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Crop choices in micro-econometric multi-crop models:  

modelling corners, kinks and jumps  

 

 

Abstract 

Null crop acreages raise pervasive issues when modelling acreage choices with farm data. We 

revisit these issues and emphasize that null acreage choices arise not only due to binding non-

negativity constraints but also due to crop production fixed costs. Based on this micro-economic 

background, we present a micro-econometric multi-crop model that consistently handles null 

acreages and accounts for crop production fixed costs. This multivariate endogenous regime 

switching model allows for specific crop acreage patterns, such as multiple kinks and jumps in 

crop acreage responses to economic incentives, that are due to changes in produced crop sets. 

Currently available micro-econometric multi-crop models, which handle null acreages based 

on a censored regression approach, cannot represent these patterns. 

We illustrate the empirical tractability of our modelling framework by estimating a random 

parameter version of the proposed endogenous regime switching micro-econometric multi-crop 

model with a panel dataset of French farmers. Our estimation and simulation results support 

our theoretical analysis, the effects of crop fixed costs and crop set choices on crop acreage 

choices in particular. More generally, these results suggest that the micro-econometric multi-

crop model presented in this article can significantly improves empirical analyses of crop 

supply based on farm data. 

 

Keywords:  acreage choice, crop choice, endogenous regime switching, random parameter 

models 

 

JEL classifications: Q12, C13, C15 
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Choix des cultures et solutions en coin dans les modèles micro-économétriques de choix 

de production multiculture 

 

Résumé 

Les surfaces de culture nulles soulèvent de nombreuses questions lorsque l’on souhaite 

modéliser les choix d’assolement des agriculteurs à partir de données individuelles. Nous 

revisitons ces questions en mettant en avant le fait que les choix de surfaces nulles ne sont pas 

uniquement dus à des contraintes de non-négativité saturées mais également à des coûts fixes 

de production des cultures. A partir de ce cadre micro-économique, nous présentons un modèle 

micro-économétrique multiculture permettant de représenter de façon cohérente les choix 

surfaces nulles et tenant compte des coûts fixes de production des cultures. Ce modèle 

multivarié à changement de régime endogène offre la possibilité de représenter des schémas de 

choix d’assolement spécifiques, présentant notamment de multiples sauts et points d’inflexion 

dans les réponses des assolements aux incitations économiques en raison de changements dans 

les ensembles de cultures produites. Les modèles économétriques multicultures disponibles 

actuellement, qui tiennent compte des surfaces nulles à partir d’approches basées sur des 

régressions censurées, ne permettent pas de représenter ce type de schéma. 

Nous illustrons la tractabilité empirique de notre approche en estimant, sur un panel 

d’agriculteurs français, une version à paramètres aléatoires du modèle micro-économétrique 

multiculture à changement de régime endogène que nous proposons. Nos résultats 

d’estimations et de simulations viennent appuyer notre analyse théorique, concernant en 

particulier les effets des coûts fixes de production des cultures et des choix d’ensembles de 

cultures produites sur les choix d’assolement. Plus généralement, le modèle micro-

économétrique multiculture présenté ici peut améliorer significativement les analyses 

empiriques d’offre de culture basées sur des données individuelles d’exploitation.  

 

Mots-clés :  choix d’assolement, choix de culture, changement de régime endogène, modèle à 

paramètres aléatoires 

 

Classifications JEL: Q12, C13, C15 
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Choix des cultures et solutions en coin dans les modèles micro-économétriques de choix 

de production multiculture 

 

1. Introduction 

Market prices and agricultural policies impact crop supplies through their effects on input uses 

and yield levels, and acreage choices. Starting in the eighties with the pioneering work of Just 

et al. (1983), Chambers and Just (1989) and Chavas and Holt (1990), agricultural production 

economists developed micro-econometric multi-crop (MEMC) models for analyzing and 

quantifying these effects with farm accountancy data. These models have then been widely 

applied during the last decades. 

In MEMC models, farmers are assumed to allocate their cropland to the crops of a given crop 

set in order to maximize their expected profit or the expected utility of their profit. This ensures 

the economic consistency of the resulting models. However, currently available MEMC models 

ignore or poorly describe an important decision of crop producers: their choice to produce a 

subset of crops among the set of crops they can produce and sell. Indeed, applications of MEMC 

models frequently ignore null acreages by relying either on very specific farm samples (e.g., 

Just et al., 1983, 1990; Bayramoglu and Chakir, 2016) or on crop aggregation that eliminate 

null crop acreages (e.g., Oude Lansing and Peerlings, 1996; Serra et al., 2005; Oude Lansink, 

2008; Carpentier and Letort, 2012, 2014).1 Yet, sample selection prevents extrapolation of the 

estimation results to farmers not producing all considered crops while crop aggregation induces 

information losses regarding production choices at the crop level. 

A few recent MEMC models explicitly account for null crop acreages (e.g., Sckokai and Moro, 

2006, 2009; Lacroix and Thomas, 2011; Bateman and Fezzi, 2011; Platoni et al., 2012).2 These 

models are designed as censored regression (CR) systems and are estimated following two-step 

approaches inspired by that initially proposed by Shonkwiler and Yen (1999). These MCEM 

based on censored regressions (CR-MCEM) suitably account for null acreages from a statistical 

viewpoint but display severe micro-economic inconsistencies. 

                                                 
1 Other applications rely on aggregated data in which the occurrence of null acreages is limited (e.g., Chavas and 

Holt, 1990; Moore and Negri, 1992; Coyle, 1992, 1999; Ozarem and Miranowski, 1994; Guyomard et al, 1996). 

Such applications are now less frequent thanks to increasing availability of micro-data. 

2 The early studies by Moore and Negri (1992) and Moore et al (1994) being notable exceptions in this respect. 
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Indeed, these models are conceived as statistical versions – featuring error terms and accounting 

for mass points at 0 – of theoretical micro-economic models ignoring null acreages. Their main 

shortcoming is due to their relying on a single crop acreage choice model, whatever the subset 

of crops actually produced. These models thus fail to recognize that the crop acreage choices 

of a farmer structurally depend on the composition of the set of crops actually produced by this 

farmer. For instance, farmers are unlikely to consider the prices of the crops they don’t produce 

when choosing the acreages of the crops they produce.3 Of course, the lack of micro-economic 

coherency of CR-MCEM models substantially undermines their ability to yield consistent 

estimates of crop acreage responses to economic incentives. The composition of the produced 

crop sets, which displays substantial variability when null acreages are frequent, deeply impacts 

the structure of farmers’ crop acreage choices. These effects of farmers’ crop set choices are 

ignored in CR-MCEM models. 

