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Abstract: Interfaces between protected areas and their peripheries in southern Africa are subject to
interactions between wildlife and livestock that vary in frequency and intensity. In these areas, the
juxtaposition between production and conservation land uses in a context of increasing anthropisation
can create issues associated with human-wildlife coexistence and raises concerns for biodiversity
conservation, local development and livelihoods. This literature review aimed at addressing the
need to consolidate and gather in one article current knowledge on potential uses of satellite remote
sensing (SRS) products by movement ecologists to investigate the sympatry of wildlife/domestic
ungulates in savanna interface environments. A keyword querying process of peer reviewed scientific
paper, thesis and books has been implemented to identify references that (1) characterize the main
environmental drivers impacting buffalo (Syncerus caffer caffer) and cattle (Bos taurus & Bos indicus)
movements in southern Africa environments, (2) describe the SRS contribution to discriminate and
characterize these drivers. In total, 327 references have been selected and analyzed. Surface water,
precipitation, landcover and fire emerged as key drivers impacting the buffalo and cattle movements.
These environmental drivers can be efficiently characterized by SRS, mainly through open-access
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SRS products and standard image processing methods. Applying SRS to better understand buffalo
and cattle movements in semi-arid environments provides an operational framework that could be
replicated in other type of interface where different wild and domestic species interact. There is,
however, a need for animal movement ecologists to reinforce their knowledge of remote sensing
and/or to increase pluridisciplinary collaborations.

Keywords: African savanna; animal movements; earth observation imagery; remote sensing;
sympatric wild and domestic ungulates; wildlife-livestock interface

1. Introduction

In Africa, human populations living at the edge of protected areas have significantly increased
in recent years [1,2]. This burst in human population is a challenge for biodiversity conservation in
protected areas (PA) and livestock production in adjacent communal lands (CL) where these land uses
coexist [3]. At the PA-CL interfaces, interactions between wildlife, people and their livestock frequently
occur [4,5] even when park or veterinary fences, largely detrimental to wildlife movements, exist [6–8].
This growing number of interactions potentially increases human/wildlife coexistence related issues [3]
such as competition for resources inside/outside protected areas [9], predation of livestock by wild
carnivores [10], crop destruction by wildlife [11], and risk of pathogen transmission between wild
and domesticated species [12–14]. These complications associated with human/wildlife coexistence
raise challenges for biodiversity conservation and local development. They impact local communities’
livelihoods and well-being [15–18], and threaten the sustainable coexistence between stakeholders
involved in the management of these land-uses. In this context, identifying and characterizing
environmental drivers that condition animal movements in space and time is essential to assess the
potential opportunities and threats associated with wild/domestic interactions in PA-CL interfaces.

The potential for SRS applications, regarding environment monitoring in general and animal
conservation in particular, has been largely stressed [19,20]. Indeed, SRS techniques provide an
increasing number of sensors [21–26] that may characterize the environmental drivers impacting
animal movements at different space and time scales. Moreover, SRS offers continuous temporal
follow-up data in areas where in-situ data are nonexistent and/or difficult to collect [27], as it is the
case in the savanna landscapes in southern African PA-CL interfaces [28]. In these heterogeneous open
environments with high variability in soil composition, topography, and subject to dynamic processes
such as rainfall, fire, climate change, herbivory and human impacts [29–31], SRS could provide viable
tools to predict biophysical measurements of cover, density, and biomass of savanna vegetation [32,33].
However SRS also faces difficulties in retrieving vegetation spectral response due to soil background,
vegetation shadow, standing dead vegetation occurring in these arid and semi-arid areas [34,35].
Despite these limitations, combining SRS with recent advances in telemetry technology is key to assess
wildlife/domestic animal interactions in savanna landscapes, especially at PA-CL interfaces [36–38].

The African buffalo (Syncerus caffer caffer) and cattle (Bos taurus & Bos indicus) are keystone species
for conservation and production systems in southern African PA-CL interfaces. The understanding of
their functional ecology constitutes an applied example on how SRS can be efficiently used to design
a framework of animal movement analyses. The African buffalo is one of the “Big Five” [39] and
contributes to consumptive and non-consumptive tourism [40,41], provides a source of proteins and
income for local communities [42] and is an important member of the ungulate guild who shapes
habitat heterogeneity in and outside protected areas where the human presence is low [43–46]. Cattle,
in subsistence farming communities, provide draught power, source of protein, cash incomes, safety
net and social status [47–49]. Buffalo and cattle are both grazer ungulates, close phylogenetically,
sharing common resources (i.e., forage and water) [50], and are thus likely to overlap in range
and compete for resources, particularly in environments where resources are spatially segregated
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(e.g., savannas) [51,52]. Both species rely on their behavior and the management of the land use by
humans to cope with constrained access to natural resources (e.g., access to artificial water, forage
intake by the herder) [53,54]. Their shared use of space increases the likelihood of direct (i.e., the use
of the same space at the same time) and indirect (i.e., the use of the same space at different times)
contacts, which in turn promotes the risk of pathogen transmission [12,55–58], a threat to farmers
and biodiversity conservation [4,13]. Given this complex ecological context, characterizing buffalo
and cattle habitats to understand their movements in space and time in conjunction with currently
available SRS applications and methodologies is necessary.

In this review article, we aim at (1) reviewing the main environmental drivers impacting buffalo
and cattle movements in southern Africa interface environments, (2) describing the SRS contribution
to discriminate and characterize these drivers in southern Africa interfaces. The underlying objective
is to facilitate the uses of SRS by movement ecologists in order to improve wildlife/domestic animals
management and conservation in different types of savanna interfaces across the globe. It is adding
and completing previous works that focused on the link between SRS, environmental challenges and
animal movement but in a wider ecological context [20,59].

2. Review Article Methodology

A literature review of peer-reviewed articles, thesis and books in English (such as defined in Grant
and Booth (2009) [60]) has been conducted on the following topics: (i) behavioral and movement ecology
of buffalo and cattle in southern Africa; (ii) existing remote sensing tools allowing the discrimination
in time and space of determined environmental drivers. The Web of Science database was used to
retrieve relevant references via a two steps keyword querying process without time constraint. At each
step, a systematic screening based on the title and the abstract was first conducted to select the articles,
books or thesis for full-text reading. Selected references bibliographies have also been read to extract
additional relevant articles, book or thesis.

The first step was to discriminate the environmental drivers impacting buffalo and cattle
movements in space and time. The different keywords combined in no particularly order in the first
step were “buffalo”; “syncerus caffer”; “cattle”; “bos taurus”; “bos indicus”; “ungulates”; “southern
africa”; “movement”. The search resulted in 787 references. After abstract screening and the removal
of replicates, 87 peer-reviewed articles, thesis and books from 1975 to 2020 were included in the review
(Figure 1). Among them, 29 (33.3%) articles concerned buffalo only, 15 (17.2%) cattle only, and 43
(49.5%) both species. Landcover & Vegetation, surface water, precipitation and savanna fire emerged
as main environmental drivers impacting focal species (buffalo & cattle) (Figure 1).
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The second step was to define the existing methodologies in remote sensing to characterize
the different environmental drivers previously determined. The different keywords combined in no
particularly order in the second step were all the environmental drivers determined in the first step:
“surface water”; “precipitation”; “rainfall”; “vegetation”; “fire” with the addition of the following
keywords: “remote sensing”; “Earth observation imagery”; “landcover”; “land-use”; “spectral index”;
“radar”; “optical”; “savanna”. The search resulted in 1140 references and, after abstract sreening and
the removal of duplicates, 240 articles from 1974 to 2020 were included in the review.

