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Abstract: In Europe, Puumala virus (PUUV) is responsible for nephropathia epidemica (NE),
a mild form of hemorrhagic fever with renal syndrome (HFRS). Despite the presence of its
reservoir, the bank vole, on most of French territory, the geographic distribution of NE cases
is heterogeneous and NE endemic and non-endemic areas have been reported. In this study
we analyzed whether bank vole-PUUV interactions could partly shape these epidemiological
differences. We performed crossed-experimental infections using wild bank voles from French
endemic (Ardennes) and non-endemic (Loiret) areas and two French PUUV strains isolated from these
areas. The serological response and dynamics of PUUV infection were compared between the four
cross-infection combinations. Due to logistical constraints, this study was based on a small number of
animals. Based on this experimental design, we saw a stronger serological response and presence of
PUUV in excretory organs (bladder) in bank voles infected with the PUUV endemic strain. Moreover,
the within-host viral diversity in excretory organs seemed to be higher than in other non-excretory
organs for the NE endemic cross-infection but not for the NE non-endemic cross-infection. Despite the
small number of rodents included, our results showed that genetically different PUUV strains and in
a lesser extent their interaction with sympatric bank voles, could affect virus replication and diversity.
This could impact PUUV excretion/transmission between rodents and to humans and in turn at least
partly shape NE epidemiology in France.

Keywords: Puumala virus; Myodes glareolus; France; experimental cross-infections; within-host viral
diversity; transmission

1. Introduction

Orthohantaviruses are considered emerging zoonotic pathogens [1] and represent a threat to
Public Health [2] due to their wide distribution in the world, the diversity of their reservoirs [3] and
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the lack of vaccines or treatments [4]. They are responsible for two pathologies in humans: hantavirus
cardiopulmonary syndrome (HCPS) in America and hemorrhagic fever with renal syndrome (HFRS) in
Eurasia [5]. In Europe, the most common orthohantavirus is Puumala virus (PUUV). It is carried by the
bank vole (Myodes glareolus) [6], which is present all over the continent, except near the Mediterranean
coast, the Iberian Peninsula and Greece [7]. Transmission of PUUV between rodents can be direct,
via biting (saliva) or indirect, via inhalation of aerosolized excreta (urine, feces) of infected rodents.
In bank voles, the infection is generally described as chronic and asymptomatic [8]. PUUV can also
be transmitted to humans, a dead-end host for the virus and is responsible of a mild form of HFRS
called nephropathia epidemica (NE) [6]. In Europe, several thousand cases of NE are reported each
year (European Center for Disease Prevention and Control), with a strong heterogeneity observed
between countries. Most of the cases are described in Scandinavia with several thousand cases per
year recorded (National Institute of Health and Welfare. Finland) while in other countries, like France,
Germany or Belgium, about one hundred cases are reported per year. There is also a strong level of
heterogeneity within countries [9,10]. In France, NE cases are mostly recorded in the northeastern
quarter. Over the last 10 years, a spatial expansion of NE cases outside of the endemic area has been
observed in southern and western areas (National Reference Center for Hantavirus, [11]). We therefore
previously proposed to discriminate NE endemic areas (lots of NE cases, for example, Ardennes [12])
and NE non-endemic areas (few or no cases of NE, for example, Loiret [13] and Ain [14]).

Understanding the processes shaping these contrasted epidemiological situations and predicting
if the NE zoonotic disease may emerge in new areas or extend its spatial range, are urgent issues
that need to be addressed. Field surveillance as well as integrative and holistic approaches, that take
into account all abiotic and biotic features influencing PUUV transmission between bank voles and
between bank voles and humans, are necessary to get a better picture of the distribution of PUUV
in its reservoir populations and of the risk of NE (emergence or increase of incidence) [15]. As such,
environmental factors related to M. glareolus habitat, PUUV survival outside M. glareolus and human
behaviors have been considered in niche modeling approaches to predict the spatial distribution of NE
disease. These researches have provided insights into why NE incidence is strongly heterogeneous in
space despite the continuous distribution of M. glareolus in Europe [16,17]. Nevertheless, abiotic factors
were not sufficient to predict the risk of NE as several phenomena remained unexplained, emphasizing
that the reasons of PUUV (re-) emergence are just beginning to be elucidated. Other studies have
focused on the role of biotic factors in shaping NE epidemiology and its variability in Europe and
France [18]. They focused on the genetic characteristics of PUUV [13] or of the bank voles [14,19–22].
However, they scarcely considered the influence of PUUV/M. glareolus interactions although these latter
can strongly influence infection outcomes [23,24]. Experimental infections are relevant approaches to
investigate the influence of host/pathogen interactions on eco-epidemiological processes, including
host immune response, pathogen replication and excretion. They have rarely been developed to study
reservoirs/hantaviruses interactions [25] and up to now, these experiments were conducted using either
colonized bank voles [26–30] and/or cell adapted viral strains [14,25,31]. Only limited conclusions could
be reached from these experiments, in particular because bank vole immunogenetic polymorphism [20]
or PUUV genetic diversity [13] have previously been shown to influence the variability of bank
vole/PUUV interaction outcomes. Similar results corroborating the influence of viral diversity were
also observed for other viruses, with different strains leading to different patterns of infection (classical
swine fever virus (CSFV), [32]), of immune responses (Lymphocytic Choriomeningitis Virus, [33]) or
excretion dynamics (CSFV, [34]).