The recent articles addressing the issue raised by null crop acreages from a statistical viewpoint 

by considering CR-MEMC models don’t focus either on corner solutions in acreage choices or 

on farmers’ crop choices. By contrast, the main objective of this article is to develop a consistent 

modelling framework for analyzing farmers’ crop set choices and, as a result, for handling null 

crop acreages in MEMC models. More precisely, the main aims of this article are (a) to revisit 

the null acreage issue in multi-crop models from a theoretical viewpoint, (b) to propose an 

original MEMC model that accounts for farmers’ crop choices in a way that is consistent from 

an economic viewpoint, together with a suitable estimation approach, and (c) to show, by means 

of an empirical application focused on crop diversification choices, that considering crop set 

choices significantly enriches micro-econometric analyses of farmers’ crop supply. 

Our multi-crop micro-economic modelling framework is based on an expected profit 

maximization problem considering land as an allocable quasi-fixed input. This problem 

includes the usual crop acreage non-negativity constraints but also production regime fixed 

costs. The production regime chosen by a farmer is defined by the subset of crops that this 

farmer decides to plant. The regime fixed costs consist of unobserved costs – such as 

unmeasured marketing costs or implicit labor and machinery management costs – that depend 

on the set of crops that are grown but that don’t depend on the acreages of these crops. 

                                                 
3 They don’t in a static framework although they might in a dynamic one. For instance, forward looking farmers 

consider (future) prices of crops they don’t currently produce if they plan to produce these crops in the future and 

if their current crop acreage choices impact their future expected profits (e.g., due to crop rotation effects). Yet, if 

they cannot be ruled out, these (indirect) effects of the non-produced crop prices are likely to be limited. 
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Accordingly, our modelling framework assumes that farmers choose the production regime 

maximizing their expected profit, regime fixed costs included, as well as the related optimal 

crop acreage, yield and input use levels. Importantly, our considering regime fixed costs implies 

that null acreages are not necessarily due to binding non-negativity constraints. 

Based on this micro-economic background, we design our MEMC model as an endogenous 

regime switching (ERS) multivariate model with multiple regimes. This endogenous regime 

switching micro-econometric multi-crop (ERS-MEMC) model consists of a probabilistic 

regime choice model coupled with a set of regime specific MEMC models. As estimating 

multivariate ERS models with multiple regimes is challenging and considering regime specific 

fixed costs increases the estimation burden, choosing relevant functional forms for the per 

regime MEMC models appears crucial. Thanks to their specific properties, the Multinomial 

Logit (MNL) acreage choice models proposed by Carpentier and Letort (2014) are particularly 

well suited in that respect. They yield simple and well-behaved functional forms for important 

components of our ERS-MEMC model, thereby significantly reducing its estimation cost. 

Relying on the MNL acreage choice models also enables us, following Koutchadé et al. (2018), 

to go one step further and to account for farmers’ unobserved heterogeneity by considering a 

random parameter version of our ERS-MEMC model. Estimating ERS models with multiple 

regimes is challenging mostly because their likelihood function involves integration of 

expectations over the probability distribution of multivariate latent error terms (e.g., Pudney, 

1989).4 Also, the likelihood function of our ERS-MEMC model needs to be integrated over the 

probability distribution of its random parameters. Our estimation approach combines tools from 

the micro-econometrics and computational statistics literatures. 

We illustrate the empirical tractability of our approach by estimating our model for a panel data 

sample of French arable crop producers. Our results tend to demonstrate that our random 

parameter ERS-MEMC model performs well according to standard fit criteria. They also tend 

to show that regime specific fixed costs significantly matter in farmers’ crop choice, along with 

crop expected returns. Importantly, these results also demonstrate that acreage choices’ 

responses to economic incentives strongly depend on the production regime choices. The 

elasticity of crop acreages in crop prices increases in the number of produced crops, a pattern 

that cannot be reproduced by CR-MEMC models. Finally, our simulation results show that the 

                                                 
4 In particular, the probability function of the production regime choice of our model cannot be integrated 

analytically. We also have to overcome the fact that the crop yield and input use (and, thus, expected crop return) 

levels of the crops that are not produced are unobserved. 
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acreage of minor crops respond non-linearly to increases in their prices due to production 

regime changes. 

Our contributions are twofold. First, ERS-MEMC model presented in this article accounts for 

null crop acreages while relying on a well-defined micro-economic background. As a result, it 

is the first theoretically coherent response to an issue that is pervasive when analyzing crop 

production with farm level data. Other ERS-MEMC models could be considered, but the one 

presented here allows to consider production regime fixed costs as well as farm specific 

parameters while remaining empirically tractable. Second, this model allows to disentangle the 

effects of the main economic drivers of farmers’ crop supply choices. It accounts for intensive 

and extensive margin choices, including the effects on crop set choices at the extensive margin. 

This unique feature is of special interest for investigating future agri-environmental policies. In 

particular, owing to its positive agronomic effects, crop diversification is a key feature of 

environmentally friendly crop production systems (e.g., Matson et al., 1997; Tilman et al., 

2002; Lin, 2011; Kremen et al., 2012; Bowman and Zilberman, 2013). Our modelling 

framework is especially well-suited for analyzing samples containing both specialized and 

diversified farms as well as for simulating the effects of policy instruments aimed to foster crop 

diversification.  

The rest of this article is organized as follows. The approach proposed to account for crop 

choices in micro-economic models of acreage decisions is presented in the first section. The 

structure of the corresponding ERS-MEMC model is described in the second section. The main 

features of our estimation strategy are presented in the third section, with a specific focus on 

the main issues arising with random parameter ERS-MEMC models.5 Illustrative estimation 

and simulation results are provided in the fourth section. Finally, we conclude. 

 

2. Regime switching in multi-crop acreage models: corners, kinks and jumps 

This section presents the theoretical modelling framework we propose for dealing with null 

crop acreages in micro-econometric acreage choice models. We proceed in three steps. First, 

we present the micro-economic crop acreage choice model underlying our ERS-MEMC model. 

Second, we compare this model to the models that have been proposed for modelling multiple 

                                                 
5 The overall structure of our estimation procedure is described in the Appendix. A detailed description is given in 

a dedicated Online Appendix. 
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binding non-negativity constraints or regime switching. We focus on the ability of these models 

to cope with corners, kinks and jumps in farmers acreage choices.6 Third, we present the 

functional form of the crop acreage choice models used in our ERS-MEMC model. 

