention and rehabilitation (BACPR), Heart, vol.106, issue.10, pp.724-731, 2020.

T. J. Williams and M. C. Cervenka, The role for ketogenic diets in epilepsy and status epilepticus in adults, Clinical Neurophysiology Practice, vol.2, pp.154-160, 2017.

M. Vergati, E. Krasniqi, G. D. Monte, S. Riondino, D. Vallone et al., Ketogenic Diet and Other Dietary Intervention Strategies in the Treatment of Cancer, Current Medicinal Chemistry, vol.24, issue.12, 2017.

R. J. Li, Y. Liu, H. Liu, and J. J. Li, Ketogenic diets and protective mechanisms in epilepsy, metabolic disorders, cancer, neuronal loss, and muscle and nerve degeneration, Journal of Food Biochemistry, vol.44, issue.3, p.44, 2020.

L. B. Gano, M. Patel, and J. M. Rho, Ketogenic diets, mitochondria, and neurological diseases, Journal of Lipid Research, vol.55, issue.11, pp.2211-2228, 2014.

F. Gómez-pinilla, Brain foods: the effects of nutrients on brain function, Nature Reviews Neuroscience, vol.9, issue.7, pp.568-578, 2008.

T. M. Wolever and D. J. Jenkins, The use of the glycemie Index in predicting the blood glucose response to mixed meals, The American Journal of Clinical Nutrition, vol.43, issue.1, pp.167-172, 1986.

S. Ballance, S. H. Knutsen, Ø. W. Fosvold, A. S. Fernandez, and J. Monro, Predicting mixed-meal measured glycaemic index in healthy subjects, European Journal of Nutrition, vol.58, issue.7, pp.2657-2667, 2018.

P. Mergenthaler, U. Lindauer, G. A. Dienel, and A. Meisel, Sugar for the brain: the role of glucose in physiological and pathological brain function, Trends in Neurosciences, vol.36, issue.10, pp.587-597, 2013.

A. Peters, The selfish brain: Competition for energy resources, American Journal of Human Biology, vol.23, issue.1, pp.29-34, 2010.

C. Blouet and G. J. Schwartz, Hypothalamic nutrient sensing in the control of energy homeostasis, Behavioural Brain Research, vol.209, issue.1, pp.1-12, 2010.

A. J. López-gambero, F. Martínez, K. Salazar, M. Cifuentes, and F. Nualart, Brain Glucose-Sensing Mechanism and Energy Homeostasis, Molecular Neurobiology, vol.56, issue.2, pp.769-796, 2018.

K. Makki, E. C. Deehan, J. Walter, and F. Bäckhed, The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease, Cell Host & Microbe, vol.23, issue.6, pp.705-715, 2018.

J. C. Shieh, P. T. Huang, and Y. F. Lin, Alzheimer?s Disease and Diabetes: Insulin Signaling as the Bridge Linking Two Pathologies, Molecular Neurobiology, vol.57, issue.4, pp.1966-1977, 2020.

J. A. Kulas, T. K. Weigel, and H. A. Ferris, Insulin resistance and impaired lipid metabolism as a potential link between diabetes and Alzheimer's disease, Drug Development Research, vol.81, issue.2, pp.194-205, 2020.

C. Toth, Diabetes and neurodegeneration in the brain, Diabetes and the Nervous System, pp.489-511, 2014.

A. Akhtar, S. P. Sah, S. Vega-lópez, B. J. Venn, and J. L. Slavin, Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease, Neurochemistry International, vol.135, p.10, 2018.

L. Pellerin and P. J. Magistretti, Sweet Sixteen for ANLS, Journal of Cerebral Blood Flow & Metabolism, vol.32, issue.7, pp.1152-1166, 2011.

L. Dye, A. Lluch, and J. E. Blundell, Macronutrients and mental performance, Nutrition, vol.16, issue.10, pp.1021-1034, 2000.

S. E. Power, E. M. O?connor, R. P. Ross, C. Stanton, P. W. O?toole et al., Dietary glycaemic load associated with cognitive performance in elderly subjects, European Journal of Nutrition, vol.54, issue.4, pp.557-568, 2014.

V. Simeon, P. Chiodini, A. Mattiello, S. Sieri, C. Panico et al., Dietary glycemic load and risk of cognitive impairment in women: findings from the EPIC-Naples cohort, European Journal of Epidemiology, vol.30, issue.5, pp.425-433, 2015.

S. Seetharaman, R. Andel, C. Mcevoy, A. K. Aslan, D. Finkel et al., Blood glucose, diet-based glycemic load and cognitive aging among dementia-free older adults, Journals of Gerontology -Series A Biological Sciences and Medical Sciences, vol.70, pp.6-9, 2015.

H. Omote, T. Miyaji, N. Juge, and Y. Moriyama, Vesicular Neurotransmitter Transporter: Bioenergetics and Regulation of Glutamate Transport, Biochemistry, vol.50, issue.25, pp.5558-5565, 2011.

N. Juge, J. A. Gray, H. Omote, T. Miyaji, T. Inoue et al., Metabolic Control of Vesicular Glutamate Transport and Release, Neuron, vol.68, issue.1, pp.99-112, 2010.

V. Izzo, J. M. Bravo-san-pedro, V. Sica, G. Kroemer, and L. Galluzzi, Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties, Trends in Cell Biology, vol.26, issue.9, pp.655-667, 2016.

D. Y. Kim, K. A. Simeone, T. A. Simeone, J. D. Pandya, J. C. Wilke et al., Ketone bodies mediate antiseizure effects through mitochondrial permeability transition, Annals of Neurology, vol.78, issue.1, pp.77-87, 2015.