Viral diversity is an important feature of orthohantaviruses as they are enveloped tri-segmented
negative stranded RNA viruses that evolve rapidly in their natural reservoir populations [35]. They have
high mutation rates, due to viral RNA-dependent RNA polymerase with no proofreading and repair
mechanisms [36]. As such they form viral quasi-species (i.e., set of close variants–[37]) in their
reservoirs [38]. This diversity is critical as it confers the potential for rapid evolution and selective
advantage to adapt to host immune responses, to new environments or to resist drugs [39,40].
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Within-host viral diversity and evolution have therefore been proposed as potential major features
shaping host-pathogen relationships. The advent of high-throughput sequencing (HTS) now enables
to address this topics in eco-epidemiological studies. The within-host diversity and evolution
of orthohantaviruses still remain poorly explored, with only few studies conducted in laboratory
conditions [30] or during capture-mark-recapture studies [41]. These studies have shown that the levels
of viral diversity found in orthohantavirus reservoirs were highly heterogeneous. Considering Sin
Nombre virus (SNV), higher levels of diversity were detected in organs involved in immune response
or in virus transmission, compared to other organs [41]. This higher diversity could favor the transfer of
variants with selective advantage for virus spread or establishment in new species [25]. This hypothesis
has not yet been investigated although it could help improving our understanding of the mechanisms
behind orthohantavirus transmission, spillover and persistence. Analyzing orthohantavirus diversity
in their natural reservoirs is therefore of main importance to assess its role in viral transmission and
epidemiology [25].

In this context, this study aimed at evaluating how bank vole-PUUV interactions may influence
the eco-evolutionary processes driving the epidemiology of PUUV in France and shaping the existence
of NE non-endemic and endemic areas. We tested the hypotheses that differences in host immune
responses, in PUUV replication/transmission and/or in PUUV within-host evolution, between NE
endemic and non-endemic areas, could explain this epidemiological situation. We focused on two
French regions: a NE endemic area (Ardennes) and a NE non-endemic area (Loiret), for which
we recently isolated two French PUUV strains (Hargnies and Vouzon strains from Ardennes and
Loiret, respectively) [42]. We showed that these strains belong to the Central European lineage and
we identified specific amino acid signatures for each strain, in particular in the antigenic domain,
what could potentially explain differences in virulence [13,42]. We performed cross-experimental
infections using these PUUV strains and wild bank voles trapped in the same localities and carry out
serological, virological and HTS analyses. This design enabled to discriminate the relative influence of
PUUV strains, bank vole populations and their interaction on the eco-evolutionary processes shaping
PUUV epidemiology.

2. Results

2.1. Clinical Signs

During the cross-experimental infections performed using wild bank voles (NE endemic, Ardennes;
NE non-endemic, Loiret) and the two French PUUV strains isolated from these areas (NE endemic,
Hargnies; NE non-endemic, Vouzon) (Figure 1), three bank voles died. Two bank voles came from
Loiret and were infected with Hargnies strain (one died between 0 and 3 dpi–days post infection-and
one between 3 and 7 dpi). The third bank vole was a negative control from Ardennes, during the
experimental infections with Vouzon strain (between 7 and 14 dpi). These individuals were not
included in further analyses.

No clinical sign was detected during the experiments. The weight of infected bank voles did not
vary between negative controls and infected bank voles (X2 = 0.06, p = 8.11 × 10−1).

All models are detailed in Supplementary Table S1.
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Figure 1. Cross-experimental infection protocol. 15 bank voles from Ardennes (endemic area) and 15 
from Loiret (non-endemic area) were infected with ①  Hargnies strain (endemic area) and ② 
Vouzon strain (non-endemic area). At 3, 7, 14, 21 and 28 days post-infection (dpi), blood, saliva, urine 
and feces were collected for each bank vole. At each time, two or three bank voles from each 
population were euthanized. Lungs, liver, salivary glands, bladder and rectum were collected. The 
drawings are from Servier Medical Art which provides open source illustrations. 

No clinical sign was detected during the experiments. The weight of infected bank voles did not 
vary between negative controls and infected bank voles (X2 = 0.06, p = 8.11 × 10−1). 

All models are detailed in Supplementary Table S1. 

2.2. Serological Response to PUUV Infections 

The sera of all bank voles were screened for N PUUV antibodies (Ab) (IgG) using ELISA to 
determine whether bank voles from both populations were successfully infected with PUUV strains. 
Seroconversion had occurred at 14 dpi for the majority of the bank voles infected with PUUV (Figure 
2a). 