 

2.1. Crop choices and crop acreages  

We assume that farmers can allocate their fixed cropland area to K crops. Accordingly, set  

{1,..., }K=K  denotes the set of crops that any considered farmer can produce and sell and 

farmers’ problem consists of optimally choosing a crop acreage share vector ( : )ks k= Îs K  

satisfying ³s 0  and 1¢ =s ι , term ι being the dimension K unitary column vector. 

We now introduce notions and notations aimed at describing farmers’ decisions to produce a 

subset of crops among crop set K . Set {1,..., }R=R  denotes the set of feasible production 

regimes. A production regime is defined by the subset of crops with strictly positive acreages. 

Set ( )r+
K  denotes the subset of crops planted in regime r while 

0 ( )rK  denotes its complement 

to K , that is to say the subset of crops that are not planted in regime r. Finally, function ( )r s  

defines the regime of the acreage share vector s. 

We assume that farmers are risk neutral. In year t farmer i is assumed to choose her/his crop 

acreages by solving the following expected profit maximization problem: 

 ( ){ }max ( ) ( )   s.t.    and  1it it itC D r¢ ¢- - ³ =s s π s s s 0 s ι .           (1) 

Term ,( : )it k it kp= Îπ K  is the vector of crop returns expected by farmer i when choosing s in 

year t. Function ( )itC s  is the implicit management cost of acreage s and ( )itD r  is the fixed cost 

of production regime r incurred by farmer i in t. This cost is fixed in the sense that it doesn’t 

depend on s. 

Acreage management costs ( )itC s  are costs not included in the crop gross margins that vary 

in s. They include unobserved variable input costs. They also account for the implicit costs 

related to constraints on acreage choices due to limiting quantities of machinery or labor, or to 

agronomic factors. These constraints providing motives for diversifying crop acreages, function 

( )itC s  is assumed to be convex in s. In order to ensure that the solution in s to problem (1) is 

                                                 
6 According to a slight adaptation of terminology introduced by Pudney (1989). 
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unique, we strengthen this assumption by assuming that function ( )itC s  is strictly convex in s.7 

These crop acreage management costs prevent farmers to solely produce the most profitable 

crop. 

Regime fixed cost terms ( )itD r  introduce discrete elements, and thus severe discontinuities, 

in farmers’ acreage choices. These costs do not depend on the chosen acreage in a given regime, 

they only depend on the crop set defining this regime. They account for the hidden fixed costs 

incurred by the farmer for any acreage choice in the considered regime, such as fixed costs 

related to the marketing process of the crop products or those incurred when purchasing specific 

variable inputs, when renting specific machines, when seeking crop specific advises, etc. These 

regime fixed costs may also depend on characteristics of crop biological cycles. For instance, 

part-time farmers may decide not to produce a given crop because the management of this crop 

is not compatible with their other non-farming activities. 

The smooth acreage management cost function ( )itC s  and the discontinuous regime fixed cost 

function ( )( )itD r s  are expected to impact farmers’ crop diversification in opposite directions. 

While limiting quantities of quasi-fixed factors impose constraints fostering crop 

diversification, regime fixed costs are expected to foster crop specialization. In particular, the 

regime fixed costs are expected to be non-decreasing in the number of produced crops.8 

We solve farmers’ expected profit maximization problem following a standard backward 

induction approach according to which farmers choose their production regime after examining 

their expected profit in each possible production regime. 

First, the acreage choice problem is solved for each potential regime. This yields the regime 

specific optimal acreage shares: 

 { }0( ) arg max ( )  s.t.  ,  1  and 0  if  ( )it it it kr C s k r¢ ¢= - ³ = = Îss s π s s 0 s ι K      (2a) 

and the regime specific optimal expected profit levels (regime specific fixed costs excluded): 

                                                 
7 Analogous cost functions are used in the Positive Mathematical Programming literature (e.g., Mérel and Howitt, 

2014; Heckelei et al, 2012) and in the multi-crop econometric literature (e.g., Heckeleï and Wolff, 2003; Carpentier 

and Letort, 2012, 2014). 

8 Note however that in specific empirical settings the ( )itD r  terms may also capture the effects of exogenous 

factors preventing farmer i to produce specific crops, e.g. due to unsuitable soils or to lacking outlets. In the 

empirical application presented in section 4, such features are unlikely to occur. Our sample covers a limited 

geographical area and we only consider crops which can be profitably produced in this area.  
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 { }0( ) max ( )  s.t. , 1 and 0 if ( )it it it kr C s k r¢ ¢P = - ³ = = Îs s π s s 0 s ι K .     (2b) 

for rÎR . 

Second, the optimal production regime itr  is determined by comparing the regime specific 

expected profit levels while accounting for the production regime fixed costs. Accordingly, the 

expected profit maximizing production regime itr  is defined as the solution in r to a simple 

discrete maximization problem with: 

 ( ){ }arg max ( ) ( ( ))it r it it itr r D rrÎ= P - s
R

 .           (3) 

Assuming that optimal regime itr  is unique, optimal acreage choice its  is obtained by 

combining equations (3) and (2a), with: 

 ( )it it itr=s s .             (4a) 

Similarly, equations (3) and (2b) yield the expected profit level itP , with: 

 ( )it it itrP =P .            (4b) 

Regime specific acreage choices ( )it rs  are derived from optimization problems that differ from 

one regime to the other due to nullity constraints on crop acreages. These constraints 

significantly impact how the acreage choices of the produced crops respond to market 

conditions. For instance, the regime r acreage choice, ( )it rs , doesn’t respond to changes in the 

expected returns of the crops not produced in regime r. Similarly, acreages of produced crops 

are expected to be more responsive to economic incentives in regimes containing numerous 

crops than in regimes containing only a few crops, crop acreage substitution opportunities being 

more limited with small crop sets. 

 

2.2. Corners, kinks and jumps in acreage choice models  

Our micro-economic crop acreage choice model is an example of ERS multivariate model with 

multiple regimes. To our knowledge, ERS models for multiple choices have been mostly used 

for demand systems, either for consumption goods (e.g., Wales and Woodland, 1983; Lee and 

Pitt, 1986; Kao et al., 2001; Millimet and Tchernis, 2008) or for production factors (e.g., Lee 

and Pitt, 1987; Arndt, 1999: Chakir and Thomas, 2003). Most of these studies rely on the dual 

modelling framework proposed by Lee and Pitt (1986). 

