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Abstract 

This paper presents a digital learning tool, MESTRAL ( “Modélisation Et Simulation des 

TRansformations ALimentaires”, “Modelling and Simulating Food Processing” in English), that can 

provide educators with a tool to teach food processing using simulators and a broad range of models 

derived from research in food science & engineering. It was built using electronic knowledge books 

(eK-book). The eK-book represents knowledge in the form of concept maps and knowledge sheets, 

connected via a network of hypertext links. MESTRAL encompasses 15 modules, that cover 

approximately 150 hours of teaching and a broad range of real systems, from a single unit operation 

(e.g., frying a banana) to a logistic chain (e.g., ham cold chain). Each module conveys information on a 

food product or a food process, and includes a simulator based on a published scientific model. 

Altogether, the models address various scale of systems and are based on different theoretical 

frameworks. For each simulator, the model inputs and outputs are stored in a database. Outputs are 
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visualized through abacuses, which can be used for virtual practice. MESTRAL modules also include 

training exercises and tests to help students to assess the knowledge they have acquired during 

consultation of the modules. Finally, MESTRAL has already been successfully tested by different 

audiences according to various learning forms. 

 

Keywords: abacus; concept map; electronic knowledge book; food processing; student 
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1. Introduction   

Despite an abundant scientific production, the use of models and simulators remains limited 

in the food industry where this approach is not familiar, in contrast with other technological sectors, 

and there is a clear lack of human resources to adopt modelling approaches in the food industry (Datta, 

2016; Erdogdu et al., 2017; Djekic et al., 2019). Several educational institutions provide training in 

computerized techniques and approaches, including mechanistic approaches and multi-scale 

modelling, in their food engineering curriculums, to face this issue.  

Digital resources could contribute to these efforts by implementing simulators as educational 

tools in order to prepare future food engineers to use models (Datta, 2016). Among various initiatives 

in this sector, a short-term International School on Modelling and Simulation in Food and Bio Processes 

(http://www.virprofood.org/msfs2016/) was selected to be the training school of the Cost Action 

CA15118 FoodMC1. Run by the ISEKI2 Food Association, more than 100 scholars from all over the world 

have benefitted from it so far. Another well-known example dedicated to education in food 

engineering is the website created by Prof. Paul Singh, which contains video tutorials, lecture notes, 

animated films devoted to food processing equipment, virtual experiments, design problems for what-

if analysis, and video lectures based on food science and engineering (Singh, 2008). Prof. Ashim Datta 

developed a “learning by doing” approach by introducing modelling and simulation approaches to 

solve biological problems, which can be implemented in a food context (Datta, 2015). In addition to 

these examples, scientific activity in food engineering generates a great deal of research products, such 

as large experimental databases, figures, texts, images and films obtained with a wide variety of 

instruments (from images of industrial equipment to microscopic images at molecular scale), models 

and simulators, decision-support systems. Most of them are available as downloadable documents or 

as web pages on the internet. Many professors individually use their own research products for 

teaching purposes. These individual actions could be combined on a collective scale to convert these 

research products, including models, into widely available digital resources. 

A generic and collaborative approach would contribute to teach modelling in engineering, and 

facilitate its appropriation by the students (Carberry & McKenna, 2014). Electronic knowledge books 

(eK-book) where knowledge is mainly represented by conceptual maps (Cmaps), might be used in this 

purpose. Indeed, they have been shown to be original and effective transfer tools (Ermine, 2010; Suciu 

et al., 2012), so they may be converted into digital learning tools. In turn, they could be shared by 

educational institutions and made available to a large audience. By providing Mathematical and 

Computer Science Methods for Food Science and Industry Integrating food Science and Engineering 

                                                           
1 Mathematical and Computer Science Methods for Food Science and Industry 
2 Integrating food Science and Engineering Knowledge Into the food chain 
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Knowledge Into the food chain online access, such tools would also offer good prospects for remote 

and self-training, and could be used for blended learning, such as in flipped classrooms (Datta et al., 

2020).  

Given this context, the aim of this article is to present a digital learning tool, to train people in 

food processing using models from academia. This tool, organized into a harmonized format using 

electronic knowledge books, is named MESTRAL (“Modélisation Et Simulation des TRansformations 

ALimentaires” that means in English “Modelling and Simulating Food Processing”). While familiarizing 

students with modelling approaches, MESTRAL would, at the same time, encourage their transfer to 

industry. For this purpose, we built 15 modules based on eK-book, which are described in the section 

2 of this paper. We then implemented simulators based on models for different food processing 

applications. These models are detailed in section 3. Finally, after a first validation step involving all of 

the authors, we report some of the feedback of a survey taken on the first 100 users. 