Since the Ab response had occurred at 14 dpi, N-PUUV Ab and neutralizing antibodies (NAb) 
titers were measured to characterize and quantify bank vole serological response between 14 and 28 
dpi (i.e., at the end of the experiment). The generalized linear mixed model applied to N-PUUV Ab 
data revealed a significant effect of PUUV strain (X2 = 11.17, p-value = 8.33 × 10−4) and PUUV 

Figure 1. Cross-experimental infection protocol. 15 bank voles from Ardennes (endemic area) and 15
from Loiret (non-endemic area) were infected with 1OHargnies strain (endemic area) and 2O Vouzon
strain (non-endemic area). At 3, 7, 14, 21 and 28 days post-infection (dpi), blood, saliva, urine and feces
were collected for each bank vole. At each time, two or three bank voles from each population were
euthanized. Lungs, liver, salivary glands, bladder and rectum were collected. The drawings are from
Servier Medical Art which provides open source illustrations.

2.2. Serological Response to PUUV Infections

The sera of all bank voles were screened for N PUUV antibodies (Ab) (IgG) using ELISA to
determine whether bank voles from both populations were successfully infected with PUUV strains.
Seroconversion had occurred at 14 dpi for the majority of the bank voles infected with PUUV (Figure 2a).

Since the Ab response had occurred at 14 dpi, N-PUUV Ab and neutralizing antibodies (NAb)
titers were measured to characterize and quantify bank vole serological response between 14 and
28 dpi (i.e., at the end of the experiment). The generalized linear mixed model applied to N-PUUV
Ab data revealed a significant effect of PUUV strain (X2 = 11.17, p-value = 8.33 × 10−4) and PUUV
strain*bank vole population interaction (X2 = 9.32, p-value = 2.27 × 10−3). We detected higher N-PUUV
Ab titers in bank voles infected with Hargnies strain than with Vouzon strain. N-PUUV Ab titers were
higher in bank voles from Ardennes when infected with Hargnies strain compared to those infected
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with Vouzon strain (pairwise Wilcoxon tests with Holm’s correction (WH tests), p-value = 7.8 × 10−3).
Note that a marginal effect of the number of days post-infection ‘time’ was detected, with higher levels
of N-PUUV Ab observed between 14 and 21 dpi (WH tests, p-value = 6.4 × 10−2) (Figure 2b).

Similar results were observed for NAb, with significant effects detected for PUUV strains (X2 = 4.23,
p-value = 3.97 × 10−2) and population*strain interactions (X2 = 3.93, p-value = 4.76 × 10−2). Bank voles
infected with Hargnies strain had a higher neutralizing response compared to those infected with
Vouzon strain. NAb titers were marginally higher in bank voles from Ardennes when infected with
Hargnies than Vouzon strain (WH tests, p-value = 6.4 × 10−2) and in bank voles from Loiret when
infected with Vouzon strain (WH tests, p-value = 6.4 × 10−2) compared to bank voles from Ardennes.
The model also revealed that NAb titers increased between 14 and 28 dpi (WH tests, p-value = 1.8× 10−3)
(Figure 2c).

All models are detailed in Supplementary Table S2.

Pathogens 2020, 9, 789 5 of 19 

 

strain*bank vole population interaction (X2 = 9.32, p-value = 2.27 × 10−3). We detected higher N-PUUV 
Ab titers in bank voles infected with Hargnies strain than with Vouzon strain. N-PUUV Ab titers 
were higher in bank voles from Ardennes when infected with Hargnies strain compared to those 
infected with Vouzon strain (pairwise Wilcoxon tests with Holm’s correction (WH tests), p-value = 
7.8 × 10−3). Note that a marginal effect of the number of days post-infection ‘time’ was detected, with 
higher levels of N-PUUV Ab observed between 14 and 21 dpi (WH tests, p-value = 6.4 × 10−2) (Figure 
2b). 

Similar results were observed for NAb, with significant effects detected for PUUV strains (X2 = 
4.23, p-value = 3.97 × 10−2) and population*strain interactions (X2 = 3.93, p-value = 4.76 × 10−2). Bank 
voles infected with Hargnies strain had a higher neutralizing response compared to those infected 
with Vouzon strain. NAb titers were marginally higher in bank voles from Ardennes when infected 
with Hargnies than Vouzon strain (WH tests, p-value = 6.4 × 10−2) and in bank voles from Loiret 
when infected with Vouzon strain (WH tests, p-value = 6.4 × 10−2) compared to bank voles from 
Ardennes. The model also revealed that NAb titers increased between 14 and 28 dpi (WH tests, 
p-value = 1.8 × 10−3) (Figure 2c). 

All models are detailed in Supplementary Table S2. 

 
Figure 2. Serological responses of bank voles to Puumala virus (PUUV) infection. (a) Seroconversion 
kinetics of infected bank voles. The hatched line represents the threshold at which a bank vole is 
considered to be PUUV seropositive. (b) Quantification of N-PUUV antibody (Ab) titer and (c) of 

Figure 2. Serological responses of bank voles to Puumala virus (PUUV) infection. (a) Seroconversion
kinetics of infected bank voles. The hatched line represents the threshold at which a bank vole is
considered to be PUUV seropositive. (b) Quantification of N-PUUV antibody (Ab) titer and (c) of
PUUV neutralizing antibody (NAb) titer. Each symbol represents an individual from Ardennes (circle)
or Loiret (triangle) infected with Hargnies (red) or Vouzon (blue) strains. The mean of Ab or NAb titers
is represented as an horizontal bar. p-values were determined using the Wilcoxon test (**, p < 0.01).
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2.3. Dynamics of PUUV Infection in Bank Voles

We compared PUUV viremia (i.e., the proportion of RNA positive sera), replication (i.e., viral load
in organs) and excretion between the four cross-infection combinations, considering sera, organs and
excreta. The analyses were carried out using the 15 bank voles from Ardennes and 15 bank voles from
Loiret infected with Hargnies or Vouzon strain. Due to this limited number of rodents, two to three
individuals were euthanized at each time of the kinetics.