The main differences between the approaches that can be considered for handling null acreages 

in MEMC models are illustrated schematically in Figure 1. Panels (a)-(c) depict how the crop 
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acreage of a given crop depends on its expected return according to three multi-crop acreage 

models. These models differ on how they handle null acreage choices – based either on ERS 

models or on CR systems – and on whether they account for crop or regime production fixed 

costs or not. Indeed, Figure 1 shows that this comparison is all about “corners”, “kinks” and 

“jumps”. 

Figure 1. Typical multi-crop acreage models handling null crop acreages 

 
Source : Authors. 
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Models that account for null acreages and don’t account for crop production fixed costs are 

defined as systems of standard Tobit models (e.g., Moore and Negri, 1992; Moore et al., 1994). 

They define null acreages as corner solutions at zero. Their crop acreage models display one 

kink at the crop return level at which the non-negativity constraint of the considered crop just 

bind, as illustrated in panel (a).  

Panel (b) depicts patterns allowed by models that account for null acreages based on CR 

systems as well as for crop production fixed costs. These crop acreage choice models display 

one kink and, potentially, a jump at the crop return level where farmers are indifferent between 

planting the considered crop or not. Being based on extensions of generalized Tobit models, 

recent CR-MEMC models (e.g., Sckokai and Moro, 2006, 2009; Lacroix and Thomas, 2011; 

Bateman and Fezzi, 2011; Platoni et al., 2012) implicitly account for production regime costs. 

Crop acreage choices patterns allowed in our ERS-MEMC model are depicted in panel (c). Due 

to the effects of the regime choices on acreage choices, crop acreages may display several kinks. 

A kink occurs wherever changes in the expected return of the considered crop induce a regime 

switch. The first kink occurs at the crop return level above which farmers decide to plant the 

considered crop while others occur at regime switch points concerning the decision to produce 

or not to produce other crops. Our ERS-MEMC may also induce jumps at regime switch points, 

these jumps being due to threshold effects induced by regime fixed costs. According to our 

knowledge, this is the first MEMC model allowing such crop choice patterns. 

 

2.3. Crop choices and MNL acreage choice models  

The regime fixed cost considered in the maximization problem (3) determining the optimal 

regime itr  is ( )( ( ))it itD rr s  rather than simply ( )itD r . In effect, the production regime of 

( )it rs  may not be regime r, depending on the functional form chosen for the cost function 

( ).itC s The regime of ( )it rs  is only guaranteed to be a regime “included” in regime r as elements 

of ( )it rs  may be null due to binding non-negativity constraints. The production regime of ( )it rs  

is regime r if and only if , ( )k its r  is an interior solution to problem (2a) for any ( )k r+ÎK . 

For instance, if ( )itC s  is quadratic in s then , ( )k its r  is null if ,k itp  is sufficiently low. Moreover, 

neither crop acreage ( )it rs  nor expected profit ( )it rP  are obtained in analytical closed form 

in the quadratic case, precisely because elements of ( )it rs  may be corner solutions at 0. 

By contrast, the Multinomial Logit (MNL) crop acreage share models proposed by Carpentier 
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and Letort (2014) appear especially convenient in this context.9 This modelling framework 

relies on a family of acreage management cost functions ensuring that optimal crop acreage 

shares ( )it rs  and expected profit levels ( )it rP  satisfy two important conditions for any regime r. 

First, these terms are obtained in analytical closed forms. For instance, if the acreage 

management cost function is assumed to have the linear-entropic functional form 

1
,( ) ( )

( ) ( ) lns s

it k k it i k kk r k r
C s s sb a+ +

-

Î Î
= +å ås

K K  with 0ia >  then the regime specific acreage 

share vectors ( )it rs  are given by Standard MNL acreage share models: 

 
( )
( )

, ,

,

, ,

( )exp ( )
( )

( )exp ( )

s s

k i k it k it

k it s s

i it it

j r
s r

j r

a p b

a p b
Î

-
=

-å ( ), ,)exp ( )( i it it, ,, ,, ,j r( )( ) ( ((( i it, ,, ,((( , ,, ,, ,j
Î

j (
K

 for kÎK .        (5) 

where function ( )kj r  indicates whether crop k belongs to regime r or not; with ( ) 1kj r =  if 

( )k r+ÎK  and ( ) 0kj r =  otherwise. Second, it is easily seen from equation (5) that, for Standard 

MNL acreage share models, if crop k belongs to regime r then the optimal acreage share of crop 

k in regime r is ensured to be strictly positive. More generally, considering Standard or Nested 

MNL crop acreage models ensures that the production regime of ( )it rs  is regime r. 

The fact that , ( )k its r  cannot be null means that null crop acreages are handled in a specific way 

in the MNL modelling framework. Crop acreage non-negativity constraints never bind when 

deriving MNL acreage share models.10 These constraints just imply that the optimal acreage 

shares of the least profitable crops (acreage management cost included) are very small when 

they are much less profitable than other crops of the considered crop set.11 The acreage shares 

of the least profitable crops may only become null when farmers choose their production 

regime. Farmers exclude these crops from their production plans when they can get higher 

expected profit level without planting them. Incidentally, this feature of MNL acreage choice 

models prevents their use in CR-MEMC models.  

                                                 
9 Of course, choosing functional forms for their being convenient is unwarranted. Yet, their estimation being 

particularly challenging, all specifications of ERS models with multiple regimes that were used in empirical studies  

exploit, to some extent, properties of specific functional forms (e.g., Wales and Woodland, 1983; Lee and Pitt, 

1986, 1987; Arndt et al, 1999). Also, other properties of MNL acreage share models make them empirically 

relevant for modelling production choices of arable crop producers (Carpentier and Letort, 2014). 

10 This property comes from properties of the entropy terms that appear in the acreage cost management functions 

leading to MNL acreage share models (Carpentier and Letort, 2014). Term lnk ks s-  tends to 0 as 
ks  decreases to 

0 (we have ln 0k ks s =  if 0ks =  according to a standard extension by continuity result) while its derivative in 
ks  

tends to infinity as 
ks  decreases to 0. 