 

 

2. Building the digital learning tool 

 2.1 Basic elements of the eK-book 

Knowledge transfer is defined here as the addition of transmission, assimilation and eventual 

use (Davenport & Prusak, 1998). Knowledge can be collected and represented in various forms, like 

concept maps (Cmaps), in an electronic knowledge book (eK-book). To build the eK-book, we adapted 

the approach of Ermine (2010), initially designed for capturing know-how for the transfer of scientific 

knowledge following a methodology detailed by Suciu et al. (2014). An eK-book is a hypertext network 

(Conklin, 1987) in which knowledge is captured in a structured way using Cmaps, knowledge sheets 

and a glossary, connected by hypertext links. As a hypermediatool, it makes it possible to integrate 

videos, while allowing to download documents and browse web pages from the internet. As described 

in greater detail in Section 3, MESTRAL also includes simulators and training exercises.  

The canonical concept map (Fig. 1a) is a hierarchical graph that describes a concept according 

to four types of ontological relationships: taxonomy (is-a), synonymy (is-synonym), mereology (has-as-

parts) and domain relationship (is-characterized-by, is-measured-by, is-controlled-by, is-implemented-

by, etc.). Taxonomy allows a concept to be positioned in a well-defined group (Brachman, 1983). 

Synonymy makes it possible to specify alternative concepts in a given knowledge domain. Mereology 

links an entity to its parts (Schulz et al., 2006) through relationships such as member-collection, matter-

object, portion-mass, and phase-activity. Domain relationships make it possible to indicate how (with 

which methods) a concept (an operation, a product, a variable, etc.) is measured, observed, 

characterized or studied. The application of Cmap in MESTRAL is illustrated by the example taken from 

the module “Aroma release from yoghurt in mouth” (Fig. 1b). The specification of the main concept in 
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a Cmap contains other concepts that are directly used to describe it, such as “strawberry flavour” in 

the example. This concept is then the main concept of another Cmap, as symbolized by icons giving 

access to this next Cmap, via a hyperlink. This way, the user can navigate within the network of Cmaps. 

As another example of application to MESTRAL, is the domain relationship “is characterized by” leading 

to the concept “viscosity” (of the yoghurt) (Fig. 1b).  

A knowledge sheet is a document that captures less formal knowledge. It includes eight (8) 

fields: title, illustration, explanations, creation date, authors, keywords, see also and literature 

references. An example of a knowledge sheet is given for the “aroma release of yoghurt in mouth” 

module (Fig. 2). The illustration can be a video, a sound, a photo, a drawing, a graph, a table, an 

equation, etc., or a link to a document available online. Explanations are text that can be formatted 

(font, bold, italics, colour, etc.). Each author can be clicked on to access their contact details, including 

email address and the internet link to the web page of their home laboratory. Each keyword, contained 

in the glossary of the eK-book, can be clicked on to display its contextualized definition. The see also 

field contains the links to the related knowledge sheets that provide additional information. The 

literature references include those cited in the explanation field and other references that provide 

additional information. They are clickable to open a web page (that of the article on the publisher's 

website, for example) or to open a linked document.  

All the documents in the eK-book and the hypertext links between them constitute a 

hypergraph opened on the internet. Thanks to the representation of knowledge, from a general Cmap 

to more specific maps, the user can browse the book until the desired detail level is reached. This 

knowledge structuring minimizes the disorientation and the cognitive load of the user and thus 

promotes the assimilation of knowledge (Amadieu et al., 2009). Disorientation is the property which 

assesses the difficulty of the user to locate himself and find information in the eK-book, whereas 

cognitive load measures the mental effort invested by the user to grasp the concept maps and to 

explore the eK-book. 

 

2.2 Application to MESTRAL 

The cornerstone of any MESTRAL module is the “model Cmap”, which is an instance of the 

canonical map (Fig. 1a) specifying the model. It contains all the concepts and information on which the 

model relies. Hence, the model Cmap includes the type of model, its hypotheses, its input and output 

variables, its implementation, etc (Fig. 3).  

As for any Cmap, more refined specifications of the concepts are available by clicking on the 

icons to open links towards other concept maps or knowledge sheets. The taxonomical relationship 

“type of model” especially refers to the theoretical framework in which the model is developed. A 

sheet, presenting in detail the equations that are solved, can also be opened from the output variables 
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using the link “is-computed-by”. In addition, the mereology relationship leads to the hypotheses under 

which these equations are solved (e.g., the influence of gravity is discarded), and this box also refers 

to the assumptions that are made (e.g., the flow is steady at the entrance of the tubular heat 

exchanger). Finally, domain relationships refer to the input/output variables of the model. For 

example, inputs may be the physical properties of the foods, the equipment geometry or the process 

settings. All these concepts may lead to more detailed concepts or knowledge sheets available by 

browsing. Outputs also include icons that, once clicked on, open graph sheets where the variables are 

represented as functions of input variables (e.g., time -temperature graphs) for selected values of 

other inputs. The detailed method of results presentation, i.e., post-processing, is described in detail 

in Section 3.3. 