We detected a significant effect of ‘time’ (F = 26.78, p-value = 3.59 × 10−6) and PUUV strains
(F = 12.56, p-value = 3.59 × 10−3) on viremia. Viral RNA was mostly detected in sera at 3 dpi in
bank voles from the Ardennes (6/13 rodents) and Loiret (7/11 rodents), infected with Hargnies strain.
The number of RNA positive sera increased at 7 dpi, decreased after 14 dpi and no viral RNA could
be detected after 21 dpi. The same kinetics was observed for bank voles infected with Vouzon strain
except that only one individual from the Loiret populations (1/13) was RNA positive at 3 dpi (Table 1).

Table 1. Ratio of the number of positive viral RNA sera over the total number of bank voles infected,
throughout time.

Strains Bank Voles Origin Dpi

3 7 14 21 28

Hargnies Ardennes 6/13 8/10 2/7 0/4 0/2
Loiret 7/11 5/8 1/6 0/4 0/2

Vouzon Ardennes 0/13 6/10 0/7 0/4 0/2
Loiret 1/13 7/10 1/7 0/4 0/2

In the lungs and liver (PUUV replication organs), PUUV viral load did not significantly differ
between PUUV strains (lungs: F = 0.33, p-value = 5.70 × 10−1; liver: F = 0.04, p-value = 8.45 × 10−1) or
bank vole populations (lungs: F = 1.11, p-value = 2.97 × 10−1; liver: F = 0.47, p-value = 4.99 × 10−1).
We detected an effect of ‘time’ for both organs (lungs: F = 6.00, p-value = 6.30 × 10−4; liver: F = 2.82,
p-value = 3.65 × 10−2). The viral load was significantly higher between 3 and 7 dpi (WH test, lungs:
p-value = 4.0× 10−3; liver: p-value = 1.1× 10−2) and lower at 14 dpi (WH test, lungs: p-value = 5.8× 10−2;
liver: p-value = 6.0 × 10−3), 21 dpi (WH test, lungs: p-value = 1.1 × 10−2; liver: p-value = 8.0 × 10−3)
and 28 dpi (WH test, lungs: p-value = 1.6 × 10−2; liver: p-value = 7.0 × 10−3) (Figure 3a,b).

In the salivary glands and rectum (PUUV excretory organs), we found a significant effect of ‘time’ on
PUUV viral load (salivary glands: F = 3.31, p-value = 1.89× 10−2; rectum: F = 4.41, p-value = 4.49× 10−3).
In both organs, viral load was higher between 3 and 7 dpi (WH test, salivary glands: p-value = 2.5× 10−3;
rectum: p-value = 1.7 × 10−2) and between 3 and 21 dpi (WH test, salivary glands: p-value = 3.9 × 10−3;
rectum: p-value = 2.5 × 10−2). In the salivary glands, note that at 3 dpi, viral RNA was only detected in
bank voles infected with Hargnies strain compared to those infected with Vouzon strain. We found
more RNA positive individuals infected with Hargnies strain than with Vouzon strain during the
experiment (Figure 3c).

In the bladder (PUUV excretory organ), there was an effect of PUUV strain on PUUV viral load
but no statistical test could be performed. Indeed no PUUV RNA could be detected with Vouzon strain
while high levels of PUUV viral load were observed with Hargnies strain (Figure 3c).

Besides the presence of PUUV RNA in excretory organs, viral RNA could only scarcely be detected
in excreta. Only one saliva sample (Ardennes bank voles infected with Hargnies strain) and one urine
sample (Loiret bank voles infected with Vouzon strain) were found to be slightly PUUV positive at
14 dpi (respectively Cycle Threshold (CT) = 35 and CT = 36).

All models, as well as means and standard deviations are detailed of each condition tested in
Supplementary Tables S3 and S4.
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Figure 3. Quantification of viral RNA in (a) lungs, (b) liver and (c) excretory organs. Each symbol
represents an individual from Ardennes (circle) or Loiret (triangle) infected with Hargnies (red) or
Vouzon (blue) strain. The mean of RNA copy/mg (log10) is represented as an horizontal bar. (c) Boxplot
represent the RNA copy/mg (log10) in salivary glands for all the bank voles infected with Hargnies
(red) or Vouzon (blue) strain at all time. p-values were determined using the Wilcoxon test (*, p < 0.05;
**, p < 0.01).
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2.4. Within-Host PUUV Evolution

Viral diversity was characterized and quantified in all organs described above, using high
throughput sequencing of the PUUV S segment (Miseq Illumina), which was divided in 10 overlapping
amplicons (named A to J, Figure 4). Because some experimental cross-infections resulted in
very low PUUV viral loads, this sequencing could only be performed on the two individuals
exhibiting the highest viral loads. The first one corresponded to the cross-infection Ardennes bank
vole-Hargnies strain (NE endemic cross-infection); the second one corresponded to the cross-infection
Loiret bank vole-Vouzon strain (NE non-endemic cross-infection). Both were euthanized at 14 dpi
(see Supplementary Table S5). Sequencing results, including the read depths obtained for each sample
and each amplicon, are detailed in Supplementary Table S6.
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Figure 4. Schematic representation of the 10 overlapping (hatched) amplicons (named A to J) covering
PUUV S segment (about 1800 bp). Each amplicon is approximately 250 bp. MAD: major antigenic
domain; HVR: hyper variable region.