In total, 327 articles from 1974 to 2020, divided into 9 categories, have been selected and used as
reference in this paper (Figure 2A). The “diverse” category includes the articles with general themes
close to the study, but which cannot fit into the other specified categories. Two thirds of the selected
peer-reviewed articles are about SRS, with a majority of them specifically focusing on Landcover &
vegetation and surface water (Figure 2A). We observed an increase in publications related to SRS
since the early 2000s and a steady frequency of peer-reviewed articles focusing on buffalo and cattle
(Figure 2B).
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3. Environmental Drivers Influencing the Movements of Buffalo and Cattle and the Satellite
Remote Sensing Tools to Characterize them

The main environmental drivers (Landcover/vegetation, surface water, savanna fire and
precipitation) identified through the reviewing process (Section 2) are illustrated through this section
using the example of a buffalo/cattle interface localized in HNP, Zimbabwe (Figure 3). In this particular
context, the two focal species interact at the interface between a national park and an adjacent CL
(Figure 3A) where habitats cover a wide variety of environments and natural resources.



Remote Sens. 2020, 12, 3218 5 of 37

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 41 

 

 
Figure 3. Illustrative examples of SRS-derived environmental drivers of buffalo and cattle movement 
in HNP, Zimbabwe (refer to supplementary materials for a complete description of the data used). 
(A) Map of the buffalo and cattle density based on GPS data set for both species (number of individual 
per pixel in the HNP interface ecosystem at 5m spatial resolution) [12]. (B) K-means unsupervised 
landcover classification map of Dete municipality next to HNP derived from Sentinel-2 imagery with 
a 10 m spatial resolution [61]. (C) Frequency and distribution of surface water presence at 10 m spatial 
resolution obtained via the Random Forest (RF) algorithm applied on a sentinel-2 image of March 
2018 after the application of atmospheric corrections [61]. (D) Normalized Difference Vegetation 
Index (NDVI) map with a 250 m spatial resolution from the Moderate-Resolution Imaging 
Spectroradiometer (MODIS). (E) Map of fire detected in 2018 using the MOD14A2 Fire product with 
a 1 km spatial resolution. (F) Map of the yearly precipitation estimations by the Tropical Applications 
of Meteorology using SATellite data (TAMSAT V3.0) product with a 4 km spatial resolution [62,63]. 

3.1. Landcover 

3.1.1. How Landcover and Vegetation Influences Cattle and Buffalo Movements 

Landcover (cropland, forest, surface water, artificial cover, bare soil, human infrastructures,…) 
affects animal movements because it reflects differences in resource availability, habitat structure 
preferences and ease of travel [64–66]. Buffalo and cattle are ruminants and predominantly grazers 
[67–69]. They are associated with open environments, where grass species are more abundant [70], 
and the spatial and temporal variability of fodder resource drives the foraging responses of both 
species [71]. Seasonal shifts in the composition of their diet are common due to the availability of 
grass species [72,73]. During the dry season, i.e., when quantity and quality of food resources 
decrease, buffalo and cattle adopt a selective and opportunistic switching between different types of 

Figure 3. Illustrative examples of SRS-derived environmental drivers of buffalo and cattle movement
in HNP, Zimbabwe (refer to supplementary materials for a complete description of the data used).
(A) Map of the buffalo and cattle density based on GPS data set for both species (number of individual
per pixel in the HNP interface ecosystem at 5m spatial resolution) [12]. (B) K-means unsupervised
landcover classification map of Dete municipality next to HNP derived from Sentinel-2 imagery with a
10 m spatial resolution [61]. (C) Frequency and distribution of surface water presence at 10 m spatial
resolution obtained via the Random Forest (RF) algorithm applied on a sentinel-2 image of March
2018 after the application of atmospheric corrections [61]. (D) Normalized Difference Vegetation Index
(NDVI) map with a 250 m spatial resolution from the Moderate-Resolution Imaging Spectroradiometer
(MODIS). (E) Map of fire detected in 2018 using the MOD14A2 Fire product with a 1 km spatial
resolution. (F) Map of the yearly precipitation estimations by the Tropical Applications of Meteorology
using SATellite data (TAMSAT V3.0) product with a 4 km spatial resolution [62,63].

3.1. Landcover

3.1.1. How Landcover and Vegetation Influences Cattle and Buffalo Movements

Landcover (cropland, forest, surface water, artificial cover, bare soil, human infrastructures, . . .
) affects animal movements because it reflects differences in resource availability, habitat structure
preferences and ease of travel [64–66]. Buffalo and cattle are ruminants and predominantly
grazers [67–69]. They are associated with open environments, where grass species are more
abundant [70], and the spatial and temporal variability of fodder resource drives the foraging
responses of both species [71]. Seasonal shifts in the composition of their diet are common due to the
availability of grass species [72,73]. During the dry season, i.e., when quantity and quality of food
resources decrease, buffalo and cattle adopt a selective and opportunistic switching between different
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types of habitat or concentrated feeding close to water sources [72,74]. Buffalo tend to avoid areas
used by cattle due to strong dietary overlap [75,76], the presence of human activities, and can travel
long distances to find suitable feeding resources during the dry season [71,77]. During the wet season,
buffalo tend to select available feeding resources located close to watering points, limiting their daily
travelled distances [70]. Cattle can range further away from their enclosures on their own, sometimes
into protected areas in search of quality forage when the season is dry and when there is no fences
surrounding the park [78]. In contrast, during the wet season, cattle focus on accessible and available
shrub vegetation or low lying herbaceous vegetation at proximity of their respective enclosure and
inside natural park in some instance [37]. Cattle are however prevented to enter agricultural fields
during the growing season [79].

3.1.2. SRS Basics for Characterizing and Classifying Landcover

SRS is widely used to assess landcover [80–84]. Different types of satellite sensors (Table 1)
record the electromagnetic radiations which characterize the landcover, may this be the radiation
reflected (optical sensors), the radiation emitted (thermal infrared and passive microwave sensors) or
the radiation scattered (active radar sensors) [85]. Their characteristics (spatial resolution, revisit time
period, spatial coverage, data availability, spectral resolution—see Table 1) define their capacities to
map different land cover types on a given study area.

Table 1. Small subset of Earth observation satellite systems allowing data acquisition that can potentially
be used in the field of animal movement ecology.

Optical Remote Sensing Satellites

Sensor Resolution Satellite Spatial
Resolution

Revisit Time
Period

Nb of
Spectral
Bands

Access Data
Availability

Used in
Buffalo/Cattle

Ecological
Studies

Low Resolution

NOAA 1.1 Km 2 times a day 5 Open-source 1978–present [86,87]

MODIS

Bands 1–2
250 m/bands 3–7

500 m/bands 8–36
1 km

2 times a day 36 Open-source 1999–present [29,54,67,79,
87–89]

Suomi NPP
Bands I1-5 375
m/bands M1-16

750 m
2 times a day 22 Open-source 2012–present -

Envisat MERIS 300 m 3 days 15 Open-source 2002–2012 -
Sentinel-3 300 m 2 days 21 Open-source 2016–present -

Medium Resolution

Landsat
Pan* 15 m/MS* 30

m/TIR* 60 to
100 m

16 days 4–11 Open-source 1972–present [11,37,88,90]

Sentinel-2
VNIR* 10

m/SWIR* 20
m/ACB* 60 m

5 days 13 Open-source 2015–present [91]

Aster
VNIR 15 m/SWIR

30 m/TIR
90 m

16 days 14 Open-source 1999–present -

High Resolution

Spot
Pan 1.5 to

2.5 m/MS 6 to
10 m

26 days 4–5 Licensed 1986–present [26]

Ikonos Pan 1 m/MS 4 m 1.5–3 days 5 Licensed 1995–2015 [54,92]
Rapideye MS 5 m 1–5.5 days 5 Licensed 2008–present [26]

ZY-3 Pan 2.1 m/MS
5.8 m 5 days 4 Licensed 2012–present -

GF-1/GF-2 MS 5 m 4–5 days 5 Licensed 2013–present -
Planetscope-DOVEs MS 3 m Daily 4 Licensed 2017–present -

Very-high Resolution

Quickbird Pan 0.61 m/MS
2.24 m 2.7 days 5 Licensed 2001–2015 -

WorldView Pan 0.31 m/MS
1.24 m 1–4 days 4–17 Licensed 2007–present [79]

Geoeye Pan 0.41/MS
1.64 m 3 days 5 Licensed 2008–present -

Pleaides Pan 0.7 m/MS
2.8 m Sub-daily 5 Licensed 2011–present -

Skysat Pan 0.9 m/MS 2 m Sub-daily 5 Licensed 2013–present -
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Table 1. Cont.