To complete the eK-book, every MESTRAL module is provided with a glossary where all of the 

keywords are listed and defined, and variable units recalled. Input and output variables generally 

belong to the keywords list. Their definition appears when browsing the keywords in the text of a 

knowledge sheet. In addition, the user looking for a specific keyword can request the list of documents 

(Cmap, knowledge sheet) where this keyword appears. 

At the end of the eK-book, training exercises are proposed with three different levels of 

difficulty, beginning with the easiest, which implies knowledge of most basic concepts and of keyword 

definition. Conversely, the most difficult ones not only require the acquisition of the knowledge 

conveyed by the maps and sheets, but the use of the simulator as well. Simulators are described in 

another section. They allow the student to experiment with a “learning by doing” approach, i.e., virtual 

practice.  

At the beginning of every module, six motivating questions are proposed to the student. For 

every question, a learning path, or itinerary, has been defined to indicate how to navigate within the 

module so as to collect the information required to answer the initial question. These itineraries make 

sure that most of the documents can be covered by the student, and they decrease the risk of 

disorientation. 

The eK-book makes it possible to build modules with a common structure, regardless of the 

systems studied (food and process), through models that are presented in the next section together 

with the simulators implemented. 

 

 

3. Food processing models in MESTRAL 

3.1 Various models & frameworks 

Many valuable studies have been dedicated to food process modelling and the purpose of this 

section is to locate the various approaches used in MESTRAL in the modelling frameworks. Several 
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reviews have underlined the various potentialities and challenges of modelling and simulation in food 

processing (Trystram, 2012; Manlik & Borkar, 2015; Datta, 2016; Saguy, 2016; Erdogdu et al., 2018; 

Vitrac & Touffet, 2019). Scientific work in food process engineering has led to models that use different 

mathematical formalisms, which can predict the composition (% water, micronutrients, neo-formed 

compounds, etc.) and properties (technological, sensory, safety, etc.) of a product according to its 

initial composition and the process operating conditions. 

Computational modelling was developed in food processing, in particular, by applying 

Computational Fluid Dynamics and using specialized software (Datta, 2016). This approach, also 

referred to as mechanistic, is physics-based and mostly relies on the theoretical framework of 

continuum mechanics and thermodynamics. It may appear complex due to mathematical formalism, 

and requires considerable investment, first, to analyse the problem and, then, to make the properties 

of the food system available. In a complementary manner, experimental approaches may be guided 

by statistical models that require the fitting of experimental data according to numerical procedures 

and reasoning. This modelling approach can lead to the optimization of a product or a process in a 

shorter time, but with lack of flexibility since it is valid in a narrower domain; such models are data-

driven models and include a part of empiricism (Sablani et al., 2007). Note that the degree of 

empiricism may be reduced when the model integrates professional know-how with scientific 

knowledge, leading to phenomenological models. By doing so, the understanding of the mechanisms 

governing the studied phenomena is improved, as illustrated by the basic knowledge models proposed 

for the breadmaking chain (Della Valle et al., 2014). Recent approaches at the crossroads of 

mathematics and artificial intelligence provide adapted methods to deal with heterogeneous sources 

of knowledge and with different mathematical formalisms used by different disciplines that are 

manipulated under different forms of uncertainty (natural randomness, imprecision, data scarcity, 

vagueness, etc.) (Filter et al., 2015). All these approaches – from mechanistic to data-driven - 

represent, in various mathematical forms, the relationships between input and output variables. They 

are used in different MESTRAL modules and make it possible to simulate the food process system in a 

realistic domain.  

 

3.2 MESTRAL models 

In the following, an overview of the models implemented in MESTRAL is presented, roughly 

ordered from a fine to a coarse knowledge grain, and from small to large scales of the system studied 

(Fig. 4). The knowledge grain is defined here according to the level of uncertainty of the knowledge 

gained by the model results: the larger the uncertainty level, the coarser the grain. The largest systems 

are at the bottom right and represent a food chain, addressed using the simplest theoretical 

framework. As we move along the horizontal axis, the knowledge grain becomes coarser and the model 
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predictions become more uncertain, resulting in general trends rather than accurate predictions. In 

Fig. 4, the overall trend suggests that MESTRAL models arrange around the bisector. However, it is 

noteworthy that food engineering models may lead to acceptable precision (i.e. a fine knowledge 

grain) at a large scale, by computing properties from knowledge about structure at a lower scale, which 

is precisely the challenge addressed by multi-scale modelling (Ho et al., 2013). 