Considering NE endemic cross-infection, we detected a change of the major single nucleotide
polymorphism (SNP) at position 63 which resulted in an amino acid change between the inoculum
(Q63) and all organs of the infected bank vole analyzed at 14 dpi (R63). Such change was not observed
for the NE non-endemic cross-infection (Supplementary Table S5).

We quantified PUUV within-host diversity and compared it between the two cross-infections
studied. Two diversity indices were considered, the number of total polymorphic sites and the mean
of percent complexity.

Due to the low PUUV viral loads obtained during the experimental infections, especially when
using Vouzon strain, only one individual has been sequenced for each cross-infection condition.
Few reads were also obtained for the corresponding samples for some amplicons (see Supplementary
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Table S6). We therefore first focused on three amplicons (A, B and J) (Figure 4) that had enough reads to
be analyzed and on the lungs, salivary glands and rectum as it enabled to work on complete datasets.
The number of total polymorphic sites was higher in salivary glands and rectum during the NE
endemic cross-infection (Ardennes*Hargnies) than during the NE non-endemic one (Loiret*Vouzon).
The opposite situation was observed when considering lungs with more polymorphic sites observed
during the NE non-endemic than during the NE endemic cross-infection (Figure 5a). The mean of
percent complexity significantly varied between the two cross-infections (F = 68.83, p-value = 8.94× 10−7)
and between the organs tested (F = 3.91, p-value = 4.46 × 10−2) considering these two individuals.
A higher level of mean of percent complexity was observed for the individual corresponding to the NE
non-endemic cross infection and in the salivary glands. However, it is important to note that a high
variability of read number was obtained between the three amplicons (A, B and J) tested, especially in
the salivary glands for Vouzon infections (Figure 5b and Supplementary Table S6), what could have
biased this result.
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complexity ± sd for each organ tested.

Second, for each cross-infection, we aimed at comparing PUUV within-host diversity between
organs while including as much genomic information as possible. Each cross-infection (one individual
per cross-infection) was analyzed independently, considering the nine amplicons (all, except H for NE
endemic cross-infection and G for NE non-endemic cross-infection; Figure 4) that provided enough
sequences (see Supplementary Table S6). For the NE endemic cross-infection (Ardennes*Hargnies,
one rodent), the lungs, liver, salivary glands, bladder and rectum were included in the analyses.
The number of total polymorphic sites varied with the organ tested, with higher numbers observed in
the salivary glands, bladder and rectum compared to lungs and liver. The mean percent complexity was
also significantly higher in the salivary glands (Kruskal-Wallis tests with Dunn multiple comparison
tests (KWD test), p-value = 4.66 × 10−4) and bladder (KWD test, p-value = 1.42 × 10−4) compared to the
liver for this individual (Figure 6a). For the NE non-endemic cross-infection (Loiret*Vouzon), we could
only include sequences from the lungs and rectum as the numbers of reads gathered from the other
organs were too low, probably due to low viral loads (see Supplementary Table S6). The number of
total polymorphic sites seemed to be lower in the rectum than in the lungs. No significant difference
was observed for the mean percent complexity (KWD test, p-value = 1.45 × 10−1) (Figure 6b).
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Figure 6. Comparison of viral diversity between lungs, liver and excretory organs for (a) NE endemic
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percent complexity ± sd for each organ tested. p-values were determined using the Kruskal-Wallis test
(**, p < 0.01).

All models are detailed in Supplementary Table S7.

3. Discussion

This study provides insight into the potential influence of PUUV strain-bank vole population
interactions on the eco-evolutionary processes that could shape NE epidemiology in France.
We performed crossed-experimental infections using French PUUV strains isolated from NE endemic
and NE non-endemic areas and wild bank voles originating from these latter.

The cross-infections performed on 15 bank voles per conditions (two to three individuals
euthanized at each time of the survey) corroborated the kinetics described in other orthohantavirus
and PUUV studies [25]. PUUV infections lead to a transient viremia in bank voles [26,43] and PUUV
replicated in several organs (liver, salivary glands, bladder and rectum) including lungs, defined as
the target organ of PUUV [26], where higher viral load is observed. After 7 dpi, PUUV viral load
decreased and persisted in bank voles while the bank vole serological response started to increase after
two weeks of infection. The kinetics of PUUV replication and serological response observed in our
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study were congruent with the results obtained from bank voles from another French NE endemic
(Jura) and non-endemic area (Ain) [14,19].