Z. Zhou, G. Austin, L. Young, L. Johnson, and R. Sun, Mitochondrial Metabolism in Major Neurological Diseases, Cells, vol.7, issue.12, p.229, 2018.

M. A. Cooper, C. Mccoin, D. Pei, J. P. Thyfault, D. Koestler et al., Reduced mitochondrial reactive oxygen species production in peripheral nerves of mice fed a ketogenic diet, Experimental Physiology, vol.103, issue.9, pp.1206-1212, 2018.

J. N. Pearson-smith and M. Patel, Metabolic Dysfunction and Oxidative Stress in Epilepsy, International Journal of Molecular Sciences, vol.18, issue.11, p.2365, 2017.

S. Knowles, S. Budney, M. Deodhar, S. A. Matthews, K. A. Simeone et al., Ketogenic diet regulates the antioxidant catalase via the transcription factor PPAR?2, Epilepsy Research, vol.147, pp.71-74, 2018.

T. A. Simeone, K. A. Simeone, and J. M. Rho, Ketone Bodies as Anti-Seizure Agents, Neurochemical Research, vol.42, issue.7, pp.2011-2018, 2017.

T. A. Simeone, K. A. Simeone, and J. M. Rho, Ketone Bodies as Anti-Seizure Agents, Neurochemical Research, vol.42, issue.7, pp.2011-2018, 2017.

T. A. Simeone, S. A. Matthews, K. K. Samson, and K. A. Simeone, Regulation of brain PPARgamma2 contributes to ketogenic diet anti-seizure efficacy, Experimental Neurology, vol.287, pp.54-64, 2017.

E. A. Jeong, B. T. Jeon, H. J. Shin, N. Kim, D. H. Lee et al., Ketogenic diet-induced peroxisome proliferator-activated receptor-? activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures, Experimental Neurology, vol.232, issue.2, pp.195-202, 2011.

C. Damaskos, S. Valsami, M. Kontos, E. Spartalis, T. Kalampokas et al., Histone Deacetylase Inhibitors: An Attractive Therapeutic Strategy Against Breast Cancer, Anticancer Research, vol.37, issue.1, pp.35-46, 2017.

T. Shimazu, M. D. Hirschey, J. Newman, W. He, K. Shirakawa et al., Suppression of Oxidative Stress by -Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor, Science, vol.339, issue.6116, pp.211-214, 2012.

A. Vezzani, B. Lang, and E. Aronica, Immunity and inflammation in epilepsy. Cold Spring Harbor Perspectives in Medicine, vol.6, 2016.

M. Rahman, S. Muhammad, M. A. Khan, H. Chen, D. A. Ridder et al., The ?-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages, Nature Communications, vol.5, issue.1, 2014.

Y. H. Youm, K. Y. Nguyen, R. W. Grant, E. L. Goldberg, M. Bodogai et al., The ketone metabolite ?-hydroxybutyrate blocks NLRP3 inflammasome?mediated inflammatory disease, Nature Medicine, vol.21, issue.3, pp.263-269, 2015.

J. D. Spence and C. Tangney, Lower risk of stroke with a vegetarian diet, Neurology, vol.94, issue.11, pp.463-464, 2020.

A. Waldmann, A. Ströhle, J. W. Koschizke, C. Leitzmann, and A. Hahn, Overall Glycemic Index and Glycemic Load of Vegan Diets in Relation to Plasma Lipoproteins and Triacylglycerols, Annals of Nutrition and Metabolism, vol.51, issue.4, pp.335-344, 2007.

P. A. Pérez-corredor, J. A. Gutiérrez-vargas, L. Ciro-ramírez, N. Balcazar, and G. P. Cardona-gómez, High fructose diet-induced obesity worsens post-ischemic brain injury in the hippocampus of female rats, Nutritional Neuroscience, pp.1-15, 2020.

D. Sander and M. T. Kearney, Reducing the risk of stroke in type 2 diabetes: pathophysiological and therapeutic perspectives, Journal of Neurology, vol.256, issue.10, pp.1603-1619, 2009.

K. J. Lee, J. S. Lee, and K. H. Jung, Interactive effect of acute and chronic glycemic indexes for severity in acute ischemic stroke patients, BMC Neurology, vol.18, issue.1, 2018.

N. M. Robbins and R. A. Swanson, Opposing Effects of Glucose on Stroke and Reperfusion Injury, Stroke, vol.45, issue.6, pp.1881-1886, 2014.

T. J. Song, Y. Chang, M. Y. Chun, C. Y. Lee, A. R. Kim et al., High Dietary Glycemic Load is Associated with Poor Functional Outcome in Patients with Acute Cerebral Infarction, Journal of Clinical Neurology, vol.14, issue.2, p.165, 2018.

M. J. Luitse, B. K. Velthuis, L. J. Kappelle, Y. Van-der-graaf, and G. J. Biessels, Chronic hyperglycemia is related to poor functional outcome after acute ischemic stroke, International Journal of Stroke, vol.12, issue.2, pp.180-186, 2016.

M. Kamouchi, T. Matsuki, J. Hata, T. Kuwashiro, T. Ago et al., Prestroke glycemic control is associated with the functional outcome in acute ischemic stroke: The fukuoka stroke registry, Góngora-Rivera, F. Glycemic Variability and Acute Ischemic Stroke: The Missing Link? Translational Stroke Research, vol.42, pp.638-646, 2011.