Radar Remote Sensing Satellites

Satellite Frequency Spatial
Resolution

Revisit Time
Period Polari-zation Access Data

Availability

Used in
Buffalo/Cattle

Ecological
Studies

ERS-1/ERS-2 C-band (5.3 GHz) 30 m 35 days VV Open-source 1991–2001 -

Radarsat 1
Radarsat 2

C-band (5.3 GHz)
C-band (5.405

GHz)

50 m
25 m

24 days
24 days

HH
VV-VH

Open-source
Licensed

1995–present
2007–present

-
-

Envisat ASAR C-band (5.3 GHz) 12.5 m 35 days VV Open-source 2002–2012 -
TerraSAR-X/TanDEM-X X-band (9.6 GHz) 5 m 11 days HH-VV Licensed 2007–present -

Sentinel-1 C-band (5.405
GHz)

FR* 3.5 m/HR*
10 m and 25

m/MR* 25 m and
40 m

6 days VV-VH Open-source 2014–present -

Alos PALSAR 1-2
Alos PALSAR 2 L-band (1.27 GHz) SP* 9 × 10 m/DP*

19 × 10 m 46–14 days VV VH
HH HV Licensed 2006–present -

* Visible Near Infrared (VNIR)/Short-wave Infrared (SWIR)/Thermal Infrared (TIR)/Atmospheric Correction Bands
(ACB)/Panchromatic (Pan)/Multi-spectral (MS)/Full Resolution (FR)/High Resolution (HR)/Medium Resolution
(MR)/Single Polarization (SP)/Dual Polarization (DP).

Two main categories of classification methodologies are commonly used in SRS to produce
landcover maps. Supervised classification methodologies use different machine learning algorithms
(maximum likelihood, neural network ensembles, random forests (RF), . . . ) to discriminate
user-determined landcover categories [93]. For example, the RF algorithm uses a set of decision
trees [94] and is now widely used [95,96], with the advantages of reliable and rapid execution in
processing time of large volume of variables and data [97,98]. Such approaches require the definition
of a training dataset of the different classes to be distinguished before classification. On the other hand,
unsupervised classifications methodologies are more automatic processes, relying on algorithms such
as K-means or Agglomerative Hierarchical to discriminate landcover categories [99]. The two types of
classification methods can be applied to classify either image pixels, based on their spectral or textural
values, or objects, i.e., neighboring pixels with similar spectral values aggregated into ”objects” prior to
the classification process. In the latter case, additional object-specific features such as shapes, context
features/neighborhood relation, scale-hierarchy relation can be used to characterize and classify the
objects [100]. In all cases, ground-truthing data are required for accuracy assessment.

Optical satellite images such as MODIS and Landsat (Table 1) have been used extensively for land
cover classification since the 1970s and have enabled the dissemination of freely available landcover
map products (Table 2) that represent major landscape features on a global scale. These products
provide an initial characterization of landscape features that can be useful considering landcover
preliminary assessments in a particular study area and can be easily operated by users with little SRS
knowledge. The recently launched ESA-S2-LC20 product (Table 2) is one good example and can fulfil
such a task despite a moderate accuracy [101]. However, as their spatial resolution and typologies are
possibly not adapted to the study of ungulates habitats, ‘customized’ landcover maps can be produced
to better reflect the landscape complexity of a particular study area [102]. Implementing optical indexes
of vegetation, soil (Table 3) and water (Table 4) can also potentially enhance landcover classification
results [103,104].

Despite high capacities to produce landcover maps, optical satellite images are not without
limitations (e.g., lack of cloud-free periods) [105] and synthetic aperture radar (SAR) images (Figure 4
and Table 1) can provide a reliable alternative to optical satellite images. SAR sensors produce their
own source of illumination and therefore can operate in almost any weather condition, day or night,
and penetrate different types of vegetation cover [106,107]. They have shown good results to classify
landcover in general [108], forests [109] and biomass [110] in particular and are, as a result, increasingly
used. Several studies have demonstrated the complementarity of SAR and optical data and concluded
that using them together provides better results than using them separately [22,111,112], especially in
tropical environments where the cloud coverage often hinders the use of optical satellite images [113].
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Table 2. List of satellite remote sensing-based landcover products.

Product Name Spatial Resolution Data Availability Sensor Used Reference

Climate Change Initiative (CCI)
LandCover V2 300 m 1992 to

2015–2016–2017–2018

MERIS Full and
Reduced

resolution/Spot
VGT

[114]

MCD12Q1 0.5 km MODIS-based
Global LandCover 500 m 2001–today MODIS [115]

Globeland30 30 m 2000/2010 Landsat TM, ETM7,
HJ-1A/b [116]

GLC 2000 1 km 2000 SPOT 4
VEGETATION [117]

GlobCover
2005 V2.2

2009
300 m 2005/2009 MERIS FR [118]

GLCNMO V.1-V.2-V3 1 km/500 m 2003/2008/2013 MODIS [119]

GLC Share 1 km 2014 MERIS-MODIS [120]

GLC250 m CN (2001/2010) 250 m 2001/2010 MODIS [121]

FROM-GLC (GLC, GLC-seg,
GLC-agg, GC, GLC-hierarchy) 30 m 2010 Landsat TM, ETM+ [122]

Global 30m Landsat Tree Canopy
(TCC) V.4 30 m 2000, 2005, 2010,

and 2015
MODIS, Landsat

TM, ETM+
[123]

Global Forest Change (GFC) -
GLAD (Global Land Analysis &

Discovery) lab at the University of
Maryland (UMD)

30 m 2000 to 2019 Landsat TM,
ETM+, OLI [80]

Copernicus Global 100 m
Landcover (CGLS-LC100) 100 m 2015 PROBA-V EO and

GSD [124]

ESA-S2-LC20, 20 m (over Africa) 20 m 2016 Sentinel-2A [125]

3.1.3. SRS for Detecting Landcover and Vegetation Changes

Detection of landcover changes is a complicated and integrated process and there is no optimal and
applicable approach to all cases [126]. Several studies have demonstrated the capacity of Landsat images,
which offer the longest continuous record of medium-resolution satellite-based earth observation
(Figure 4), to monitor long term environmental changes in savanna environments [127,128]. Optical
remote sensing sensors allow to monitor the evolution of the vegetation through phenology based on
the spectral signature of vegetation [129,130]. For example, the widely used normalized difference
vegetation index (NDVI) (Table 3) [131] was demonstrated highly correlated with the vegetation
photosynthetic activity [132–134], vegetation development and seasonal patterns, forage cumulative
growth period quality and quantity assessments [135–137]. These properties allow monitoring and
comparing vegetation phenology through space and time at different scales. The Figure 3D, for example,
represents one image (month of September 2018) of the MODIS MOD13Q1 NDVI time series, giving a
spatial representation of the vegetation repartition across the HNP interface area.

NDVI was also found correlated with animal movements [138,139]. However, in savanna
environments, the relevance of simple indexes such as the NDVI can be limited and must be used with
caution. Using low spatial resolution satellite sensors (i.e., MODIS) or even medium resolution satellite
sensors (i.e., Landsat or Sentinel-2), pixels are most of the time mixed pixels of varying proportion of
trees, grasses and bare soil [140,141]. In that case, the use of soil-adjusted vegetation indexes (Table 3)
may be used as complementary to enhance classification results and seasonal analyses of landcover
evolution [142,143] when applied within the frame of animal movement studies.
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3.1.4. SRS to Characterize Landcover and Vegetation When Studying Animal Movements in Savanna
Environments

Applying landcover classification to a savanna landscape can be challenging due to sparse cover,
high background soil signal, and difficulty to differentiate between spectral signals of bare soil and
dry vegetation [144]. Despite these limitations, Arraut et al. (2018) produced a map of the vegetation
structure of HNP in seven classes using 2013–2014 Landsat satellite images through a supervised
classification process with an overall accuracy (OA) of 83.2% [102]. Figure 3B presents another example
of a landcover map derived from an unsupervised classification (K-means algorithm) applied to a
Sentinel-2 satellite image.