Our experiments revealed a potential impact of PUUV strain on different eco-evolutionary and
epidemiological processes, although these results have to be taken cautiously as they relied on few
individuals. PUUV strain could be an important feature affecting infection outcomes, by influencing
the levels of serological response and viral replication in bank voles. The serological response mounted
by bank voles was higher when infected with the NE endemic PUUV strain (Hargnies) than the NE
non-endemic one (Loiret). Moreover, infections with the NE endemic PUUV strain lead to higher viral
loads than the NE non-endemic strain in sera and bladder. Lastly, PUUV kinetics seemed to differ in
salivary glands between the two strains. All these features are strongly linked to PUUV excretion and
transmission, what in turn should affect NE epidemiology. Nevertheless, no viral RNA was detected in
excreta in our experimental conditions despite evidence of French PUUV strain replication in excretory
organs. This result was already described during wild bank voles experimental infections with PUUV
Sotkamo strain [14]. PUUV is known to be transmitted via saliva or via inhalation of infected urine or
feces [29]. In our study, bank voles were infected subcutaneously so that the route of inoculation used
may not have been the most appropriate to mimic the natural mode of transmission [25]. The intranasal
route, which was used during other experimental hantavirus infections (ANDV [44]), HTNV [43]),
could be a more appropriate route of infection for PUUV experiments. Furthermore studies conducted
on naturally infected bank voles suggested life-long shedding of PUUV in rodents, with several peak of
excretion during hantavirus infections [45–47]. These results suggest that our experiment was realized
within too short period of time (28 dpi) to detect RNA virus in excreta.

The French PUUV strains included in this study are known to be genetically different [13]:
specific amino acid signatures have already been described in the major antigenic domain (MAD; [48])
and hyper variable region (HVR) of the N protein [13]. MAD and HVR are known to contain T-cell
epitopes [49,50] and B-cell epitopes [49,51–55] that activate the immune response. The S segment
of orthohantaviruses also encodes for a nonstructural protein named NSs that has the capacity of
inhibiting the expression of IFN β gene [56]. Therefore, the genetic differentiation of PUUV Hargnies
and Vouzon strains could influence the interactions between PUUV and bank voles or between PUUV
and accidental human hosts.

Besides, we recently analyzed the impact of PUUV isolation (cell culture) on the genetic features
of both PUUV strains [42]. We described a change in the major SNP at one position for both PUUV
strains between in natura (PUUV sequenced from wild bank voles naturally infected) and cell culture
(Hargnies: R63→ Q63–Vouzon: A28→ S28). These results enabled to compare the viral diversity
obtained during our experimental infections (in vivo) with in natura conditions. For NE endemic
cross-infection, we observed a “reverse” change between cell culture (Q63) and in vivo (R63) conditions.
This “in vivo” variant found in the experimentally infected bank voles corresponded to the one detected
in natura, what suggested that the variant mostly present in cell culture was not adapted to bank voles.
However, this result was not observed for NE non-endemic cross-infections. The major SNP described
in cell culture remained the same in our experimental infections (S28) and differed from what was
observed in natura. It has previously been described that cell culture can lead to PUUV adaptation [57]
what in turn can affect infection patterns. This differential evolution of PUUV strains during isolation
and infection, between Hargnies and Vouzon strains, could also shape the lower serological response
and viral loads observed with Vouzon strain. These preliminary results suggested that it would be
interesting to deeply analyze how PUUV genetic variations may underlie differences in bank vole
immune response to PUUV infections and PUUV replication.

Beyond these variations of sequence polymorphism between strains, we also investigated
differences in within-host viral diversity. No conclusions could be drawn about the comparison
between NE endemic (Ardennes*Hargnies) and non-endemic (Loiret*Vouzon) cross-infections. Indeed
the two indices used to describe this diversity did not provide congruent results. Contrary to the
total number of polymorphic sites, the mean of percent complexity takes into account the read
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depths [58] of sequencing, which is impacted by the low PUUV viral loads obtained during the
experimental infections (especially using the NE non-endemic strain). Even if the recent advance of
high-throughput sequencing (HTS) opens up new opportunities to study viral diversity, low viral
loads remains an important limit. For RNA viruses, viral genomes must be reverse transcribed before
the amplification step that allows to have enough viral material for sequencing. But amplification
processes introduce errors that can be tempered by technical replicates for example [59]. In the future,
integrating technics enabling the enrichment of viral matrices should help developing more efficient
and accurate assessment of within-host viral diversity [60,61].

We did not detect any impact of bank vole population origin on PUUV infection outcomes,
contrary to what Dubois et al. [14,19] observed during bank vole experimental infections. The limited
number of bank voles included in our study may have limited the possibility to detect such effect.
Moreover, we did not consider individual features that are known to affect infection dynamics
and transmission. In particular, rodent age and sexual dimorphism strongly influence hantavirus
kinetics and excretion [18]. Old males are mostly infected with PUUV in natural population [46,62].
Other experimental studies performed using orthohantaviruses (mostly SEOV) also showed that
males shed virus longer via more routes and that they developed stronger immune responses to
orthohantaviruses than females [63,64]. Besides, Dubois et al. [14,19] highlighted the importance of
inter-individual heterogeneity and the possibility that few outlier individuals (super-spreaders; [65])
could underlie the between-population differences observed in their study. It could therefore be
interesting to evaluate to what extent such inter-individual heterogeneity may affect the results of our
cross-infection experiments and better understand whether genetic differences between bank vole
populations may influence PUUV epidemiology [66].