M. J. Quast, J. Wei, N. C. Huang, D. G. Brunder, S. L. Sell et al., Perfusion Deficit Parallels Exacerbation of Cerebral Ischemia/Reperfusion Injury in Hyperglycemic Rats, Journal of Cerebral Blood Flow & Metabolism, vol.17, issue.5, pp.553-559, 1997.

M. B. Bevers, N. H. Vaishnav, L. Pham, T. W. Battey, and W. T. Kimberly, Hyperglycemia is associated with more severe cytotoxic injury after stroke, Journal of Cerebral Blood Flow & Metabolism, vol.37, issue.7, pp.2577-2583, 2016.

M. B. Bevers, N. H. Vaishnav, L. Pham, T. W. Battey, and W. T. Kimberly, Hyperglycemia is associated with more severe cytotoxic injury after stroke, Journal of Cerebral Blood Flow & Metabolism, vol.37, issue.7, pp.2577-2583, 2016.

R. E. Anderson, W. K. Tan, H. S. Martin, and F. B. Meyer, Effects of Glucose and Pa o 2 Modulation on Cortical Intracellular Acidosis, NADH Redox State, and Infarction in the Ischemic Penumbra, Stroke, vol.30, issue.1, pp.160-170, 1999.

A. Ceriello, K. Esposito, L. Piconi, M. A. Ihnat, J. E. Thorpe et al., Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress Than Mean Glucose in Normal and Type 2 Diabetic Patients, Diabetes, vol.57, issue.5, pp.1349-1354, 2008.

D. Santos-garcía, M. Blanco, J. Serena, S. Arias, M. Millán et al., Brachial arterial flow mediated dilation in acute ischemic stroke, European Journal of Neurology, vol.16, issue.6, pp.684-690, 2009.

E. Raynaud, A. Pérez-martin, J. Brun, A. A??ssa-benhaddad, C. Fédou et al., Relationships between fibrinogen and insulin resistance, Atherosclerosis, vol.150, issue.2, pp.365-370, 2000.

J. B. Meigs, M. A. Mittleman, D. M. Nathan, G. H. Tofler, D. E. Singer et al., Hyperinsulinemia, Hyperglycemia, and Impaired Hemostasis, JAMA, vol.283, issue.2, p.221, 2000.

T. J. Song, Y. Chang, A. R. Kim, Y. R. Kim, and Y. R. Kim, High dietary glycemic load was associated with the presence and burden of cerebral small vessel diseases in acute ischemic stroke patients, Nutrition Research, vol.51, pp.93-101, 2018.

D. Yu, X. Zhang, X. O. Shu, H. Cai, H. Li et al., Dietary glycemic index, glycemic load, and refined carbohydrates are associated with risk of stroke: a prospective cohort study in urban Chinese women, The American Journal of Clinical Nutrition, vol.104, issue.5, pp.1345-1351, 2016.

J. D. Spence, Nutrition and Risk of Stroke, Nutrients, vol.11, issue.3, p.647, 2019.

J. S. Lim, C. Kim, M. S. Oh, J. H. Lee, S. Jung et al., Effects of glycemic variability and hyperglycemia in acute ischemic stroke on post-stroke cognitive impairments, Journal of Diabetes and its Complications, vol.32, issue.7, pp.682-687, 2018.

R. Power, A. Prado-cabrero, R. Mulcahy, A. Howard, and J. M. Nolan, The Role of Nutrition for the Aging Population: Implications for Cognition and Alzheimer's Disease, 2019.

A. Otaegui-arrazola, P. Amiano, A. Elbusto, E. Urdaneta, and P. Martínez-lage, Diet, cognition, and Alzheimer?s disease: food for thought, European Journal of Nutrition, vol.53, issue.1, pp.1-23, 2013.

V. Campos-peña, D. Toral-rios, F. Becerril-pérez, C. Sánchez-torres, Y. Delgado-namorado et al., Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is A? a Crucial Factor in Both Pathologies?, Antioxidants & Redox Signaling, vol.26, issue.10, pp.542-560, 2017.

M. K. Taylor, D. K. Sullivan, R. H. Swerdlow, E. D. Vidoni, J. K. Morris et al., A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults, Am J Clin Nutr, vol.106, pp.1463-70, 2017.

E. R. Hascup, S. O. Broderick, M. K. Russell, Y. Fang, A. Bartke et al., Diet-Induced Insulin Resistance Elevates Hippocampal Glutamate as well as VGLUT1 and GFAP Expression in A?PP/PS1 Mice HHS Public Access, J Neurochem, vol.148, pp.219-237, 2019.

T. Wakabayashi, K. Yamaguchi, K. Matsui, T. Sano, T. Kubota et al., Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer?s disease, Molecular Neurodegeneration, vol.14, issue.1, 2019.

M. Samadi, S. Moradi, M. Moradinazar, R. Mostafai, and Y. Pasdar, Dietary pattern in relation to the risk of Alzheimer?s disease: a systematic review, Neurological Sciences, vol.40, issue.10, pp.2031-2043, 2019.

M. Sastre, T. Klockgether, and M. T. Heneka, Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms, International Journal of Developmental Neuroscience, vol.24, issue.2-3, pp.167-176, 2006.

M. S. Tan, J. T. Yu, T. Jiang, X. C. Zhu, and L. S. Tan, The NLRP3 Inflammasome in Alzheimer?s Disease, Molecular Neurobiology, vol.48, issue.3, pp.875-882, 2013.