As seen for the complementary information reported in Table 1, these models rely on different 

theoretical frameworks, from continuum mechanics (physics-based models) to stochastic approaches 

and statistical analysis (data-driven models). They are implemented through various numerical and 

computer resources, either based on commercial software, possibly using Finite Elements (FE), or 

developed by the scientists themselves. For the purpose of simplicity, the literature references that 

have led to the development and validation of every model are not mentioned all, but the most recent 

ones are quoted so that the reader may, in turn, find more in-depth information when needed.  

Deep fat frying of starch foods involves coupled heat and mass (water and oil) internal 

transfers. By solving the partial differential equations (PDE) of these transfers in thin or thick slices of 

plantain banana, the 2D numerical, FE-based model makes it possible to predict the nutritional impact 

through various indicators (nutrient density and toxic components such as acrylamide) that are linked 

to computed fields such as temperature, moisture and oil content (Bassama et al., 2015).  

Using the same formulation and numerical resources to solve heat mass transfer PDEs, a 

deterministic approach is proposed to predict the transformation of starch suspensions in a tubular 

heat exchanger by computing the fields of velocity, pressure and temperature along the tube. In this 

case, an essential original feature comes from the two-way coupling of rheology, fluid flow and heat 

transfer, taken into account by the kinetics of starch granule swelling, which depends on temperature 

and drastically modifies the apparent viscosity (Plana-Fattori et al., 2016).  

Based on the solution of the mass balance equations in three compartments 

(nose/pharynx/food layer), the model of in vivo aroma release computes the evolution of the 

concentrations of representative aroma compounds (diacetyl and ethyl octanoate).  The evolution of 

concentrations is computed in the product and in the air after swallowing for yoghurts with various fat 

contents (Trelea et al., 2008). Because it integrates the consumer’s physiology and because aroma 

release is correlated with sensory perception, this model is used to address the re-engineering of food 

formulations. 

Solid food texture is addressed by a 3D numerical, FE-based mechanical model that considers 

cereal food as a solid foam in the linear elastic domain. Compression loading of virtual realistic cellular 

structures is simulated and the model computes the variations of foam stiffness, represented by the 

mechanical property of Young’s modulus with respect to the foam density. The correlation between 



9 
 

foam density and stiffness is compared to the analytical solution from Gibson-Ashby’s model, and with 

experimental data obtained on bread, biscuits and breakfast cereals (Guessasma et al., 2008).  

Non-conventional heating is treated through a simplified 1D numerical Finite Volume model 

that accounts for microwave-matter interactions in the case of unidirectional propagation (plane 

wave) (Curet et al., 2009). The model provides a tool for predicting temperature kinetics during a 

microwave heat treatment, as well as the absorbed power density as a function of the depth for two 

foods - bread and meat - to deal with two different moisture levels. 

The modelling of dairy food foaming considers the 1D-flow of viscous fluid in a static mixer 

(SMX™) and its expansion tube, where the pressure drop is computed at various steps (Laporte et al., 

2014). Hence, along the tube, it is possible to calculate the incorporated air fraction and size of the 

bubbles and the power consumption from geometry data, gas and liquid flow rates, as well as the 

rheological properties of the dairy formulation. 

The flow of molten starchy products in a twin screw extruder is modelled in the same way by 

summing the pressure drop or rise in each screw part (Della Valle et al., 1993). This  analytically solved, 

1D model makes it possible to compute the main flow variables, melt temperature, pressure, shear 

rate and viscosity, and the specific mechanical energy along the screws. The model is implemented in 

a commercial software program called Ludovic®, that is used to perform simulations. Expansion of the 

starch melt at the die outlet to generate airy snack foods has also been tackled by a phenomenological 

model that predicts cellular structure (Kristiawan et al., 2019). 

The model of food packaging is based on ordinary differential equations (ODEs) that describe 

mass transfer phenomena in the system defined by the food and the packaging material (Guillard et 

al., 2012). By coupling these ODEs with the gas consumption of microbial species, it makes it possible 

to predict product shelf life (Chaix et al., 2015). It also includes a multi-criteria decision support system 

that helps the user to choose a package for a given food. The multi-criteria choice is then adapted to 

the different actors in the food packaging sector (Guillard et al., 2015). 