11 It is easily seen, from equation (5), that , ( )k its r  decreases to 0 as ,k itp  decreases to -¥ . 



Working Paper SMART – LERECO N°20-09 

14 
 

3. ERS-MEMC model with regime specific fixed costs: micro-economic structure 

This section presents the structure of the ERS-MEMC model considered in the empirical 

application presented in the next section. This model is composed, on the one hand, of yield 

supply functions, variable input demand functions and acreage share choice models for each 

produced crop, and on the other hand, of a probabilistic production regime choice model. This 

MEMC model can be interpreted as an extension to an ERS framework with regime fixed costs 

of the model proposed by Carpentier and Letort (2014). 

As in Koutchadé et al. (2018) we adopt a random parameter approach for accounting for 

farmers’ and farms’ unobserved heterogeneity. We assume that the parameters of farmers’ 

production choices, including those driving farmers’ responses to economic incentives, are farm 

specific. Accordingly, the main aim of the estimation procedure is to recover their distribution 

across the farmers’ population represented by the considered sample. 

The considered ERS-MEMC model is presented in three steps. First, we present the production 

choice models defined at the crop level, i.e. the yield supply and variable input demand models. 

Second, we present the per regime acreage share choice models. Finally, we describe the 

production regime choice model. This presentation is organized following the structure of the 

model: yield supply and variable input demand models are used for defining expected crop 

return models. These models are then used for defining crop acreage share models, which are 

themselves used for defining the production regime choice model. 

 

3.1. Yield supply and variable input demand models 

We assume that farmers produce crop k from a variable input aggregate under a quadratic 

technological constraint. I.e., we assume that the yield of crop k obtained by farmer i in year t 

is given by: 

 1 2
, , , , ,1/ 2 ( ) ( )y x x

k it k it k i k it k ity xb a b-= - ´ -           (6) 

where ,k itx  denotes the variable input use level. Parameter ,
x

k ia  is required to be (strictly) 

positive for the production function to be (strictly) concave in ,k itx . It determines the extent to 

which the yield supply and the input demand of crop k respond to the input and crop prices. 

Terms ,
y

k itb   and ,
x

k itb  have direct interpretations in the considered yield function. Term ,
y

k itb   is 

the yield level that can be potentially achieved by farmer i in year t while ,
x

k itb  is the input 

quantity required to achieve this potential yield level. These parameters are decomposed as 
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, , ,0 , ,( )y y y y y

k it k i k k it k itb b e¢= + +δ c  and , , ,0 , ,( )x x x x x

k it k i k k it k itb b e¢= + +δ c  where terms ,
y

k itc  and ,
x

k itc  are 

observed variable vectors used to control for observed farm heterogeneity (i.e., farm size and 

capital endowment per unit of land) and climatic conditions (i.e., temperature and rainfall). The 

,
y

k itb  and ,
x

k itb  terms are farmer specific parameters aimed at capturing unobserved 

heterogeneity across farms and farmers. These terms, as well as the ,
x

k ia  random parameter, 

mainly capture three kinds of effects: those of the natural and material factor endowment of 

farms (e.g., soil quality, machinery quality), of farmers’ practice choices (e.g., crop management 

practices, cropping systems) and of the skills of farmers. Terms ,
y

k ite  and ,
x

k ite  are standard error 

terms aimed to capture the effects on production of stochastic events (e.g., climatic conditions, 

and pest and weed problems). We assume that farmer i is aware of the content of ,
x

k ite  when 

deciding his variable input uses. 

Assuming that farmer i maximizes the expected return to variable input uses of each crop, we 

can easily derive the demand of the variable input for crop k: 

 2 2
, , ,0 , , , , ,( ) 1/ 2y y y x y

k it k i k k it k i k it k it k ity w pb a e-¢= + - ´ +δ c         (7a) 

and the corresponding yield supply: 

 1
, , ,0 , , , , , ( )x x x x x

k it k i k k it k i k it k it k itx w pb a e-¢= + - +cδ  .         (7b) 

Terms ,k itp  and ,k itw  respectively denote the expected output and input prices of crop k. 

Assuming that the expectations of ,
y

k ite  and ,
x

k ite  of farmer i are null at the beginning of the 

cropping season,12 this farmer expects the following return to the variable input: 

 ( ) ( ) 2 1
, , , ,0 , , , ,0 , , , ,( ) ( ) 1 / 2y y ys x x xs x

k it k it k i k k it k it k i k k it k i k it k itp w w pp b b a -¢ ¢= + - + + ´δ c δ c        (8) 

for crop k when she/he chooses her/his acreage shares. Vector , ,( , )ys xs

k it k itc c  is defined by replacing 

in vector , ,( , )y x

k it k itc c  the climatic variables by their expectations. 

 

3.2. Acreage share choice models 

As discussed in Carpentier and Letort (2014), the Standard MNL crop acreage model given in 

equation (5) appears to be rather rigid because it treats the different crops symmetrically. 

Indeed, arable crops can often be grouped according to their competing for the use of quasi-

                                                 
12 As discussed below, this assumption can be relaxed, e.g. for accounting for potential correlations between the 

,
y

k ite  and ,
x

k ite  error terms on the one hand, and the ,
s

k ite  error terms on the other hand. 
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fixed factors or according to their agronomic characteristics. The ERS-MEMC model 

considered in our application presented in the next section is based on a 3 level Nested 

Multinomial Logit (NMNL) acreage share model. 

For sake of simplification, we consider a 2 level NMNL acreage share model in this section.13 

Crop set K  is partitioned into G  mutually exclusive groups of crops. Term {1,..., }G=G  

defines the considered group set. Group gÎG  defines the crop subset ( )gK . Crops belonging 

to a same group are assumed to share similar agronomic characteristics and to compete more 

for farmers’ limiting quantities of quasi-fixed factors than they compete with crops of other 

groups. The corresponding acreage management cost function is given by: 

 1 1
, ( ) ( ) ( ) ( ), |( ) |( )1 ( )

( ) ( ) ln ( ) ln
Gs s s

it k k it i g g g g i m g m gk g g m g
C s s s s s sb a a- -

Î = Î Î
= + +å å å ås

K G K
   (9) 

where ( )gs  denotes the acreage share of group g and ,( )m gs  that of crop m in group g. Terms 
s

ia  

and ( ),
s

g ia  are farm specific parameters determining the flexibility of farmers’ acreage choices.14 

The larger they are, the more the acreage share choice respond to economic incentives (because 

the less management costs matter). Condition ( ), 0s s

g i ia a³ >  is sufficient for cost function ( )itC s  

to be strictly convex in s. 