Such tailored SRS landcover maps have been used in different studies of buffalo and cattle ecology
aiming at relating animal movements and landcover (Table 1). For example, Cornélis et al. (2011)
used a sylvo-pastoral vegetation map derived from 30 m resolution Landsat imagery to investigate the
habitat preferences of buffaloes in W Regional Park (Burkina Faso, Benin, Niger) [88]. At local scale,
very high spatial resolution sensors such as Worldview-2 and IKONOS were used (Table 1) to produce
fine-scale landcover maps allowing the determination of resource use of cattle in communal lands in
South Africa [79] and Zimbabwe [92].

Vegetation indexes (Table 3) provide a synthetic description of the vegetation spatio-temporal
dynamics and several studies have related SRS derived vegetation indices such as the NDVI or the
Enhanced Vegetation Index (EVI) (Table 3) to the spatio-temporal distribution and abundance of
buffalo and other ungulates species at different scales [26,29,54,68,79,86,88,89,145–147]. For example,
Naidoo et al. (2012a) used MODIS EVI time series to measure the greenness of the vegetation and
demonstrated the importance of this variable in explaining the variations in home range size of buffaloes
in northeastern Namibia [29]. In two Australian savanna study sites, Handcock et al. (2009) showed
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that the tracks of cattle from GPS collars overlaid with a NDVI map derived from a 10 m resolution
SPOT-5 image, highlighting a correlation between NDVI and cattle movements [26]. Using very high
spatial resolution imagery, Zengeya et al. (2015) derived a fine scale EVI map from an IKONOS image
to determine the proportion of cattle home range observed inside and outside a conservation area [54].

Table 3. Non-exhaustive list of spectral remote sensing indexes developed to discriminate vegetation
and soil from optical satellite image analysis and that can be useful within the frame of animal movement
studies in savanna environments.

Spectral Index Calculation * Reference Used in Buffalo/Cattle
Ecological Studies

Normalized Difference
Vegetation Index (NDVI)

(NIR−RED)/(NIR + RED) [148,149] [26,68,79,86,88,145–147]

Enhanced Vegetation
Index (EVI)

2.5×
[(NIR−RED)/((NIR + 6×RED− 7.5× BLUE) + 1] [150] [29,54,89,146]

Global Environmental
Monitoring Index

(GEMI)

[n× (1− 0.25× n) − (RED− 0.125)]/1−RED
n =[

2×
(
NIR2

−RED2
)
+ 1.5×NIR× 0.5×RED

]
/NIR+

RED + 0.5

[142] -

Soil Adjusted Vegetation
Index (SAVI)

[(1 + L) × (NIR−RED)]/NIR + RED + L
L = 0.5 [143] -

Modified Soil Adjusted
Vegetation Index

(MSAVI)
[2×NIR + 1−

√
(2×NIR + 1)2

− 8× (NIR−RED)]/2 [151] -

Modified Secondary
Soil-Adjusted Vegetation

Index (MSAVI2)

0.5× [2×NIR + 1) −
√
(2×NIR + 1)2

− 8×
(NIR−RED)]

[152] -

Difference Vegetation
Index (DVI) NIR−RED [153] -

Optimized
Soil-Adjusted Vegetation

Index (OSAVI)

(1 + Y × [(NIR−RED)/(NIR + RED×Y)]
where Y = 0.16 (optimal value) [154] -

Soil Brightness Index
(SBI)

0.30372× BLUE + 0.27933×GREEN + 0.47434×
RED+

0.55858×NIR+ 0.508210× SWIR+ 0.186312×MIR
[155] -

Two-band Enhanced
Vegetation Index (EVI2) 2.4× (NIR−RED)/(NIR + RED + 1) [156] -

Modified Chlorophyll
Absorption Ratio Index

(MCARI)

[(VNIR−RED) − 0.2× (VNIR−GREEN)] ×
(VNIR/RED)

[157] -

* BLUE, GREEN, RED, NIR, MIR, SWIR: reflectance values in blue, green, red, near infrared, mid infrared and
short-wave infrared, respectively. VNIR (visible and near infrared), SWIR1 ad SWIR2: reflectance values from bands
5, 11 and 12 of Sentinel-2 respectively.

3.2. Surface Water

3.2.1. How Surface Water Distribution Influences Cattle and Buffalo Movements

The availability of surface water, artificial (e.g., solar-pumped, diesel generator) [158] or natural
(e.g., dams, rivers) [159], is commonly cited to constrain movements and space-use of herbivores,
including savanna buffalo [88,160–163] and cattle [164,165]. However, the influence of water sources
in herbivore distributions is expected to change in response to variations in forage quality and
quantity [166,167]. Buffalo are usually associated with areas close to water all-year-round and drink
every day [90,168,169]. Similarly, cattle preferentially select areas close to water points, usually around
their enclosures in order to optimize the ratio of energy expenditure to energy gain [79,170] and can
also use boreholes which are never accessible to buffalo [90].
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3.2.2. SRS Basics for Detecting Water and Water Dynamics

Optical SRS imagery can be efficient to discriminate water surface in different environments
due to a wide range of sensors (Figure 4 & Table 1) with various spatial and temporal resolutions
available [171–176]. Depending on surface water properties (i.e., size, river, pond, seasonal) to detect,
different categories of sensors can be chosen [177]. However, their spatial resolution may affect their
efficiency in accurately detecting surface water.

Many methodologies, from thresholding a single infrared band to the use of multi-spectral
classification decision trees, have been developed to detect surface water via SRS [178–180]. They rely
on the spectral signature of water, characterized by a quick reduction of reflectance from the blue to the
near infrared wavelengths. Water indexes based on two or more spectral bands calculation (Table 4)
and various spectral band combinations have been widely used to detect surface water [181,182]
(see example in Figure 3C).

Other factors should also be considered as they potentially limit the satellite-based detection
of surface water extent [183]: water depth, water turbidity variation, soil characteristics, vegetation
cover, potential cloud cover and shadows. They all influence the water reflectance whatever the spatial
resolution of the satellite images and influence thresholding values and the efficient use of water
indexes. Despite these constraints, accurate methodologies can be developed to discriminate water by
adding complementary spatial information to spectral indexes alone. Owen et al. (2015) for instance,
have been able to accurately detect artificial waterholes across heterogeneous desert environments
using Landsat 8 data combined with spectral indexes and texture analysis [184].

Table 4. Non-exhaustive list of spectral remote sensing indexes developed to discriminate water
surfaces from optical satellite image analysis and that can be useful within the frame of animal
movement studies in savanna environments.