The model of the hot air-drying process of agricultural products (corn and rice grains) is based 

on the concept of drying kinetics, which explicitly considers the heat and mass transfers between three 

compartments: the surrounding air, and the external layer and the core of the grain (Abud Archila et 

al., 2000). In addition to time-temperature and moisture variations, the model also predicts the impact 

of drying on grain quality using an image bank.  

Similar phenomena of heat and matter transfer applied to the cooling of carcasses can be 

modelled using a 1D numerical approach (Kondjoyan & Daudin, 1997) that makes it possible to 

calculate the kinetics of temperature at different points (surface, core, average) of the carcass for two 

animal sizes (typically pork and rabbit). The evolution of weight loss of the carcass is also predicted, 

keeping in mind that this loss must be minimized for quality purposes. 
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 Still considering fresh animal proteins (white fish and beef), an application of the high-pressure 

(HP) treatment process (up to 500 MPa) is addressed through the use of experimental results (Cheret 

et al., 2005). In this case, the phenomenological model makes it possible to study the increase in the 

shelf life of these products thanks to this HP process, and its parameters (time, pressure level), while 

taking the organoleptic changes (texture and colour) observed after treatment into account. 

The mixing process in a stirred tank is addressed by modelling principles that use dimensional 

analysis, with applications to the homogenization of sucrose solutions, the dissolution of dairy powders 

and heat transfer within viscous solutions of glucose syrup. It is then possible to predict the mixing 

time and the power demand of the equipment, the dissolving time and the heat transfer coefficient 

using abacuses of dimensionless numbers (Reynolds, Nusselt and power numbers), established from 

the analysis of the mixing operation and from dedicated experiments (Delaplace et al., 2015). In this 

case, the interest of using dimensionless numbers to reason about scaling up using a physics-based 

approach is shown.  

The mixing process is also a critical operation in the bread-making chain since it converts a 

solid divided medium, the flour, into a continuous viscoelastic one, the dough. In this case, mixing 

modelling is addressed through an expert system known as AsCoPain®, which models the bread 

technologists’ expertise using a qualitative algebra (Ndiaye et al., 2009). This model makes it possible 

to calculate the sensory variables that define the state of the bread dough on the basis of the 

formulation variables (characteristics of the flour) and the operating conditions of the mixer (Kansou 

et al., 2014). This module also includes a simple phenomenological model of the dough-proofing stage, 

directly affected by parameters of the mixing process (Kansou et al., 2013). 

Heterogeneous knowledge can also be assembled in a model using Dynamic Bayesian 

Networks (DBN) in order to predict the ripening process of Camembert-type cheese (Baudrit et al., 

2010). While also introducing conditional probabilities, the model maps the evolution of the 

organoleptic properties of cheese according to microbial activity, which itself depends on its 

environment. The model helps to reduce the uncertainties linked to the working, the design and the 

control of the ripening process. 

Conditional probabilities are also used for predictive microbiology, which is coupled to a simple 

heat transfer model of three compartments of the cold chain. This model describes the evolution of 

the temperature and of the microbial load of ham slices (Flick et al., 2012). Taking several random 

variables into account (residence time in the different compartments, adjustment of the thermostat 

of the refrigerator, speed of growth of micro-organisms), the model makes it possible to represent the 

influence of equipment and consumer behaviour on the health safety aspects of the ham slices. 

As may be seen from this rapid review, these models address a large panel of real (food and 

process) systems, at various scales and through different theoretical frameworks (Fig. 4). Actual access 
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to MESTRAL on the computer screen is given by the portal presenting the fifteen (15) modules, each 

one illustrated by an image of the system, according to following link http://thot.i2m.u-

bordeaux.fr/mestral/portail/. Each model is assigned a model Cmap (see Section 2.2) and a simulator 

that is embedded in the modules as described below. 

 

3.3 Post-processing and simulators 

Implementing MESTRAL models raises two issues: first, the access to commercial modelling 

software; and, second, the necessity of having sufficient computation resources to run the simulation.  

Both are of course prohibitive for a potentially intense use of the simulators by the students, 

exacerbated by remote access from home and the use of their own terminals (smartphone, tablet or 

PC). Therefore, a database was included in each module by collecting the results of output variables 

(values computed by the model) for a selected number of values of input variables. This database is 

run using abacuses, a technique traditionally used for learning purposes, as suggested by Lopez et al. 

(2018) for mechanical material engineering. Clearly, the representation of abacuses is limited by the 

large number of variables and of the values that these variables can take. In MESTRAL, no more than 

four to five abacuses, one per output variable, with four to five curves, are presented on the same 

screen page (Fig. 5a, b). Sliders make it possible to select discrete values (up to ten values) of the input 

variables. For every combination of sliders positions, a set of graphs is instantaneously presented. In 

Fig. 5a, graphs represent, for example, the grain water content after various drying times and for 

different drying conditions. In Fig. 5b, the graphs represent the variations of starchy product 

temperature, pressure, viscosity at the extruder die outlet, and specific mechanical energy for various 

screw speed, feed rate and barrel temperature values. 