The linear terms of the cost function ( )itC s  are decomposed as , , ,0 , ,( )s s s s s

k it k i k k it k itb b e¢= + +cδ  

where ,
s

k itz  are explanatory variable vectors used to control for observed heterogeneous factors 

and climatic events. Farm specific parameters ,
s

k ib  account for unobserved heterogeneity 

effects. Error terms ,
s

k ite  capture the effects of stochastic variations of the cost due to random 

events such as unobserved interactions of climatic events and soil characteristics impacting the 

soil state at planting. Farmers are assumed to know these terms when choosing their acreages. 

Error terms ,
s

k ite  are assumed to be independent from the error terms of the yield supply and 

input demand equations, ,
y

k ite  and ,
x

k ite . 

Farmers’ optimal crop acreage choices as given by equation (2a) can be derived for any 

production regime. It suffices to solve the maximization problem given in equations (3). For 

instance, eight acreage share subsystems are considered in our empirical application, one for 

each production regime present in the data. Of course, the functional form of the derived acreage 

choice function depends on the subset of crops produced in the considered regime. Assuming 

that crop k belongs to group g, we obtain: 

                                                 
13 The model used in our application is presented in the Online Appendix. 

14 We have we have ( ),
s s

g i ia a=  if group g contains a single crop. 
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   (10) 

and: 

 ( )( )
1

( ),( )
1

( ), , ,( )
( ) ( ) ln ( )exp ( )

s s
i h i

s s s

it i h i it ith h
r j r

a a

a a p b
-

-

Î Î
P = -å å ( ))( ), , , )h i it it( ( ), , ,( ), , ,, ,( ( ), , ,( ), , ,)expexp( ( ), , ,( ),( ), , ,( ), , ,( )( ))exp (()expexp( ( ),( ),( ),( ),( ))( )( )

( )( )h h( )( )( )( )( )( )( )( )( )( )h hh hG K
.     (11) 

Parameter 
s

ia  drives the land allocation to crop group acreages while parameters ( ),
s

g ia  drive 

the allocation of the crop group acreages to crop acreages. 

 

3.3. Production regime choice model  

Observing that the regime specific optimal acreage choice ( )it rs  necessarily belongs to regime 

r in the MNL case considered here, the regime specific expected profit levels ( )it rP  can be 

used for defining a regime choice model based to the choice problem described in equation (4). 

Let define the regime fixed costs as 
1

,( ) ( )it i i r itD r d r es -= - . The farm specific parameters ( )id r  

aim to capture the effects of unobserved factors affecting the regime fixed costs. The error terms 

,r ite  aim to capture the effects of stochastic factors and define the regime choice model as a 

probabilistic discrete choice model, with: 

 { }1
,arg max ( ) ( )it r it i i r itr r d r es -

Î= P - +
R

.        (12) 

Scale parameter is  determines the extent to which the regime expected profit levels (i.e. the 

( ) ( )it ir d rP -  terms) explain the production regime choice as regards to the effects of the ,r ite  

idiosyncratic terms. The higher is , the more the expected profit levels impact the observed 

regime choices. 

Regime fixed costs ( )id r  can be specified in different ways. These costs are expected to 

increase with the number of crops. Transaction costs and labor requirements related to a 

production regime increase with the number of crops produced in that regime. Indeed, one way 

to specify ( )id r  is to consider a sum of fixed costs associated to each crop produced in the 

considered production regime, with ,( )
( ) c

i k ik r
d r b+Î

=å K
 where ,

c

k ib  is the fixed costs related to 

crop k. Interestingly, this specification allows computing the fixed costs of regimes which are 

not observed in the data. This is of particular interest for simulation purposes. For example, 

changes in market conditions can lead farms to adopt new production regimes. This regime 

fixed cost specification is used in our empirical application. 

This specification of the regime fixed costs can be usefully compared with more general ones. 
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Farmers may purchase inputs specific to different crops from the same supplier, implying 

savings in the related transaction costs. Moreover, different crops may generate work peak loads 

during the same periods, implying that can concentrate their workload (or that of their 

employees) during these periods if they wish so. In these cases, the regime fixed costs are sub-

additive in the crop fixed costs. One way to deal with this pattern consists of directly specifying 

these fixed costs as famers specific constant terms on a regime per regime basis, with ,( )i r id r d=  

(given that the fixed cost of a “benchmark regime” needs to be normalized). Of course, the costs 

corresponding to regimes that are not observed in the data can’t be recovered, thereby 

constraining the regime set that can be simulated to be equal to the one that is observed in the 

data. 

 

3.4. Overall structure of the ERS-MEMC model 

The ERS-MEMC model is composed of three main parts: a subsystem of yield supply and input 

demand equations (7), a set of per regime subsystems of acreage share equations (10) and a 

probabilistic regime choice model (12). 

The set of dependent variables of this model contains the crop level production choices. These 

consist of the yield levels, input use levels and acreage shares of each crop that are produced 

by for farmer i in year t. These are collected in vector ( , , )it it it

+ + +y x s . Production regime itr  is the 

last dependent variable of the model. 

The set of explanatory variables contains crop prices, variable input prices and the control 

variable vectors used in the crop yield supply, input demand and acreage share equations for all 

crops. These variable are collected in vector itz , which defines the information set of the ERS-

MEMC model. 

The sole fixed parameters appearing in the model equations are the coefficients of the control 

variable coefficient vectors for all crops, which are collected in vector 0δ . 

The considered ERS-MEMC model contains two main subsets of random components: a vector 

of random parameters and a vector of error terms. 

Vector iγ  collects the farm specific parameters of the model, with ( , , )i i i is=γ β α . This vector 

contains the potential yield parameters, the input requirement parameters, the cost function 

linear parameters and the crop fixed costs parameters for all crops. These random parameters 

are collected in vector iβ . It also contains the input use flexibility parameters for all crops and 
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the acreage choice flexibility parameters, which are collected in vector iα . Finally, iγ  contains 

the scale parameter, is , of the regime choice model. 

In the error term vector ( , )yx s

it it it=ε ε ε , sub-vector 
yx

itε  collects the error terms error terms of crop 

yield supply and input demand equations for all crops while sub-vector 
s

itε  collects those of the 

acreage share equations. Finally, vector ite  collects the error terms of the regime choice model 

(i.e., ,r ite  for rÎR ). 