Spectral Index Calculation* Reference

Normalized Difference
Infrared Index NDII (NIR−MIR)/(NIR + MIR) [185]

Normalized Difference
Vegetation Index NDVI (NIR−RED)/(NIR + RED) [148,149]

Enhanced Vegetation
Index EVI 2.5×

[(NIR−RED)/(NIR + 6×RED− 7.5× BLUE + 1)] [150]

Normalized Difference
Water Index NDWI (GREEN −NIR)/(GREEN + NIR) [186]

Normalized Difference
Water Index (Gao)

NDWI
(Gao)

(GREEN − SWIR)/(GREEN + SWIR) [187]

Modified Normalized
Difference Water Index MNDWI (GREEN −MIR)/(GREEN + MIR) [188,189]

Normalized Difference
Turbidity Index NDTI (RED−GREEN)/(RED + GREEN) [188]

Normalized Difference
Phytoplankton Index NDPI (MIR−GREEN)/(MIR + GREEN) [188]

Automated Water
Extraction Index

AWEInsh
AWEIsh

AWEInsh = 4× (GREEN − SWIR1) −
(0.25 ×NIR + 2.75 × SWIR2)

AWEIsh = BLUE + 2.5 ×GREEN − 1.5 ×
(NIR + SWIR1) − 0.25 × SWIR2

[190]

Water Index WI 1.7204 + 171× GREEN + 3× RED 70× NIR 45×
SWIR171× SWIR2 [191]

* BLUE, GREEN, RED, NIR, MIR, SWIR: reflectance values in blue, green, red, near infrared, mid infrared and
short-wave infrared, respectively. VNIR (visible and near infrared), SWIR1 and SWIR2: reflectance values from
Bands 5, 11 and 12 of Sentinel-2, respectively.
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Synthetic aperture radar (SAR) satellite images can be used independently or in combination
with optical satellite images in order to detect surface water [192,193]. The recent increase in number
of operational SAR sensors (Table 1 & Figure 4) has favored their use for surface water detection.
Indeed, several SAR-based water detection methodologies have been developed such as the surface
water detection through supervised and unsupervised classifications [194,195], thresholding [196,197],
object-based image analyses [198,199] and hybrid approaches [200,201]. The application of these
different methodologies led to the development of several surface water products (Table 5) [202–205].

The accuracy of the SAR-based surface water detection methodologies varies. Terrain shadowing
due to the topography can result in a side-looking effect [197]. The importance of the vegetation layer
can produce double-bounce scattering of the signal that increases the backscatter measured in the
SAR image [206]. The strong wind that roughens the water surfaces can lead to misclassification
errors and the threshold value to discriminate the surface water is dependent of the image quality
acquisition and the type of landscape [193]. Nevertheless, surface water long-term monitoring has been
successfully implemented in a savanna environment via a multi-SAR-system at high and very-high
spatial resolution [207].

3.2.3. SRS to Detect Surface Water When Studying Animal Movements in Savanna Environments

SRS-based water products like the Global Surface Water (GSW) and the Global Water Body map
(G3WBM/G1WBM) present the advantage to have a higher spatial resolution and temporal frequency
compare to the other products listed in Table 5. These products are suitable to detect massive bodies
of water at a continental scale and can be of interest for preliminary analyses, however they show
strong limitations when trying to discriminate localized, small or seasonal surface water which are
predominant in savanna environments [208]. Indeed, detecting surface water in savanna environments
via remote sensing at a landscape scale remains challenging mostly because of surface water seasonality
dynamics, landscape heterogeneity and variety in surface water area sizes and morphologies [208,209].

Increasing availability of free medium-resolution optical and radar satellite sensors such as
Sentinel-1 and Sentinel-2 (Table 1) offers potentialities to accurately discriminate, via supervised
classification, surface water and surface water dynamics [210]. Among the different spectral remote
sensing indexes developed to discriminate water surface from optical satellite images (Table 4),
the MNDWI and NDWI are the most commonly used [211] and were identified as efficient discriminating
indexes for the detection of surface water extent in savanna environments [177,212]. In the case of
the HNP study area shown in Figure 3C, a time series of 12 Sentinel-2 images (one image per month
for the year 2018) combined with the application of the RF algorithm on MNDWI and NDWI indexes
(Table 4) was used to characterize the presence and seasonal dynamics of the surface water.

So far, water spectral indexes in combination with supervised classification have hardly been used
in direct relation with buffalo and cattle movements, although their potential within this framework
have already been stressed [212]. Recently, Naidoo et al. (2020) used the NDWI calculated from
Sentinel-2 images to detect ephemeral water source in relation with buffalo and elephant movements
in Namibia [91]. However, most of the reviewed studies integrating water into their analysis only used
on-site observations of surface water [88,147,167] and natural or artificial waterholes [17,213–216].
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Table 5. Non-exhaustive list of remote sensing-based water products.

Product Name Developer Spatial
Resolution Frequency Data

Availability Reference

Global surface
water (GSW)

EC JRC (European
Commission Joint Research

Center)/Google
30 m Monthly

Yearly
1984–2015
1984–2019 [217]

CCI global map of
open water bodies

(WBP V4.0)

ESA (European Space Agency)
- climate change initiative(CCI) 300 m to 1 km 7 days–1 year 2000–2015 [218]

Global lakes and
wetlands database

(GLWD)

University of Kassel/World
Wildlife Fund (WWF) 1 km 1 year 2004 [219]

SRTM water body
data product

specific guidance
(SWBD)

National Aeronautics and
Space Administration (NASA) 90 m 1 year 2000 [220]

SAR-Based water
body indicator

(SAR-WBI)
ESA 150 m to 1 km 6 to 12 days 2005–2012 [221]

MOD44W NASA 250 m yearly 2000–2015 [222]

Copernicus WB Copernicus program-ESA 300 m to 1 km 10 days 2014–present [223]

Global 3-s/1-s
water body map

(G3WBM/G1WBM)

Department of Integrated
Climate Change Projection

Research, 4 Japan Agency for
Marine-Earth Science and

Technology

30 m to 90 m 1 year 2018 [224]

3.3. Fire Regimes

3.3.1. How Fire Influences Cattle and Buffalo Movements

Savanna is prone to fire due to the existence of a highly flammable continuous vegetation layer
with ideal burning conditions during the dry season [225,226]. Savanna fires can thus affect herbivores
movements, by impacting indirectly the quantity and quality of the grazing resources available [227] or
by reducing cover to hide from predation [228]. Although most herbivores are attracted to the recently
burned areas due to nutritious regrowth [229], buffalo habitat selection during the dry season appear
to be strongly constrained by the occurrence of fire, probably due to a great reduction of the quantity
of forage [75]. Fire can also affect the migration distance of buffalos during the wet season [146].

Movement patterns of cattle are also influenced by the occurrence of fire. In Kenyan savanna
ecosystems, prescribed burning improved cattle forage intake but only in areas that cattle did not share
with wildlife [230]. Savanna fires could, therefore, affect livestock-wildlife coexistence at the interfaces
by altering the intensity and frequency of forage use [229].

3.3.2. SRS Basics for Detecting Fire and Fire Dynamics

Optical SRS can be used to spatially and temporally detect and characterize burnt area and burn
severity [231–233] based on the detection of changes in the spectral signatures of vegetation [234] with
a reflection reduction in the visible and near infra-red (NIR) spectral bands. Indeed, the charring and
removal of vegetation are largely visible and detectable in the infrared [235].

Various SRS-based approaches have been developed to monitor fire [236,237], including aggregate
active detection [238,239], multi-temporal composites analyses [240], the use of spectral indexes [241],
including vegetation indexes such as NDVI or GEMI (Table 3), spectral mixture analysis [242], machine
learning classification [243,244], time series change detection [245] and hybrid approaches mixing time
series change detection with machine learning classification [246,247]. If these methods provide user
friendly fire products (Table 6) and helpful fire spectral indexes (Table 7) by capturing most aspects of
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the spatial and temporal distribution of the fire effects, it can be difficult to relate them to actual burned
area due to inadequate spatial and temporal resolutions, variability in cloud cover and differences in fire
behavior [248]. Active fire detection algorithms may either: (i) underestimate the area burned in grassland
and savanna ecosystems as the fire progresses rapidly across the landscape [249] and because small and
low-intensity fires may not be detected [250]; (ii) overestimate the burned area for isolated fire points
smaller than the pixel dimension [250]. In this instance, the MODIS fire products MOD14A2/MYD14A2
and MCD45A1 (Table 6) provide three categories of confidence (low, medium, high) of fire detection
(Figure 3E), offering flexibility for a targeted use in accordance with the user’s choice.