The simulator includes the abacuses drawn from the database and the graphical 

representation of the results. All simulator interfaces are developed in HTML5, CSS3 and Javascript. 

These are the core technologies for building web pages, which allows the simulators to be easily 

accessible in the future. Hence, the generation of abacuses is automated and their presentation is 

adapted to the student using digital charts that allow storage and post-processing of highly variable 

solutions in a very efficient way (Lopez et al., 2018). Note that it allows any user to perform a simulation 

of the process without fully understanding the theoretical framework of the model, but with 

knowledge of its basic principles. Conversely, it can incite the student to become acquainted with this 

framework as well as with the equations on which it is based, since this ease-of-use can be compared 

to the possibility of “driving a car without knowing how its engine works”.  

 

 

4. First tests and surveys for validation 
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 The validation of the work involved two testing steps corresponding to two different audiences 

and questionnaires.  

In the first one, performed during a two-day seminar, the twenty-five (25) contributors first 

checked the consistency, the completeness and the accuracy of the content of their module. They also 

acted as “beta-testers” by browsing two to three other modules for 2 to 4 hours each. To do this, they 

had to fill in an open questionnaire (see Appendix A), and declare whether they considered themselves 

as expert or novice in the field covered by the module. Those who have already worked and published 

in the area are referred to as experts, whereas those who have never read any scientific article on the 

topic are considered as novice. The answers were collated and transmitted to each of the contributors 

who then performed the appropriate corrections.  

In a second step, MESTRAL was tested by a large audience (100 users) from various horizons, 

students and professionals, and with various education levels in engineering and science (chemical, 

agricultural), from bachelor’s degrees to PhDs, on a volunteer and anonymous basis. It took place 

during the period from September 2018 to April 2019. No specific instruction was given and testers 

could choose any module on the website “http://thot.i2m.u-bordeaux.fr/mestral/portail/” using 

appropriate identifier and password. So MESTRAL was mainly tested for self-learning, possibly leading 

to a flipped classroom. Conversely, in some cases, blended learning conditions were also proposed. In 

this case, the students were asked to use a module in the presence of the teacher, who was the 

module’s contributor. After each test, the user was asked to fill in a questionnaire (see Appendix B) of 

twenty (20) questions. The results reported in Fig. 6 show that: (a) more than 90% of the testers were 

(quite) satisfied overall and (b) found the content clear and relevant; (c) the learning effort was judged 

moderate and equally distributed from significant to very low; whereas (d) about 75% found browsing 

on the eK-book quite easy. Finally, a large majority found it easier to learn about the models by running 

the simulators than by a traditional presentation of the model equations and of the theoretical 

framework (Fig. 6e). 

However, this positive trend should be balanced by the necessity to test the students for the 

acquired knowledge, a purpose for which learning tests (quizzes) have also been planned and 

implemented. The aim of this survey was clearly not to obtain definitive answers, but just to obtain 

initial feedback about the way the knowledge, and especially the models, are presented in the eK-

book. Altogether, the 15 MESTRAL modules integrated in the eK-book contain over six hundred (600) 

Cmaps and more than seven hundred (700) knowledge sheets, which leads to an overall total of 

approximately 150 h of teaching, including student’s effort. A more systematic evaluation by a larger 

group of students is to be scheduled under well-defined learning conditions. From the feedback, the 

necessary improvements will be performed prior to delivering this digital resource to educational 

institutions. Up until now, all of the modules were written in French, and one has been translated into 
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English (Aroma release from yoghurt in mouth), which suggests that translation into another language 

is within reach, provided the necessary resources are available. Presently, free access to MESTRAL may 

be granted upon personal request to the corresponding author of this paper. 

  

5. Conclusion 

In this paper, we have presented an original digital learning tool known as MESTRAL. It was 

built for the purpose of teaching food processing using models and that covers approximately 150 h of 

teaching, including student’s effort. It is based on knowledge engineering methods such as concept 

maps, which have been adapted for this purpose, and are implemented in an electronic knowledge 

book. Fifteen (15) models, all derived from research studies, are treated. They cover a wide range of 

real applications and can be mapped according to the system scale and the knowledge grain assessed 

by the different theoretical frameworks under which they are developed. This variety may clearly be a 

source of complexity for the student. However, cognitive load and disorientation can be reduced as a 

result of the harmonized knowledge representation. Furthermore, using the abacus technique, the 