 

4. ERS-MEMC model with regime specific fixed costs: estimation strategy 

This section presents the main features of the estimation strategy adopted for estimating the 

ERS-MEMC model described above. As this model involve multiple endogenous regimes, 

considers numerous interrelated production choices and features random parameters, we 

impose parametric distributional assumptions on its random components (i.e. error terms and 

random parameters) that ensure its empirical tractability. We also impose simplifying 

assumptions regarding the dynamics of farmers’ choices and the multi-crop production 

technology. These assumptions are presented and discussed first. Then, we present how the 

main parameters of interest of our ERS-MEMC model are recovered from the data. Finally, we 

briefly describe our estimation strategy. More specifically, we present the main estimation 

issues that we face when estimating our random parameter ERS-MEMC model and the 

approaches chosen for overcoming these issues. A detailed description of our estimation 

procedure is provided in a dedicated Online Appendix. This procedure combines techniques 

found in the micro-econometrics and computational statistics literatures. 

 

4.1. Main probabilistic assumptions 

We assume that terms ( , )is isε e , iγ  and itz  are independently distributed for any pair ( , )t s . 

This implies that the explanatory variables vector, itz , is assumed to be (i) strictly exogenous 

with respect to the error term vectors and (ii) independent of the random parameters iγ . This 

latter assumption, which is standard in random parameter models, defines iγ  as a term that 

captures heterogeneity effects not captured by control variables itz . 

We further assume that error term ( , )it itε e  vectors are independently distributed across time. 

Combined with the fact that vector itz  doesn’t contain any lagged endogenous variable, this 

serial independence assumption implies that our MEMC model can be interpreted as a reduced 
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form model as regards the dynamic features of the modelled choices. Indeed, we hypothesize 

that random parameters iγ  capture the effects on farmers’ production choices and performances 

of the stable crop rotation schemes that these farmers rely on.15 Koutchadé et al. (2018) provide 

empirical results confirming this hypothesis with a sample of arable crop producers located in 

an area contiguous to the one considered in our application. 

Finally, we assume that the error term vectors 
yx

itε , 
s

itε  and ite  are independent. Relaxing this 

independence assumption for s

itε  and 
yx

itε  is possible but significantly increases the estimation 

burden  and Koutchadé et al. (2018), in a similar context, found that error terms 
s

itε  and 
yx

itε  

were not significantly correlated. 

 

4.2. Distributional assumptions 

Random parameter vectors iγ  are assumed independent across farms. For sake of 

simplification, we assume here that these random parameter vectors are normally distributed, 

with 0 0( , )iγ μ Ω0 0(μ0 0( ,( ,0 00 00 0N . Various transformations of elements of iγ  actually allow for other 

distribution choices for these elements while keeping the multivariate structure of the 

probability distribution of iγ  (e.g., Stanfield et al., 1996). For example, considering log-

transformations of iα  and is  in iγ  implies that these random parameters, which are required 

to be positive, are jointly log-normality distributed. We used this log-transformation in the ESR-

MEMC model used for our empirical application. Robustness checks demonstrated that other 

probability distribution choices have a limited impact on the main results.16 

We make the usual assumptions stating that error term vectors itε  are independent across farms 

(and years) and normally distributed, with 0( , )itε 0 Ψ0( , 0( ,( ,N .17 

Finally, we assume that the regime choice model error terms ,r ite  are independent across 

regimes and distributed according to a type I extreme value distribution. This assumption 

implies that the considered regime choice model is a standard Multinomial Logit discrete choice 

                                                 
15 In that, we rely on well-known features of heterogeneous dynamic processes: those implying that empirically 

disentangling the effects of unobserved heterogeneity from those of unobserved persistent dynamic features is 

notably difficult. Accounting for dynamic features of multi-crop production technologies and of farmers’ choices 

is challenging, and largely beyond the scope of this article. 

16 We tested specifications assuming that 
iβ is log-normally distributed and/or that 

iα follows a bounded Johnson 

distribution (e.g., Stanfield et al, 1996). 

17 Matrix 0Ψ  is block-diagonal under the assumption stating that s

itε  and yx

itε  are independent. 
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model conditionally on the scale parameter and on the regime specific expected profit levels 

and fixed costs. The corresponding conditional probability of the observed the regime choices 

is given by: 

 
( )

( )0

exp ( ( ) ( ))
( | , , ; )

exp ( ( ) ( ))
s i it it i it

it it it i

i it ir

r d r
P r

r d r

s

s
Î

P -
=

P -å
ε z γ δ

R

.       (13) 

This probability is defined as a function of 0( , , ; )s

it it iε z γ δ  because the vector of regime specific 

expected profit levels, ( ) ( )it ir d rP -  for rÎR , is a function of all the terms contained in 

0( , , ; )s

it it iε z γ δ , scale parameter is  excepted. 

 

4.3. Identification 

We consider here identification of the probability distribution of main random parameters of 

interest: the production choice flexibility parameters and the parameters of the regime choice 

model. 

Under the considered assumptions the probability distribution of farmers’ responses to 

economic incentives, iα , are identified through two main channels. Identification of the 

probability distribution of the variable input use flexibility parameters, ,
x

k ia  for kÎK , mostly 

relies on the variations of the corresponding input to crop price ratios. Identification of the 

probability distribution of the acreage choice flexibility parameters, 
s

ia  and ( ),
s

g ia  for gÎG , 

mainly relies on the variations of the expected crop return terms, ,k itp  for kÎK . Importantly, 

the expected crop returns are defined as functions of random parameters (i.e., ,
y

k ib , ,
x

k ib  and 

,
x

k ia  for kÎK ) that may be correlated with the acreage choice flexibility parameters. The 

“full” variance-covariance matrix of the joint probability distribution of the random parameters 

iγ  takes into account these potential correlations.  

Scale parameter is , which is the random coefficient associated to the regime specific expected 

profit levels ( )it rP  in the regime choice model, is mainly identified by the variations in these 

variables. Crop fixed costs ,
c

k ib  are entailed in the regime fixed costs ,( )
( ) c

i k ik r
d r b+Î

=å K
. 

Importantly, the fixed costs of the crops that are always produced cannot be identified because 

these crops are part of any regime present in the data. Therefore, the fixed costs of these crops 

are normalized at zero. The joint probability distribution of the identifiable crop fixed cost vector 

is mainly identified by the variations in the differences in the regime specific expected profit 

levels ( )it rP  across the production regimes. The potential correlations between, on the one 
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hand, the random parameters that are part of the expected profit levels and, on the other hand, 

the crop fixed costs and the scale parameter are taken into account in the distribution of iγ .  