3.3.3. SRS to Characterize Fire when Studying Animal Movements in Savanna Environments

The Figure 3E shows an example of the MODIS fire product MOD14A2 (Table 6) at the HNP
interface, illustrating the capacity of such product to depict with a 1km spatial resolution the active fire
temporal and spatial dynamics and its potential for conducting seasonal- and inter-annual analyses.
Despite the availability of numerous SRS-based fire products offering a wide range of applications
(Table 6), according to our review only one of them has been used in relation with buffalo and cattle
movement studies. Naidoo et al. (2012b) used the MODIS MOD14A2/MYD14A2 product to quantify
the relative effect of dry season variables, including savanna fires, on subsequent wet season buffalo
migration distance in a large study area running east-west between the northeast corner of Namibia,
Angola and Botswana [146].

As shown by this example, and despite limitations, the data listed in Table 6 presents the advantage
to describe fire phenomenon in relation with animal distribution and movement in regions with scarce
fire information [251]. In well-documented areas, these data can potentially be used to complement
existing fire databases. Combining better spatial resolution from new sensors such as Sentinel-3
(Table 1) and remote sensing-based fire products with designed spectral indexes to detect fire (Table 7)
is promising. It could potentially reduce errors and uncertainties in satellite-derived fire dates and
ignitions, and improve coverage of small fires. The recently launched FireCCI50 product (Table 6) offers
an increased spatial resolution (250 m) and a better burned area estimation compared to the MODIS
fire products [249]. This spatial resolution could be useful when aiming to integrate fire assessment in
animal movement study at the landscape scale in savanna environments.

Table 6. Non-exhaustive list of satellite remote sensing-based fire products.

Product Name Spatial
Resolution Orbital Frequency Data

Availability Reference Use in Ungulates
Ecological Studies

MOD14A2/MYD14A2 1 km Every 8 days 2000–present [252] [29]

MCD45A1 500 m Monthly 2000–present [253] -

MCD64A1 500 m Monthly 2000–present [248] -

VIIRS 750 m active fire
(VNP14) 750 m

twice/day (IR and
day/night VIS/NIR

channel)
once/day (VIS)

2011–present [254] -

VIIRS 375 m Active Fire
(VNP14IMG) 375 m

twice/day (IR and
day/night VIS/NIR

channel)
once/day (VIS)

2016–present [238] -

Sentinel-3 SLSTR
(level-2 FRP product) 1 km Daily 2018–present [255] -

AVHRR Fire Detects from
the Fire Identification,

Mapping and Monitoring
Algorithm (FIMMA)

1 km Daily 1978–present [256] -

ESA FIRE_CCI 300 m Monthly 2016–present [257] -

FireCCI51 250 m Monthly 2001–2019 [258] -
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Table 7. Non-exhaustive list of spectral remote sensing indexes developed to discriminate fire from
optical satellite image analysis and that can be useful within the frame of animal movement studies in
savanna environments.

Spectral Index Calculation * Reference

Normalized Burned Ratio (NBR) (NIR− SWIR)/(NIR + SWIR) [258]

Burned Area Index (BAI) 1/(NIR− 0.06)2 + (RED− 0.1)2 [259]

Mid Infrared Burned Index (MIRBI) 10× SWIR + 9.8× SWIR + 2 [260]

Char Soil Index (CSI) NIR/SWIR [261]

Normalized Burn Ratio Thermal
(NBRT)

(NIR− SWIR× TIR)/(NIR + SWIR× TIR) [262]

Normalized difference Vegetation
Index Thermal (NDVIT)

(NIR−RED× TIR)/(NIR + RED× TIR) [262,263]

* RED, NIR, MIR, SWIR, TIR: reflectance values in red, Near Infrared, Mid Infrared, Short-wave Infrared and
Thermal Infrared, respectively.

3.4. Precipitation

3.4.1. How Precipitation Influence Cattle and Buffalo Movements

In southern African savannas, the availability in time and space of natural resources
(i.e., surface water and forage) is strongly dependent of the precipitation seasonal variations [88,264].
Most precipitation occurs during the wet season (November to April). However, the spatio-temporal
distribution of precipitations in southern Africa is highly heterogeneous at medium-scale inducing
specific movement patterns such as nomadism [265]. During the dry season (May to October),
precipitation are lower or nonexistent, and the availability of natural resources decreases. This high
heterogeneity in rainfalls dictates the behavior of wildlife [8].

Buffalos, like other ungulates of semi-arid savannas, are able to track precipitation events over
large distances [88]. Buffalos living in wetter areas, such as in forested savanna habitats, tend to
maintain smaller and constant home ranges than those in drier open savanna habitats [160,266]. In these
more arid areas, natural resources are spatially unevenly distributed, forcing buffalos to travel longer
distances in their search for forage and water [29,146,162]. In some areas however, smaller buffalo
home ranges have been noticed during the dry season compared to the wet season [266–268].

Precipitation also affect cattle movement patterns through the combined influence on their grazing
behaviors and the spatial grazing constraints imposed by livestock owners [269]. For example, cattle
around Kruger National Park, South Africa, select forage with higher quantity and quality during the
dry season but behave more like non-selective bulk grazers during the wet season, directly influencing
their daily traveled distance [79].

3.4.2. SRS Basics for Measuring Precipitation

Satellite-based precipitation measurements with advanced infrared (IR), passive microwave (MW)
and radar (SAR) sensors provide a complementary alternative to in-situ records [62,270] as they give a
full spatial and temporal coverage with a good accuracy (Table 8) [271–278]. Yet, despite the growing
collection of satellite-based rainfall measurement datasets providing near-real-time estimates [63],
only a few high-resolution satellite-based products providing historical data at the daily time-step
with real-time or near-real-time updates for the African continent are publicly available (Table 8).
To improve the accuracy of rainfall estimations, the merging of satellite and gauge measurements
have been designed, thus maximizing the benefits of each data type [279,280]. Noticeable differences
can be found in the performance of the satellite precipitation estimates though [281]. Satellite-based
precipitation products generally overestmate precipitation events under 200 mm/month and tend to
underestimate daily time scale precipitation events compare to the decadal and monthly time scale
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precipitation events [272,282,283]. However, the main precipitation regimes and the spatial patterns of
mean annual precipitation are well reproduced [281,284].

Satellite-based precipitation measurements have the advantage of providing full spatial coverage
compared to the more accurate but spatially limited rain gauge data [285]. Furthermore, observational
precipitation measurements over Africa include uncertainties that can bias analysis [286,287]. The TMPA
3B42 V7 (TRRM) offers the advantage of consistency at the daily time-scale [281]. It is a performing
product for depicting inter-annual variations but offers a coarser spatial resolution (Table 8) which
could be detrimental when studying animal movement at the landscape scale. Since 2019, the GPM
IMERG v06 algorithm fuses the early precipitation estimates collected during the operation of the
TRMM satellite (2000–2015) with more recent precipitation estimates collected during operation of the
GPM satellite (2014–present). Therefore, the GPM IMERG v06 now offers 20 years of data coverage
and can potentially be of interest regarding animal movement studies at the landscape scale regarding
its spatial resolution of 0.1◦ and its broad coverage (Table 8).

The products that combine thermal infrared and passive microwave imagery such as RFE or
CHIRPS (Table 8), perform comparatively well and outperform products which are only based on
thermal infrared imagery such as TARCAT (Table 8) [272]. They could be used in complement or
independently with higher spatial resolution satellite-based precipitation products such as the GPM
product (Table 8) to reliably assess precipitation at the landscape scale in seasonal-prone environments
such as African savannas when lacking in-situ precipitation data.

Table 8. Non-exhaustive list of available satellite-based precipitation products.