C. A. Castellano, S. Nugent, N. Paquet, S. Tremblay, C. Bocti et al., Lower Brain 18F-Fluorodeoxyglucose Uptake But Normal 11C-Acetoacetate Metabolism in Mild Alzheimer's Disease Dementia, Journal of Alzheimer's Disease, vol.43, issue.4, pp.1343-1353, 2014.

M. K. Taylor, R. H. Swerdlow, and D. K. Sullivan, Dietary Neuroketotherapeutics for Alzheimer?s Disease: An Evidence Update and the Potential Role for Diet Quality, Nutrients, vol.11, issue.8, p.1910, 2019.

R. H. Swerdlow, J. M. Burns, and S. M. Khan, The Alzheimer's disease mitochondrial cascade hypothesis: Progress and perspectives, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1842, issue.8, pp.1219-1231, 2014.

K. J. Bough, J. Wetherington, B. Hassel, J. F. Pare, J. W. Gawryluk et al., Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet, Annals of Neurology, vol.60, issue.2, pp.223-235, 2006.

M. L. Prins, Cerebral Metabolic Adaptation and Ketone Metabolism after Brain Injury, Journal of Cerebral Blood Flow & Metabolism, vol.28, issue.1, pp.1-16, 2007.

L. B. Achanta and C. D. Rae, ?-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms, Neurochemical Research, vol.42, issue.1, pp.35-49, 2016.

P. G. Sullivan, N. A. Rippy, K. Dorenbos, R. C. Concepcion, A. K. Agarwal et al., The ketogenic diet increases mitochondrial uncoupling protein levels and activity, Annals of Neurology, vol.55, issue.4, pp.576-580, 2004.

S. Klaus and M. Ost, Mitochondrial uncoupling and longevity ? A role for mitokines?, Experimental Gerontology, vol.130, p.110796, 2020.

L. Peixoto and T. Abel, The Role of Histone Acetylation in Memory Formation and Cognitive Impairments, Neuropsychopharmacology, vol.38, issue.1, pp.62-76, 2012.

X. Zhu, S. Wang, L. Yu, J. Jin, X. Ye et al., HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer's disease, Aging Cell, vol.16, issue.5, pp.1073-1082, 2017.

K. Yamada and T. Nabeshima, Brain-Derived Neurotrophic Factor/TrkB Signaling in Memory Processes, Journal of Pharmacological Sciences, vol.91, issue.4, pp.267-270, 2003.

K. Marosi, S. W. Kim, K. Moehl, M. Scheibye-knudsen, A. Cheng et al., 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons, Journal of Neurochemistry, vol.139, issue.5, pp.769-781, 2016.

I. Koppel and T. Timmusk, Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors, Neuropharmacology, vol.75, pp.106-115, 2013.

S. H. Omar, Mediterranean and MIND Diets Containing Olive Biophenols Reduces the Prevalence of Alzheimer?s Disease, International Journal of Molecular Sciences, vol.20, issue.11, p.2797, 2019.

A. Trichopoulou, T. Costacou, C. Bamia, and D. Trichopoulos, Adherence to a Mediterranean Diet and Survival in a Greek Population, New England Journal of Medicine, vol.348, issue.26, pp.2599-2608, 2003.

N. Becerra-tomás, S. Blanco-mejía, E. Viguiliouk, T. Khan, C. W. Kendall et al., Mediterranean diet, cardiovascular disease and mortality in diabetes: A systematic review and meta-analysis of prospective cohort studies and randomized clinical trials, Critical Reviews in Food Science and Nutrition, vol.60, issue.7, pp.1207-1227, 2019.

S. D. Petersson and E. Philippou, Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence, Advances in Nutrition, vol.7, issue.5, pp.889-904, 2016.

L. Bozzetto, A. Alderisio, M. Giorgini, F. Barone, A. Giacco et al., Extra-Virgin Olive Oil Reduces Glycemic Response to a High?Glycemic Index Meal in Patients With Type 1 Diabetes: A Randomized Controlled Trial, Diabetes Care, vol.39, issue.4, pp.518-524, 2016.

R. Nagpal, B. J. Neth, S. Wang, S. Craft, and H. Yadav, Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment, EBioMedicine, vol.47, pp.529-542, 2019.

E. E. Martínez-leo and M. R. Segura-campos, Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases, Nutrition, vol.71, p.110609, 2020.

S. C. Watson and G. S. , Insulin and neurodegenerative disease: shared and specific mechanisms, 2004.

K. Murakami, Y. Miyake, S. Sasaki, K. Tanaka, W. Fukushima et al., Dietary glycemic index is inversely associated with the risk of Parkinson's disease: A case?control study in Japan, Nutrition, vol.26, issue.5, pp.515-521, 2010.

D. D. Dohrmann, P. Putnik, D. Bursa?-kova?evi?, J. Simal-gandara, J. M. Lorenzo et al., Japanese, Mediterranean and Argentinean diets and their potential roles in neurodegenerative diseases, Food Research International, vol.120, pp.464-477, 2019.

Y. C. Kao, W. Y. Wei, K. J. Tsai, and L. C. Wang, High Fat Diet Suppresses Peroxisome Proliferator-Activated Receptors and Reduces Dopaminergic Neurons in the Substantia Nigra, International Journal of Molecular Sciences, vol.21, issue.1, p.207, 2019.

A. Jackson, C. B. Forsyth, M. Shaikh, R. M. Voigt, P. A. Engen et al., Diet in Parkinson's Disease: Critical Role for the Microbiome, Frontiers in Neurology, vol.10, p.10, 2019.