results of simulations integrated into a database are graphically represented. Hence, the user can 

simulate various operations of the modelled system and test the influence of changes of either process 

conditions or product formulation on final food properties and process performances. Finally, an initial 

validation test on a large audience made it possible to obtain encouraging feedback. As advocated by 

the basic hypothesis of this work, this result suggests that by letting students simulate the workings of 

the (food and process) system, such a tool may contribute to sensitizing them about modelling 

approaches and various theoretical frameworks. Furthermore, since the results are derived from 

recent scientific research studies, they may draw the student’s attention to innovative processes. As a 

digital learning tool, MESTRAL could provide students with remote and self-training resources, and 

could also be used for blended learning by educational institutions. Finally, because of its potential to 

share digital resources, it contributes to a collaborative response to the teaching of modelling and 

favours the transfer of computer-aided engineering to the food industry. 
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(a) 

 

(b) 

 

MESTRAL                                Fig.1                                   

 

 

Figure 1: The canonical concept map (a) and an example of an application taken from the module 

“Aroma release from yoghurt in mouth” (b). Concepts are written in the boxes. They are linked by 

relationships from left to right: taxonomy (pink), synonymy (grey), mereology (blue) and domain 

(green). In the example, there is no synonymy relationship. Only the taxonomic relationship is always 

present on all the instances of the canonical concept map. Small icons that appear in Cmap (b) give 

access to another Cmap or to a knowledge sheet that can be opened by clicking on it. 
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MESTRAL                               Fig.2                                    
 

 

Figure 2: Example of a knowledge sheet taken from the module “Aroma release from yoghurt in 

mouth” with the eight fields, from top to bottom: title, illustration, explanations, creation date, 

authors, keywords, see also and literature references. 
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Mestral                                Fig.3. 
 

 

 

Figure 3: Concept map adapted to the representation of the model, taking the model of “Heat 

exchanger for starch suspension”, for example. Note that a concept “simulator” is added on the right 

to represent how the model is implemented and to give access to the results computed by the model. 

A knowledge sheet may be opened from this Cmap using the icons, providing information about the 

theoretical framework on which the model is based. 
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MESTRAL                               Fig. 4                       

  

 

 

 

Figure 4: Schematic mapping of the various models implemented in MESTRAL according to their 

knowledge grain (from more to less accurate predictions, x axis) and size scale of the modelled system 

(y axis). Models dealing with multiphase transport of heat and mass in (semi) solid medium are coded 

in red, whereas blue ones refer more to models that address the flow of complex media, with 

momentum transfer and large deformations, i.e., where rheology is pivotal. Purple codes stand for 

models involving both. 
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(a) 

 

(b) 

 

Figure 5: Two screenshots of the MESTRAL simulator for “rice grain drying” (a) and “extrusion-cooking 

of cereals” (b). On the upper part, sliders (green) feature the numerical values of model input variables. 

Below, several abacuses present the simulation results for the above input combinations and for 

various model parameters (initial and drying conditions in the case of grain drying (a); extruder 

operating conditions in the case of extrusion (b). Note that for real use, the graphs may be enlarged at 

the user’s demand.  
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MESTRAL                                Fig. 6  . 
 

Figure 6: Overview of the results of the second validation step, i.e., testing MESTRAL on a large 

audience (100 students) on the basis of a questionnaire (Appendix B): (a) overall satisfaction (question 

#9); (b) relevance and clarity of the knowledge conveyed; (c) mental effort made (cognitive load, #12); 

(d) navigating smoothness (#14); and (e) comparison to conventional lesson (#17). 
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Table 1: Overview of the different models represented in MESTRAL and their main characteristics 

(FEM=Finite Element Method) ordered according to increasing  system scale length and coarseness of 

knowledge grain. « Analytical with compartment » means that differential equations of heat, or mass, 

or momentum are solved explicitly, (time or space) step by step. 

 

Title  
& Process 

Food  
system 

Theoretical 
framework and 
model type 

Inputs a Outputs a Simulato
r basis 

Referenc
e 

Frying Banana 2D-Numerical 
(FEM) 

Product 
thermal 
properties 
and 
geometry, 
oil 
properties 
and fryer 
settings 

Fields of water, 
oil contents 
and 
temperature ; 
composition, 
micronutrients 
and nutrition 
indices 

Comsol b Bassama 
et al., 
(2015) 

Tubular 
heat 
exchange
r 

Starch 
suspensio
n 

2D- Numerical 
(FEM) 

Exchanger 
geometry & 
settings, 
suspension 
thermo-
rheological 
properties 
and starch 
swelling 
kinetics 

Fields of 
temperature, 
velocity, 
pressure, 
granule 
diameter and 
volume fraction 