Product Name Temporal
Resolution

Spatial
Resolution

Data
Availability Coverage In-Situ

Calibration Reference

Use in
Ungulates
Ecological

Studies

TRMM (TMPA
3B42 V7) 3 h 0.25◦ 1998–Mid 2019 50◦S–50◦N yes [288] [29,146]

TRMM (TMPA
3B43 V7) Monthly 0.25◦ 1998–Mid 2019 50◦S–50◦N yes [288] [29,146]

PERSIANN-CDR Hourly/Daily/
Monthly/yearly 0.25◦ 1983–present 60◦S–60◦N no [289] -

GPCP (1dd) Daily 1◦ 1996–present 90◦S–90◦N no [290] -

GPCP V2.3 Monthly 2.5◦ 1979–present 90◦S–90◦N no [291] -

CPC Global Daily 0.5◦ 1979–present 90◦S–90◦N yes [292] -

CMAP Monthly 2.5◦ 1979–present 90◦S–90◦N yes [293] -

Cmorph 30 min 0.25◦ 2002–2017 60◦S–60◦N no [294] -

GPM
(IMERG V06)

30 min/
3 h/Daily 0.1◦ 2000–present 60◦S–60◦N no [295] -

MSWEP V2 3 h/Daily 0.1◦/0.5◦ 1979–2017 90◦S–90◦N yes [296] -

SM2RAIN-ASCAT Daily 0.5◦ 2007–2018 60◦S–60◦N no [297] -

TAMSAT V3.1 Daily 0.0375◦ 1983–present 38◦025N–35◦9625S
19◦0125W–51◦975E yes [62,63] -

CHIRPS v2p0 Daily 0.05◦ 1981–present 50◦S–50◦N yes [298] -

ARC V.2 Daily 0.1◦ 1983–present 40◦S–40◦N yes [299] -

RFE 2.0 Daily 0.1◦ 2001–present 40◦S–40◦N
20◦W–55◦E yes [300] -

EPSAT-SG 15 min 0.0375◦ 2004–present African continent yes [301] -

MPE 15 min 0.0375◦ 2007–present African & European
continents no [302] -

3.4.3. SRS to Measure Precipitation when Studying Animal Movements in Savanna Environments

Only the National Oceanic Atmospheric Administration (NOAA) African Rainfall Climatology
(ARC V.2), the Climate Hazards Group InfraRed Precipitation with Station data version 2.0 (CHIRPS20)
and the Tropical Applications of Meteorology using SATellite data and ground-based observations
(TAMSAT V3.1) provide continually updated daily time-step data [63,303]. Therefore, due to their
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spatial and temporal resolutions (Table 8) they are potentially suitable for applications in animal
movement studies in African savanna environments. Figure 3F shows a spatial representation of the
TAMSAT V3.1 at the HNP interface while demonstrating the product capabilities to detect spatially
contrasted precipitation within a relative extensive area (1192 km2). TAMSAT V3.1 (Table 8) is among
the best product in terms of precipitation event detection at a spatial resolution of 0.0375◦ [304] but it
may underestimate monthly rainfall measurements [284].

Despite the availability of these precipitation satellite-based products, the most commonly method
to characterize precipitation in relation with animal movement and distribution remains the use of
in-situ gauging stations data [170,305]. Only few studies have used satellite-derived precipitation data in
relation with buffalo movements. Naidoo et al. (2012a, 2012b) used TRMM data (Table 8) to characterize
which environmental factors, including precipitation, explain buffalo migration patterns [146], and
variation in buffalo home range sizes in northeastern Namibia [29].

4. Discussion

The literature on the current knowledge on buffalo and cattle movements and their interactions
was here linked to an inventory of available and relevant SRS tools to characterize the environmental
drivers of these movements, found in savanna type landscape environment.

Landcover, surface water, savanna fire and precipitation emerged through this review as
environmental drivers defining buffalo and cattle movements at the edge of protected areas in
Africa and in southern Africa in particular. Optical and radar SRS are both currently operational to
characterize these drivers and have already been used independently for several ecological applications,
including animal movements [19,25,306] but have never been collectively linked in animal movement
studies. The need of dynamic environmental products to analyze animal movement requires that the
increasing number of SRS sensors, the multiple tools and the large quantity of data available become
more accessible and easy to use to movement ecologists [307].

4.1. General Observations

Faced with an overabundance of available data, one should gain insight on data quality and the
methods, algorithms and applications of using data in animal movement studies. SRS data must often
be combined with in-situ measurements, which are sometimes not available, for validation purposes
and accurately representation of environmental drivers. SRS has to be considered only as a partial
view of the terrain and remain imperfect by definition [308]. Furthermore, the use of SRS products may
be limited by the time-span of their availability, their spatial and temporal resolution and coverage,
their spectral characteristics (Table 1). The revisit time period of a SRS product (Table 1) does not mean
that it will be usable at the same frequency, as the quality of the image may not always be optimal at
each acquisition (e.g., cloud cover, limited spatial extent that doesn’t cover the desired area, . . . ).

These limitations often imply a trade-off between spatial and temporal resolutions [309] and/or
between spatial resolution and spatial extent coverage [310]. For instance, high and very-high spatial
resolution images are not necessarily appropriate for all research questions as they contain large
amounts of data, heterogeneity of spectral values and diversity of objects in small spatial extents that
can significantly complicate methodology applications [310]. Data pre-processing for a SRS derived
application is not only costly in processing time and in expertise but also in financial resources. Naidoo
et al. (2012a) estimated that weekly acquisition of very high resolution Quickbird imagery (Table 1) to
detect small ephemeral water sources within the frame of their study in relation with buffalo movements
would have cost close to USD $9 million [29]. One has to be aware of the computing capacities available,
the allowed time and the appropriate algorithm for the completion of SRS analyses [34,311].

4.2. Landcover and Vegetation Characterization

Our review showed that the use of SRS to understand cattle or buffalo movement ecology mainly
benefited from open-access products and standard image processing methods. EVI and NDVI are
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widely used vegetation indexes to characterize vegetation availability and evolution patterns in these
studies [26,29,54,88,312]. However, other spectral indexes such as the Soil Adjusted Vegetation Index
(SAVI) (Table 3) that eliminate soil-induced variations in vegetation indexes [143] have not been used at
all in existing buffalo and cattle movement studies. The use of such spectral indexes could complement
more classic vegetation indexes by overcoming certain associated limitations when characterizing
savanna landscapes through SRS approaches (i.e., mixed pixels) [143,313,314].

Few studies listed in this review use high or very high-spatial resolution satellite images to
characterize the landcover [54,79,89] comparatively to the studies that use medium or low-spatial
resolution satellite images such as MODIS (Table 1) to derive spectral indexes [86,87,135] and Landsat
or Spot (Table 1) to characterize landcover [11,70,88,90]. Indeed, high spatial resolution imagery is not
necessarily appropriate for all research questions, especially because its limited spatial extent requires
the acquisition of several images to cover large areas at a high financial cost [315]. High and very high
spatial resolution images contain large amounts of data, heterogeneity of spectral values and diversity
of objects that significantly complicate methodology applications such as landcover classification [310].
However, since 2015, open-source Sentinel-2 images (Table 1) bring a spatial resolution and a temporal
continuity gain compared to other medium spatial resolution images that could potentially improve
spectral indexes or landcover derivation over large areas while maintaining relevance in application
for landscape scale analysis.

As the human and livestock populations grow in Africa [2,316], the pressure on protected
areas’ boundaries increases resulting in the transformation of natural landscapes and the creation of
hard edges between protected areas and their surroundings by human infrastructures and activities
(e.g., buildings, roads, cleaned land for cultivation, pasture, trees and grasses harvest) [68]. These two
factors combined directly impact the movement of buffalo and cattle as they cross the natural park
borders to find foraging or water resources. Human infrastructures including fences, human settlements
and agricultural areas also represent potential barriers to animal movement. For example, movement
rates of buffalos living near fences appear to be low [317] and large migratory movements are limited
by fences [146] when they are not damaged by elephants [6]. SRS can play a fundamental role
to characterize the human factors (infrastructures, activities) into the buffalo and cattle movement
processes. For instance, crops can potentially provide an important resource for both buffalo and
cattle during the wet season in southern African savanna even if both species are prevented to enter
fields with growing crops (e.g., using different practices such as wildlife deterrent measures and
livestock herding). Time series SRS derived vegetation indexes such as EVI or NDVI (Table 3) have
been efficiently used as phenology indicators [318,319] combined with landcover classification [320],
high-resolution optical and radar sensors [321] for crop and pasture monitoring and space delimitation.
Concerning hardly distinguishable objects from space such as fences, human settlements and roads,
the increasing availability of very high-resolution (Worldview-2, Pleïades, . . . ) satellite images (Table 1)
offer a wide range of possibilities to characterize these landscape features via landcover object-based
approach classification [23]. These methodologies could certainly be used independently or combined,
bringing a wide range of indicators for animal movement and interactions analysis.