M. M. Unger, J. Spiegel, K. U. Dillmann, D. Grundmann, H. Philippeit et al., Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls, Parkinsonism & Related Disorders, vol.32, pp.66-72, 2016.

C. Shin, Y. Lim, H. Lim, and T. B. Ahn, Plasma Short?Chain Fatty Acids in Patients With Parkinson's Disease, Movement Disorders, vol.35, issue.6, pp.1021-1027, 2020.

B. Hajebrahimi, A. Kiamanesh, A. A. Asgharnejad-farid, and G. Asadikaram, Type 2 diabetes and mental disorders; a plausible link with inflammation, Cellular and Molecular Biology, vol.62, issue.13, p.71, 2016.

P. Pervanidou, D. Bastaki, G. Chouliaras, K. Papanikolaou, E. Laios et al., Circadian cortisol profiles, anxiety and depressive symptomatology, and body mass index in a clinical population of obese children, Stress, vol.16, issue.1, pp.34-43, 2012.

A. Salari-moghaddam, P. Saneei, B. Larijani, and A. Esmaillzadeh, Glycemic index, glycemic load, and depression: a systematic review and meta-analysis, European Journal of Clinical Nutrition, vol.73, pp.356-365, 2019.

J. Zemdegs, H. Martin, H. Pintana, S. Bullich, S. Manta et al., Metformin promotes anxiolytic and antidepressant-like responses in insulin-resistant mice by decreasing circulating branched-chain amino acids, Journal of Neuroscience, vol.39, pp.5935-5948, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02330975

J. Zemdegs, G. Quesseveur, D. Jarriault, L. Pé-nicaud, X. Fioramonti et al., Themed Section: Updating Neuropathology and Neuropharmacology of Monoaminergic Systems High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice LINKED ARTICLES, British Journal of Pharmacology, vol.173, p.2095, 2016.

G. Quesseveur, B. Portal, J. A. Basile, P. Ezan, A. Mathou et al., Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice, Frontiers in Cellular Neuroscience, vol.9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01258337

G. Palaiologos, H. Philippidis, H. Chomatas, D. Iakovou, and A. Linardou, Effects of branched chain amino acids, pyruvate, or ketone bodies on the free amino acid pool and release from brain cortex slices of normal and streptozotocindiabetic rats, Neurochemical Research, vol.12, issue.1, pp.1-7, 1987.

D. Iakovou and A. Linardou, Effects of Branched Chain Amino Acids, Pyruvate, or Ketone Bodies on the Free Amino Acid Pool and Release From Brain Cortex Slices of Normal and Streptozotocin-Diabetic Rats, 1987.

D. S. Sonnet, M. N. O?leary, M. A.-gutierrez, S. M. Nguyen, S. Mateen et al., Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD, Scientific Reports, vol.6, issue.1, 2016.

O. Hahad, J. H. Prochaska, A. Daiber, and T. Münzel, Environmental Noise-Induced Effects on Stress Hormones, Oxidative Stress, and Vascular Dysfunction: Key Factors in the Relationship between Cerebrocardiovascular and Psychological Disorders, Oxidative Medicine and Cellular Longevity, vol.2019, pp.1-13, 2019.

J. M. Peirce and K. Alviña, The role of inflammation and the gut microbiome in depression and anxiety, Journal of Neuroscience Research, vol.97, issue.10, pp.1223-1241, 2019.

D. C. Mathews, I. D. Henter, and C. A. Zarate, Targeting the Glutamatergic System to Treat Major Depressive Disorder, Drugs, vol.72, issue.10, pp.1313-1333, 2012.

P. Krakowiak, C. K. Walker, A. A. Bremer, A. S. Baker, S. Ozonoff et al., Maternal Metabolic Conditions and Risk for Autism and Other Neurodevelopmental Disorders, PEDIATRICS, vol.129, issue.5, pp.e1121-e1128, 2012.

K. Lyall, D. L. Pauls, S. Santangelo, D. Spiegelman, and A. Ascherio, Maternal Early Life Factors Associated with Hormone Levels and the Risk of Having a Child with an Autism Spectrum Disorder in the Nurses Health Study II, Journal of Autism and Developmental Disorders, vol.41, issue.5, pp.618-627, 2010.

D. L. Vargas, C. Nascimbene, C. Krishnan, A. W. Zimmerman, and C. A. Pardo, Neuroglial activation and neuroinflammation in the brain of patients with autism, Annals of Neurology, vol.57, issue.1, pp.67-81, 2004.

P. H. Patterson, Immune involvement in schizophrenia and autism: Etiology, pathology and animal models, Behavioural Brain Research, vol.204, issue.2, pp.313-321, 2009.

M. Michel, M. J. Schmidt, and K. Mirnics, Immune system gene dysregulation in autism and schizophrenia, Developmental Neurobiology, vol.72, issue.10, pp.1277-1287, 2012.

M. L. Neuhouser, Y. Schwarz, C. Wang, K. Breymeyer, G. Coronado et al., A Low-Glycemic Load Diet Reduces Serum C-Reactive Protein and Modestly Increases Adiponectin in Overweight and Obese Adults, The Journal of Nutrition, vol.142, issue.2, pp.369-374, 2011.

T. Uchiki, K. A. Weikel, W. Jiao, F. Shang, A. Caceres et al., Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics), Gerontology, vol.11, pp.435-443, 2011.

A. Currais, C. Farrokhi, R. Dargusch, M. Goujon-svrzic, and P. Maher, Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder, Molecular Psychiatry, vol.21, issue.3, pp.426-436, 2015.