Comsol b Plana-
Fattori et 
al., (2016) 

Aroma  

release 

Yoghurt 

 in mouth 

Numerical with 
compartments  

Food 
composition
, transfer 
and 
partition 
coefficients, 
consumer’s 
physiology 

Time-
concentration 
of aroma 
compounds in 
nose, pharynx 
and product 

MATLAB
® 

Trelea et 
al., (2008) 

Texture Cereal 
solid 
foams 

3D Numerical 
(FEM) 

Food sample 
geometry, 
cellular 
structure 
and cell 
wall’s Young 
moduli 

Local stress & 
strain fields, 
foam Young 
modulus 

Comsol b Guessas
ma et al., 
(2008) 

Microwav
e heating 

Pan 
bread, 
beef 
meat 

1D Numerical 
(Finite Volume) 

Product 
physical 
properties 
and 
thickness, 
microwave 

Time –
temperature 
and microwave 
absorbed 
power at 
different 

MATLAB
® 

Curet et 
al., (2009) 
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operating 
conditions 

locations in 
food 

Static 
mixer 

Milk 
liquid 
foams 

Analytical with 
Compartments 

Fluid 
properties, 
mixer 
geometry 
and settings 

Pressure 
profile, air 
volume 
fraction, mean 
bubble 
diameter, foam 
viscosity 

Personal 
c 

Laporte 
et al., 
(2014) 

Extrusion 
cooking 

Cereals & 
starchy 
products 

Analytical with 
Compartments 

Material 
thermo-
rheological 
properties, 
extruder 
geometry 
and settings 

Material 
pressure, 
temperature, 
residence time, 
viscosity and 
specific energy 
profiles 

Ludovic® Della 
Valle et 
al., (1993) 

Packagin
g 

Dry foods 
, or fresh 
respiring 
or not  

Analytical with 
Compartment 
and 1D-
numerical 

Food & 
packaging 
physical 
propertie 
and 
geometry, 
storage 
conditions 

Head space 
CO2, O2 and 
micro-
organisms time 
variations. 
Packaging 
material 
selection 

Personal 
c 

Guillard 
et al., 
Chaix et 
al. (2015) 

Drying Corn and 
rice 
grains 

Analytical with 
Compartment 

Inner and 
surface 
initial 
moisture 
content, 
grain 
physical 
properties 
and dryer 
settings  

Time variations 
of grain 
temperature, 
moisture 
content & 
quality 

Personal 
c 

Abud 
Archila et 
al., (2000) 

Cooling Meat 
(pork, 
rabbit) 
carcass 

1D - Numerical Size, mass & 
physical 
properties 
of carcass, 
conditions 
of air 
velocity, 
humidity, 
temperature 
& 
turbulence 

Time -
temperature & 
water mass loss 
at surface, and 
inside 
variations 

Personal 
c 

Kondjoya
n & 
Daudin, 
(1997) 

High  

pressure 

Fish and 
meat 

Phenomenologi
cal 

Initial 
products 
characteristi
cs & 
composition

Final microbial 
load, texture 
and color 

Personal 
c 

Cheret et 
al., (2005) 
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, time, 
pressure & 
temperature 
settings 

Agitation Syrups 
and milk 
powders 

Dimensional 
analysis 

Geometry, 
mixer 
settings, 
product 
properties  

Homogeneisati
on or 
dissolution 
times, 
consumed 
power 

Personal 
c 

Delaplace 
et al., 
(2015) 

Bread 
making 

Wheat 
flour 
dough 

Qualitative 
algebrae and 
phenomenologi
cal 

Flour 
composition
, mixer 
settings, 
proofing 
time 

Dough 
rheological 
properties, 
porosity and 
stability after 
proofing 

AsCoPain
® 

Ndiaye et 
al., (2009) 

Ripening Cheese Dynamic 
Bayesian 
network 

Initial pH 
temperature
, 
composition
, ripening 
time 

Microbial 
behaviour and 
evolution of 
sensory 
properties  

Personal 
c 

Baudrit et 
al., (2010) 

Cold 
chain  

and 
micro-
biological 
growth 

Ham Analytical with 
heat transfer 
coupled to 
previsional 
microbiology 

 probability 
distributions 
of residence 
time, 
ambient 
temperature
, microbial 
growth 

product 
temperature 
and microbial 
load evolutions 

Personal 
c 

Flick et 
al., (2012) 

 

a these characteristics are not exhaustive of the model considered but they provide more insight on the system 

(process, food) modelled. 
b Comsol stands for COMSOL Multiphysics®   
c « Personal » means that the model has been implemented by the author through current software resources 

(Office  or else) 

 

 