4.3. Surface Water Delineation

Several methods such as spectral indexes thresholding (Table 4), image classification, surface water
spatial delineation through satellite image textures [184], have been efficiently used independently to
map surface water bodies. However, the numerous remote sensing-based water products presented in
Table 5 have not been used in the different buffalo and cattle movement reviewed studies. Similarly,
water spectral indexes listed in Table 4 and SAR images (Table 1), with the exception of one study
that used NDWI derived from Sentinel-2 images in relation with buffalo movements [91], have not
been used despite their potential to improve classification algorithms and water detection in savanna
environments [177,203,204,207,212]. This may partly result from a lack of knowledge about the
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existence and availability of SRS products in the movement ecology community, a major gap that this
review aims to fill.

According to our review, the use of SRS offers a potential that remains to be explored regarding
the detection of surface water at a landscape scale in savanna environments, as a driver of wild and
domestic ungulates movements. Indeed, classification of surface water derived from optical and/or
radar medium spatial resolution images (Table 1), could provide spatially delineated surface water
areas and water resource seasonal variations at a landscape scale and on a monthly basis (Figure 3B),
which constitutes a clear advantage in term of spatial representation over in-situ fixed referenced points.

4.4. Savanna Fire Characterization

SRS plays an important role in determining the spatial extent and timing of fires in savanna
environments [244,322]. However„ few of the reviewed studies focusing on buffalo and cattle
movements used satellite remote sensing-based fire products (Table 6) and none of them used designed
optical images derived fire spectral indexes (Table 7) despite their proven efficiency [323]. Landsat and,
increasingly, Sentinel-2 (Table 1) for example, are extensively used for medium spatial resolution fire
scar mapping in savanna [250,324] and could provide potential improved results for studies that use
lower spatial resolution images [146].

However, mapping fire severity is more challenging than just mapping the occurrence of fire.
One major limitation of all optical SRS approaches is the presence of cloud cover that hinders the
temporal continuity of the follow-up [325]. For animal movements studies, the severity of a given fire
event is more relevant than its frequency and timing alone. To bypass such limitation, SAR images
could be used. Philipp and Levick (2020), for example, demonstrated that C-band SAR data can
contribute to effectively map fire severity in tropical savanna [325]. Characterizing savanna fire severity
in addition of being able to locate fire events could also be useful for measuring more accurately the
influence of human land use practices [326] and how it potentially affects animal movements.

4.5. SRS for Precipitation Characterization

According to our review, only the TRMM product (Table 8) have been used for buffalo and
cattle movement studies [29,146]. This is probably because most of the satellite-based precipitation
products are difficult to apprehend for non-specialists, thus compromising their potential use in
animal movement studies. They usually present unconventional output file formats, non-standardised
precipitation measurement units and uncommon map projection systems. Therefore, potential users
need to access metadata that are most of the time difficult for non-SRS specialist to understand in
order to assess satellite-based precipitation products usefulness. The mitigation of this constraint by
simplifying the use of satellite-based precipitation products could be greatly beneficial for animal
movement studies.

The use of satellite-based precipitation products combined with in-situ precipitation data when
available remains paramount for more accurate estimations of precipitation trends at a local scale [272].
Additionally, algorithm performances of satellite-based precipitation products (Table 8) greatly vary
depending on location, topography, local climate, and season [273,282,283]. This performance variability
needs to be taken into account before choosing a satellite-based precipitation product for a specific
application and in accordance with the study area geographical specifications.

4.6. Selection of Suitable SRS Products to Study Buffalo and Cattle Movements in Southern Africa

Choosing a set of SRS tools for the characterisation of environmental drivers influencing the buffalo
and cattle movements is firstly driven by the question to be addressed (e.g., habitat selection, landscape
scale movement patterns, long-distance migration, . . . ), which in turn defines the spatiotemporal scales
to be considered [59]. Additional criteria such as the required SRS expertise, computating resources,
and cost, may be taken into account too (see Section 4.1). Figure 5 provides an illustration of suitable
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SRS products for ecologists to characterize environmental drivers impacting animal movements in
southern Africa according to their temporal and spatial resolution scales.

High and very high spatial resolution sensors can be used to provide fine-grain maps of landcover
and water surface for habitat occupation and habitat selection studies at local scale. Very high spatial
resolution images such as Worldview 2, Pleiades, or Ikonos images can be used to discriminate small
objects within the landscape (i.e., fences, human settlements, road networks) and characterize landscape
at fine scale (ideal for the study of small animal species with a small home range). However, they are
costly and require remote sensing expertise and high computing power.

These fine-scale landcover maps can be combined with precipitation and savanna fires data at
coarse spatial resolution but with a high temporal repetitivity for studies that focus on daily animal
movements. For instance, precipitation TAMSAT 3.0 (Table 8) product is easily accessible and covers
the entire African continent at 4.8 km of spatial resolution with daily, pentadal, decadal, monthly and
seasonal temporal resolutions; recent VIIRS active fire images (Table 6) offer improved spatial and
temporal resolutions compared to former fire products. These products are easy to use and do not
require high computing power.Remote Sens. 2020, 12, x FOR PEER REVIEW 23 of 41 
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Figure 5. Suitable SRS products for ecologists to characterize environmental drivers impacting animal
movements in semi-arid savannas landscapes. These SRS products are represented according to their
temporal (ordinate axis) and spatial resolution scales (abscissa axis) and can be used for different type of
analyses related to animal movements (movement patterns, home-range and habitat selection at broad
and local scales, migration) [59]. We define the “movement” (represented in blue) as the motion initiated
by a variety of methods that focal species use to move from one place to another. The “migration”
(represented in green) is defined as long distance movements to a different environment involving
periodical and cyclical dynamics in space and time. Home range and habitat selection (represented in
orange at broad scale and in red at local scale) are considered as areas where focal species regularly
move depending on natural resource selections and social interactions and behaviors. Note that the
contours of the different analyses categories are blurred to emphazise the fact that there are no clearly
established boundaries between these categories.
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For studies focusing on animal movements at a coarser spatial and temporal scales, landcover
and vegetation (Table 2), fire (Table 6) and water (Table 5) free products can be used for preliminary
assessments in areas where in-situ data are difficult to collect or nonexistent. These products are easily
accessible online, easy to use for non-SRS specialists, well documented and require little computing
power in order to cover large areas. In addition, they can be efficiently combined with higher spatial
resolution and custom made SRS products.

5. Conclusions

SRS extends the analytical capacity of ecologists in many fields including animal movement
studies [20]. New SRS sensors are continuously launched thus expanding and increasing the potential
applications of these tools (Figures 4 and 5). The Committee on Earth Observation Satellites (CEOS)
reports that its member agencies are currently operating or planning more than 300 different satellite
Earth observation missions by 2030, carrying over 900 different measurement instruments offering
different spatial resolutions and spectral capabilities [327]. Medium-resolution Sentinel-1 and Sentinel-2
images (Table 1) are particularly promising in the field of animal movement as they provide continuous
open-source data since 2014–2015 at a 10 m spatial resolution with radar and optical sensors. However,
given the SRS sensors and applications diversity, it is paramount to determine which SRS product is
best suited for a given scale of analyses and how potential inherent limitations can affect the latter.

To facilitate the use of SRS products in ecological movement research studies, a better data
accessibility such as the European Spatial Agency Sentinel program, which promotes open data,
and training platforms to familiarize users with the utilization and the potentialities of SRS data,
are needed. The collaboration of movement ecologists with remote sensing experts within a
multi-disciplinary approach could also help to integrate more efficiently remote sensing products in
ecological movement research.
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