D. N. Ruskin, J. Svedova, J. L. Cote, U. Sandau, J. M. Rho et al., Ketogenic Diet Improves Core Symptoms of Autism in BTBR Mice, PLoS ONE, vol.8, issue.6, p.e65021, 2013.

T. Sumathi, T. Manivasagam, and A. J. Thenmozhi, The Role of Gluten in Autism, Advances in Neurobiology, pp.469-479, 2020.

. Springer, Index, The Science of Religion, Spirituality, and Existentialism, vol.24, pp.469-479, 2020.

E. Karhu, R. Zukerman, R. S. Eshraghi, J. Mittal, R. C. Deth et al., Nutritional interventions for autism spectrum disorder, Nutrition Reviews, vol.78, issue.7, pp.515-531, 2019.

K. Berding and S. M. Donovan, Dietary Patterns Impact Temporal Dynamics of Fecal Microbiota Composition in Children With Autism Spectrum Disorder, Frontiers in Nutrition, vol.6, 2020.

W. A. Kandeel, N. A. Meguid, G. Bjørklund, E. M. Eid, M. Farid et al., Impact of Clostridium Bacteria in Children with Autism Spectrum Disorder and Their Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted, 2020.

W. A. Kandeel, N. A. Meguid, G. Bjørklund, E. M. Eid, M. Farid et al., Impact of Clostridium Bacteria in Children with Autism Spectrum Disorder and Their Anthropometric Measurements, Journal of Molecular Neuroscience, vol.70, issue.6, pp.897-907, 2020.

S. M. Naushad, J. Md, N. Jain, C. K. Prasad, U. Naik et al., Short Communication Autistic children exhibit distinct plasma amino acid profile, 2013.

A. Frustaci, M. Neri, A. Cesario, J. B. Adams, E. Domenici et al., Oxidative stress-related biomarkers in autism: Systematic review and meta-analyses, Free Radical Biology and Medicine, vol.52, issue.10, pp.2128-2141, 2012.

B. J. Martin, Re: Biomarkers of Environmental Toxicity and Susceptibility in Autism, Journal of the Neurological Sciences, vol.280, issue.1-2, pp.127-128, 2009.

M. M. Waye and H. Y. Cheng, Genetics and epigenetics of autism: A Review, Psychiatry and Clinical Neurosciences, vol.72, issue.4, pp.228-244, 2017.

R. Bhandari, J. K. Paliwal, and A. Kuhad, Dietary Phytochemicals as Neurotherapeutics for Autism Spectrum Disorder: Plausible Mechanism and Evidence, Advances in Neurobiology, pp.615-646, 2020.

. Springer, , vol.24, pp.615-646, 2020.

H. Liu, A. W. Zimmerman, K. Singh, S. L. Connors, E. Diggins et al., Biomarker Exploration in Human Peripheral Blood Mononuclear Cells for Monitoring Sulforaphane Treatment Responses in Autism Spectrum Disorder, Scientific Reports, vol.10, issue.1, 2020.

M. Mitsiogianni, D. T. Trafalis, R. Franco, V. Zoumpourlis, A. Pappa et al., Sulforaphane and iberin are potent epigenetic modulators of histone acetylation and methylation in malignant melanoma, European Journal of Nutrition, 2020.

E. Klomparens and Y. Ding, The neuroprotective mechanisms and effects of sulforaphane, Brain Circulation, vol.5, 2019.

K. Singh, S. L. Connors, E. A. Macklin, K. D. Smith, J. W. Fahey et al., Sulforaphane treatment of autism spectrum disorder (ASD), Proceedings of the National Academy of Sciences, vol.111, issue.43, pp.15550-15555, 2014.

T. P. Solomon, J. M. Haus, K. R. Kelly, M. D. Cook, J. Filion et al., A low?glycemic index diet combined with exercise reduces insulin resistance, postprandial hyperinsulinemia, and glucose-dependent insulinotropic polypeptide responses in obese, prediabetic humans, The American Journal of Clinical Nutrition, vol.92, issue.6, pp.1359-1368, 2010.

S. Vega-lópez, B. J. Venn, and J. L. Slavin, Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease, Nutrients, vol.10, issue.10, p.1361, 2018.

G. Radulian, E. Rusu, A. Dragomir, and M. Posea, Metabolic effects of low glycaemic index diets, Nutrition Journal, vol.8, issue.1, 2009.

T. H. Role and O. F. Nutrient, Supply and Demand in Cerebral Energy Metabolism : Blood, vol.27, pp.1766-1791, 2007.

A. Klip, T. Tsakiridis, A. Marette, and P. A. Ortiz, Silver', I.A.; Ereciaska, M. Extracellular Glucose Concentration in Mammalian Brain: Continuous Monitoring of Changes during Increased Neuronal Activity and upon Limitation in Oxygen Supply in Normo, Hyperglycemic Animals, vol.8, pp.43-53, 1994.

R. Meierhans, M. Bé-chir, S. Ludwig, J. Sommerfeld, G. Brandi et al., Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury, Horvath, T.L. Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding, vol.22, pp.962-970, 2010.

K. S. Kim, R. J. Seeley, and D. A. Sandoval, Signalling from the periphery to the brain that regulates energy homeostasis, Nature Reviews Neuroscience, vol.19, issue.4, pp.185-196, 2018.

M. I. Zafar, K. E. Mills, J. Zheng, A. Regmi, S. Q. Hu et al., Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis, The American Journal of Clinical Nutrition, vol.110, issue.4, pp.891-902, 2019.