These experimental surveys also revealed potential contrasted patterns of within-host diversity
between organs, when considering those that are sites of high PUUV replication (lungs and liver)
and those that are involved in PUUV excretion (salivary glands, bladder and rectum). Unfortunately,
some experimental cross-infection combinations resulted in very low PUUV viral loads. This did
not enable us to perform PUUV sequencing on all individuals. The analyses were then carried out
on only one individual for each cross-infection combination. The patterns observed therefore need
to be confirmed on a high number of infected bank voles before to confirm the potential impact of
different PUUV cross-infection combinations on PUUV intra-host evolution and diversity. For the
individual corresponding to the NE endemic cross-infection, the within-host diversity observed in
excretory organs reached higher levels than in replication ones. Both the number of total polymorphic
sites and mean of percent complexity were higher in salivary glands and bladder than in lungs and
liver. Such results have already been described for Sin Nombre virus (SNV) [41]. Moreover previous
studies based on other viruses have also shown that viral evolution could be heterogeneous within an
organism, in response to organ or cell specificities (e.g., poliovirus, [67]; see for review Reference [68]).
Assuming that the higher viral loads found in lungs and liver should be associated with higher levels of
viral population size, we would also expect higher levels of within-host diversity in these organs [68].
It would be interesting to deeper analyze whether different selective pressures, including host immune
responses associated with the various within-host environments, could explain these variations of viral
within-host diversity between organs. We did not find similar pattern for the individual corresponding
to the NE non-endemic cross-infection: no clear differences could be observed between replication and
excretory organs. The two diversity indices did not provide congruent results and only two organs
could be included in the analyses. These results should therefore be deepened to better understand the
potential influence of within excretory organs viral diversity, in terms of excretion and transmission of
PUUV between bank voles and between bank voles and humans; and to assess whether differences in
viral diversity could lead to geographic differences in NE epidemiology [25]. In this context, it will be
important to extend the study of PUUV genetic diversity to its two other segments (M and L) as these
latter are known to have a role in hantavirus virulence [69,70].
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In conclusion, even if this study is based on a small number of animals (due to the constraints of
working in A-BSL3 animal facilities), so that the results must be interpreted with caution, it has provided
new elements showing that bank vole—PUUV interactions could play a role in infection outcomes,
what may in turn influence PUUV transmission to humans and NE epidemiology. Differences of
PUUV replication and within-host viral diversity between replication and excretory organs highlight
the importance of studying these interactions and the underlying eco-evolutionary processes at the
individual scale, considering inter- and within individual heterogeneity. In the future, such combination
of experimental and genomic approaches should enable to better understand the geographical risk of
PUUV spread and emergence.

4. Materials and Methods

4.1. Ethics Statements

All animal works have been conducted according to the French and European regulations on
care and protection of laboratory animals (French Law 2013-118 from 1 February 2013 and Directive
2010/63/EU from 22 September 2010). Experimental protocols have been evaluated and approved by
the Animal Ethics Committee C2EA16 and the ministry of national education, higher education and
research (ANSES/ENVA/UPEC, CNREEA n◦16).

4.2. Rodent Sampling

In October 2017 and 2018, wild bank voles were captured in two French departments: Loiret (NE
non-endemic area) and Ardennes (NE endemic area). Ten lines of 20 French Agricultural Research
Institute (INRA) live traps, fitted out with dormitory boxes, were set up with about 5 m interval.
Traps were baited with sunflower seeds and carrots. Each trap was geolocated and checked daily,
early in the morning. Trapping session per site lasted at least three nights. Once trapped, bank voles
were transferred in cages until their transfer to an animal facility at ANSES-Lyon Laboratory. They were
placed in quarantine during three weeks and tested for the presence or absence of (i) anti-PUUV IgG
using the ELISA method [27] and (ii) viral RNA in sera using qRT-PCR [14].

4.3. Cross-Experimental Infections of Wild Bank Voles

Two experimental infections were performed, in 2017 and 2018. For each of them, 15 seronegative
bank voles from Loiret and 15 from Ardennes were transferred to an ABSL-3 facility and kept in
individual ISOcages N (Techniplast). Water was provided ad libitum. Fresh fruits and vegetables were
provided once a week. In 2017, rodents from the two bank vole populations were subcutaneously
infected with PUUV strain isolated from Ardennes (Hargnies strain, [42]) at 7 × 103 pfu/mL. PBS was
injected in two bank voles per region as negative controls. At 3, 7, 14, 21 and 28 dpi, each bank vole
was weighed. Blood, saliva, urine and feces were collected. At each time, two or three bank voles
from each region were euthanized by cervical dislocation. The controls were euthanized at the end
of the experiment (28 dpi). Lungs, liver, salivary glands, rectum and bladder were collected during
dissection and stored at −80 ◦C until analyses. In 2018, the same protocol was realized using PUUV
strain isolated from Loiret (Vouzon strain, [42]) for infections.

4.4. Serological and Virological Analyses

The serological status of bank voles was determined using ELISA following [27]. Sera were
screened using IgG ELISA with PUUV recombinant nucleocapsid (N-PUUV) protein and negative
controls. Samples were considered positive if the optical density (OD) was greater than 0.1. Sera were
then diluted from 1:100 to 1:12,800 to determine titers of N-PUUV Ab, using the same protocol. The titer
of NAb was defined with a focus reduction neutralization test (FRNT) (see for details [14]) using
Hargnies and Vouzon PUUV strains. Diluted sera (from 1:50 to 1:800) of bank voles infected with
Hargnies strain were mixed with 1500 pfu/mL of Hargnies strain. Diluted sera of bank voles infected
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with Vouzon strain have them been mixed with 1500 pfu/mL of Vouzon strain. For each serum,
the neutralization activity was determined as the maximum dilution that would reduce the number of
foci by 80% [71].

Total viral RNA was extracted from sera, saliva, urine, feces and tissue homogenate produced
in PBS using QiAamp Viral Mini Kit (Qiagen). PUUV viral RNA was then quantified by qRT-PCR
performed in duplicate, as described in Reference [14].

All statistical analyses were performed using RStudio 1.2.5 [72]. The variations in the amount of
N-PUUV Ab and NAb between PUUV strains, bank vole populations and over time were tested with
generalized linear mixed models, using the glmer function in the lme4 package [73]. The dependent
variable was the N-PUUV Ab titer or NAb titer. The fixed variables included time (dpi), PUUV strain,
bank vole population and their pairwise interaction. Bank vole identity was included as a random
effect. Multiple pairwise comparisons were performed with Wilcoxon tests and Holm’s correction
method for p-value adjustment using stat package. For each organ, a generalized linear model was
applied to analyze the variations of viral load between PUUV strains, bank voles populations and
over time (lm or glm function in the stat package). Pairwise interactions were included in the model.
Multiple pairwise comparisons were performed with Wilcoxon tests and Holm’s correction method for
p-value adjustment using stat package.

4.5. Viral Genomic Analyses Using Next-Generation Sequencing

PUUV S segment was sequenced using high throughput MiSeq Illumina technology with 10
overlapping amplicons (named A to J, Figure 4) of about 250 bp. For each sample, at least three PCR
replicates were performed for each amplicon. Methodological details regarding the sequencing libraries
and the bioinformatical analyses (validation of variants) are described in Reference [42]. Variants were
aligned and analyzed with SeaView 5.0. The first position of the sequence corresponds to the first ATG
codon sequenced. Nine samples were sequenced corresponding at least to 270 PCR products (see
Supplementary Table S6). PUUV S segment was sequenced in the organs of two individuals: a bank
vole from the NE endemic area–Ardennes-infected with Hargnies strain, named NE endemic cross
infection and a bank vole from the NE non-endemic area–Loiret-infected with Vouzon strain, named
NE non-endemic cross-infection. The organs sampled at 14 dpi used for the analyses were lungs,
liver, salivary glands, rectum and bladder. The bladder of the individual corresponding to the NE
non-endemic cross-infection could not be sequenced, whatever the amplicon considered, due to the
absence of RNA virus.

Two measures were used to analyze the within-host viral diversity between samples: the number
of polymorphic sites [74,75] and the percent complexity (the number of unique sequence reads/total
reads × 100) [58]. The percent complexity was calculated for each amplicon of a sample and the mean
of percent complexity was used for further analyses.

All statistical analyses were performed using RStudio 1.2.5 [72]. The variations in the mean
of complexity percent were tested using generalized linear models, using the glm function in the
stat package. The fixed variables included the cross-infections and organs tested. Multiple pairwise
comparisons were performed using Wilcoxon tests and Holm’s correction method for p-value adjustment
using stat package. Kruskal-Wallis tests followed by Dunn multiple comparison tests were conducted
to compare the mean of percent complexity between organs for each cross-infections. The kruskal_test
and dunn_test functions in, respectively, stat and rstatix packages, were used.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/10/789/s1,
Table S1: Generalized linear mixed models (GLMMs) results testing the effect of the status of infection (PBS or
virus), PUUV strain, bank vole population and ‘time’ on bank vole’s weight, Table S2: GLMMs results testing the
effect of PUUV strain, bank vole population and ‘time’ on N-PUUV antibody (Ab) and neutralizing antibody (NAb)
titers, Table S3: Generalized linear models (GLMs) results testing the effect of PUUV strain, bank vole population
and ‘time’ on the viral load in lungs, liver, salivary gland and rectum, Table S4: Means and standard deviations of
PUUV viral load for each PUUV strain, bank vole population and ‘time’ detected in lungs, liver, salivary glands
and rectum, Table S5: Selected sequencing samples and definition of the major SNPs, Table S6: Informations about
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PUUV S segment amplicons obtained for each technical replicate and sample tested, Table S7: GLMs results testing
the effect of NE cross-infections and organs tested on the mean of complexity percent. The raw sequences (fastq
format) used for this study are available in the Zenodo data repository (https://doi.org/10.5281/zenodo.4049573).
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