I. Abete, D. Parra, and J. A. Martinez, Energy-restricted diets based on a distinct food selection affecting the glycemic index induce different weight loss and oxidative response, Clinical Nutrition, vol.27, issue.4, pp.545-551, 2008.

K. J. Bell, C. E. Smart, G. M. Steil, J. C. Brand-miller, B. King et al., Impact of Fat, Protein, and Glycemic Index on Postprandial Glucose Control in Type 1 Diabetes: Implications for Intensive Diabetes Management in the Continuous Glucose Monitoring Era, Diabetes Care, vol.38, issue.6, pp.1008-1015, 2015.

R. Vrolix, L. E. Van-meijl, and R. P. Mensink, The metabolic syndrome in relation with the glycemic index and the glycemic load, Physiology & Behavior, vol.94, issue.2, pp.293-299, 2008.

R. J. Wood and M. L. Fernandez, Carbohydrate-restricted versus low-glycemic-index diets for the treatment of insulin resistance and metabolic syndrome, Nutrition Reviews, vol.67, issue.3, pp.179-183, 2009.

T. Shimazu and Y. Minokoshi, Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH), Journal of the Endocrine Society, vol.1, issue.5, pp.449-459, 2017.

S. Stanley, A. Moheet, and E. R. Seaquist, Central Mechanisms of Glucose Sensing and Counterregulation in Defense of Hypoglycemia, Endocrine Reviews, vol.40, issue.3, pp.768-788, 2019.

D. S. Ludwig, The Glycemic Index, JAMA, vol.287, issue.18, p.2414, 2002.

C. Leloup, C. Magnan, A. Benani, E. Bonnet, T. Alquier et al., Mitochondrial Reactive Oxygen Species Are Required for Hypothalamic Glucose Sensing, Diabetes, vol.55, issue.7, pp.2084-2090, 2006.

L. Carneiro, C. Allard, C. Guissard, X. Fioramonti, C. Tourrel-cuzin et al., Importance of Mitochondrial Dynamin-Related Protein 1 in Hypothalamic Glucose Sensitivity in Rats, Antioxidants & Redox Signaling, vol.17, issue.3, pp.433-444, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00725146

A. L. Colombani, L. Carneiro, A. Benani, A. Galinier, T. Jaillard et al., Enhanced Hypothalamic Glucose Sensing in Obesity: Alteration of Redox Signaling, Diabetes, vol.58, issue.10, pp.2189-2197, 2009.

C. Leloup, L. Casteilla, A. Carrière, A. Galinier, A. Benani et al., Balancing Mitochondrial Redox Signaling: A Key Point in Metabolic Regulation, Antioxidants & Redox Signaling, vol.14, issue.3, pp.519-530, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00824690

L. Desmoulins, C. Chrétien, R. Paccoud, S. Collins, C. Cruciani-guglielmacci et al., Mitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing, Molecular Metabolism, vol.20, pp.166-177, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02331080

X. Fioramonti, A. Deak, S. Deshpande, L. Carneiro, C. Zhou et al., Hypothalamic S-Nitrosylation Contributes to the Counter-Regulatory Response Impairment following Recurrent Hypoglycemia, PLoS ONE, vol.8, issue.7, p.e68709, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850774

R. M. De-guia, A. S. Hassing, L. J. Skov, C. Ratner, K. Pluci?ska et al., Fasting-and ghrelin-induced food intake is regulated by NAMPT in the hypothalamus, Acta Physiologica, vol.228, 2020.

A. H. De-mello, A. B. Costa, J. D. Engel, and G. T. Rezin, Mitochondrial dysfunction in obesity, Life Sciences, vol.192, pp.26-32, 2018.

K. Timper, L. Paeger, C. Sánchez-lasheras, L. Varela, A. Jais et al., Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity, Cell Reports, vol.25, issue.2, pp.383-397.e10, 2018.

E. Gyengesi, G. Paxinos, and Z. B.-andrews, Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation, Current Neuropharmacology, vol.10, issue.4, pp.344-353, 2012.

T. Jaillard, M. Roger, A. Galinier, P. Guillou, A. Benani et al., Hypothalamic Reactive Oxygen Species Are Required for Insulin-Induced Food Intake Inhibition: An NADPH Oxidase-Dependent Mechanism, Diabetes, vol.58, issue.7, pp.1544-1549, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00462266

L. Carneiro and L. Pellerin, Monocarboxylate transporters: new players in body weight regulation, Obesity Reviews, vol.16, pp.55-66, 2015.

L. Carneiro, S. Geller, X. Fioramonti, A. Hébert, C. Repond et al., Evidence for hypothalamic ketone body sensing: impact on food intake and peripheral metabolic responses in mice, American Journal of Physiology-Endocrinology and Metabolism, vol.310, issue.2, pp.E103-E115, 2016.

L. Carneiro, S. Geller, A. Hébert, C. Repond, X. Fioramonti et al., Hypothalamic sensing of ketone bodies after prolonged cerebral exposure leads to metabolic control dysregulation, Scientific Reports, vol.6, issue.1, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01397892

C. Le-foll, C. Le-foll, B. E. Levin, and B. E. Levin, Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 in the Regulation of Food Intake, Am J Physiol Regul Integr Comp Physiol, vol.310, pp.1186-1192, 2016.

C. Le-foll, A. A. Dunn-meynell, H. M. Miziorko, and B. E. Levin, Role of VMH ketone bodies in adjusting caloric intake to increased dietary fat content in DIO and DR rats, Am J Physiol Regul Integr Comp Physiol, vol.308, pp.872-878, 2015.

C. Le-foll, A. A. Dunn-meynell, H. M. Miziorko, and B. E. Levin, Regulation of Hypothalamic Neuronal Sensing and Food Intake by Ketone Bodies and Fatty Acids, Diabetes, vol.63, issue.4, pp.1259-1269, 2013.

M. G. Blá-zquez and C. , Is There an Astrocyte-Neuron Ketone Body Shuttle, Trends in Endocrinology & Metabolism, vol.12, pp.169-172, 2001.

E. O. Balasse and F. Féry, Ketone body production and disposal: Effects of fasting, diabetes, and exercise, Diabetes / Metabolism Reviews, vol.5, issue.3, pp.247-270, 1989.

P. O. Mcgowan, A. Sasaki, A. C. D'alessio, S. Dymov, B. Labonté et al., Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse, Nature Neuroscience, vol.12, issue.3, pp.342-348, 2009.

J. Drouin, 60 YEARS OF POMC: Transcriptional and epigenetic regulation of POMC gene expression, Journal of Molecular Endocrinology, vol.56, issue.4, pp.T99-T112, 2016.

A. Obri and M. Claret, The role of epigenetics in hypothalamic energy balance control: implications for obesity, Journal of Neuroendocrinology, vol.3, pp.208-220, 2017.

L. Carneiro and C. Leloup, <em>Mens sana in corpore sano:</em> Does the Glycemic Index Have a Role to Play?, Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5, 2020.

B. E. Levin, A. A. Dunn-meynell, and V. H. Routh, Brain glucosensing and the KATP channel, Nature Neuroscience, vol.4, issue.5, pp.459-460, 2001.

N. Marina, E. Turovsky, I. N. Christie, P. S. Hosford, A. Hadjihambi et al., Brain metabolic sensing and metabolic signaling at the level of an astrocyte, Glia, vol.66, issue.6, pp.1185-1199, 2017.

C. Leloup, C. Allard, L. Carneiro, X. Fioramonti, S. Collins et al., Glucose and hypothalamic astrocytes: More than a fueling role?, Neuroscience, vol.323, pp.110-120, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01251254

Y. Gao, C. Layritz, B. Legutko, T. O. Eichmann, E. Laperrousaz et al., Disruption of Lipid Uptake in Astroglia Exacerbates Diet-Induced Obesity, Diabetes, vol.66, issue.10, pp.2555-2563, 2017.

L. M. Frago and J. A. Chowen, Involvement of Astrocytes in Mediating the Central Effects of Ghrelin, International Journal of Molecular Sciences, vol.18, issue.3, p.536, 2017.

Y. Yasumoto, H. Miyazaki, M. Ogata, Y. Kagawa, Y. Yamamoto et al., Glial Fatty Acid-Binding Protein 7 (FABP7) Regulates Neuronal Leptin Sensitivity in the Hypothalamic Arcuate Nucleus, Molecular Neurobiology, vol.55, issue.12, pp.9016-9028, 2018.

D. Wang, L. Zhao, H. Zheng, M. Dong, L. Pan et al., Time-Dependent Lactate Production and Amino Acid Utilization in Cultured Astrocytes Under High Glucose Exposure, Molecular Neurobiology, vol.55, issue.2, pp.1112-1122, 2017.

N. H. Lee, M. Sa, Y. R. Hong, C. J. Lee, and J. H. Koo, Fatty Acid Increases cAMP-dependent Lactate and MAO-B-dependent GABA Production in Mouse Astrocytes by Activating a G?sProtein-coupled Receptor, Experimental Neurobiology, vol.27, issue.5, pp.365-376, 2018.

C. Allard, L. Carneiro, S. Grall, B. H. Cline, X. Fioramonti et al., Hypothalamic Astroglial Connexins are Required for Brain Glucose Sensing-Induced Insulin Secretion, Journal of Cerebral Blood Flow & Metabolism, vol.34, issue.2, pp.339-346, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01185034

C. Allard, L. Carneiro, S. C. Collins, C. Chré-tien, S. Grall et al., Dietary fibers as emerging nutritional factors against diabetes: focus on the involvement of gut microbiota, Critical Reviews in Biotechnology, vol.534, pp.524-540, 2013.

M. O. Weickert and A. F. Pfeiffer, Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes, The Journal of Nutrition, vol.148, issue.1, pp.7-12, 2018.

A. Kerimi, H. Nyambe-silavwe, J. S. Gauer, F. A. Tomás-barberán, and G. Williamson, Pomegranate juice, but not an extract, confers a lower glycemic response on a high?glycemic index food: randomized, crossover, controlled trials in healthy subjects, The American Journal of Clinical Nutrition, vol.106, issue.6, pp.1384-1393, 2017.

G. Frost, M. L. Sleeth, M. Sahuri-arisoylu, B. Lizarbe, S. Cerdan et al., The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism, Nature Communications, vol.5, issue.1, 2014.

J. Breton, N. Tennoune, N. Lucas, M. Francois, R. Legrand et al., Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth, Cell Metabolism, vol.23, issue.2, pp.324-334, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01397996

E. Schéle, L. Grahnemo, F. Anesten, A. Hallén, F. Bäckhed et al., The Gut Microbiota Reduces Leptin Sensitivity and the Expression of the Obesity-Suppressing Neuropeptides Proglucagon (Gcg) and Brain-Derived Neurotrophic Factor (Bdnf) in the Central Nervous System, Endocrinology, vol.154, issue.10, pp.3643-3651, 2013.