 

4.4. Estimation issues and sketch of the estimation procedure 

The considered ERS-MCEM model being fully parametric, we consider a Maximum 

Likelihood (ML) estimator for efficiently estimating its parameters. These parameters are 

collected in 0 0 0 0 0( , , , )=θ δ Ψ μ Ω . Contribution of farmer i to the likelihood function of the 

model corresponds to the probability density function (pdf) of her/his sequence of production 

choices conditional on the sequence of exogenous variables characterizing this choice sequence. 

Assuming that the considered pdf is parameterized by η , let function ( | ; )f u v η  generically 

denotes the pdf of itu  conditional on it =v v  at 
it =u u . And let function ( ; )j u Ω  denote 

the pdf of ( , )0 ΩN at u. Given the probabilistic assumptions defining the parametric version 

of the random parameter ERS-MEMC model, contribution of farmer i to the likelihood function 

at θ  is given by: 

 ( )1
( ) ( , , , | , ; , ) ( ; )

T

i it it it it itt
f r dj+ + +

=
= -Õòθ y x s z γ δ Ψ γ μ Ω γ( )i it( Õi itÕòi iti itòi iti it))i it)i iti it .     (14) 

Likelihood function ( )i θ( )i  can be obtained neither analytically nor numerically due to its 

integration over the probability distribution of the random parameters iγ  . 

Micro-econometricians generally solve this problem by integrating ( )i θ( )i  via direct simulation 

methods for computing Simulated ML (SML) estimators of 0θ . Yet, implementing this 

approach is particularly challenging with ERS-MEMC models due to the dimension of 

parameter 0θ  and the complexity of the simulated version of the likelihood functions ( )i θ( )i )) . 

For instance, the ERS-MEMC model of our empirical application considers 22 production 

choices. It features 80 control variables, 37 random parameters and 20 error terms. Vector 0θ  

contains 786 parameters while our dataset describes 40,192 observed production choices (16.5 

per observation on average). 

Integration of ( )i θ( )i  over the random parameter distribution is thus the first estimation issue 

that we have to deal with. We compute the ML estimator of 0θ  by devising a Stochastic 

Approximate Expectation-Maximization (SAEM) algorithm. SAEM algorithms were proposed 

by Delyon et al. (1999) for computing ML estimators of models featuring continuous random 

parameters. These algorithms rely on simulation methods for integrating proxies of the sample 

log-likelihood of the considered model. They appear to use simulations more efficiently than 
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competing alternatives (e.g., McLachlan and Krishnan, 2007; Lavielle, 2014), which is a 

particularly relevant property when considering large samples, large multivariate models and/or 

large random parameter vectors. The structure of the SAEM algorithm that we propose for 

estimating random parameter ERS-MEMC models is described in the Appendix. Here, we 

consider its main step, the Maximization (M) step. This allows us to demonstrate the main 

advantages of our approach and, in the sequel, to illustrate the other two main estimation issues 

that we face. 

At each of its iteration, the considered SAEM algorithm solves two maximization problems for 

updating estimates of 0θ . These problems have the form of weighted ML problems that are 

much simpler to solve than the corresponding SML problem. The first problem to be solved in 

the M step of our SAEM algorithm aims at updating the estimated value of 0 0( , )μ Ω , the 

parameter of the pdf of the model random parameters. It is of the form: 

 ( , ) 1 1
max ln ( ; )

N J j i

i ii j
h j

= =
-å åμ Ω

γ μ Ωln ( ; )j iln (ln (i i(h ln (lnln (lln (i ii ilnlln μ( ;( ;(((i ii i(((        (15) 

where terms 
j

iγ
j

iγ  are random draws of iγ  from a pdf defined by the preceding iteration results 

and 
j

ih
j

ih  are weighting terms attached to these draws. The solution in μ  is the empirical weighted 

mean of the random draws 
j

iγ
j

iγ  while the solution in Ω  is their empirical weighted variance-

covariance matrix.  

The second part of the M step of our SAEM algorithm updates the estimate of 0 0( , )δ Ψ . It 

considers functions of the form 
1 1 1

( , ) ln ( , | , ; , )
T N J j j

i it it it it i j
W f rh +

= = =
=å å åδ Ψ w z γ δ ΨW ( , ) å, ), ) ; , )j j|i it it it il (ll (j jj j| , ; ,| , ; ,||i it it it it i| ,| ,| ,ln ( ,ln ( ,ln ( ,ln (lnln (ln (i it ii iln ( ,ln ( ,ln ( ,n (  

where ( , , )it it it it

+ + + +=w y x s . These functions have the functional forms of a weighted log-likelihood 

function of the production choices of a sample of “simulated farmers”. Assuming that ˆ ˆ( , )δ Ψ  is 

the preceding iteration estimate of 0 0( , )δ Ψ , it consists of solving either of the two following 

problems (a) ( , )max ( , )Wδ Ψ δ Ψ( , )(( , ), )  or (b) find ( , )δ Ψ  such that ˆ ˆ( , ) ( , )W W³δ Ψ δ Ψˆ ˆ( , ) ( , )W ( , )), ) ( ,, ) ( ,, )), ) . Unfortunately, 

solving problem (a) or even simpler search problem (b) is difficult due to the complexity of the 

conditional likelihood function ( , | , ; , )it it itf r+w z γ δ Ψ . 

Decomposing this function demonstrate that the problem is indeed twofold. Using Bayes’s law 

and the structure and distributional assumptions of the ERS-MCEM model, we obtain: 

 ( , | , ; , ) ( | , , ; , ) ( | , ; , )it it it it it it it itf r P r f+ + +=w z γ δ Ψ s z γ δ Ψ w z γ δ Ψ .     (16) 
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Vector it

+s  collects the acreage shares of the crops produced in regime itr .18 Function 

( | , ; , )it itf +w z γ δ Ψ  is the likelihood of crop level choice vector it

+w  conditional on ( , )it i =z γ γ  

and ( | , , ; , )it it itP r +s z γ δ Ψ  is the probability function of regime itr  conditional on ( , , )it it i

+ =s z γ γ . 

Yet, both functions raise estimation issues. 

Given the structure of our MEMC model, function ln ( | , ; , )it itf +w z γ δ Ψ  is the likelihood 

function of a Gaussian Seemingly Unrelated Regression (SUR) system with observations 

missing at random (up an additive term that doesn’t depend on ( , )δ Ψ ). The missing 

observations are the yield level, input use and acreage share of the crops that are not produced 

in regime itr . Ruud (1991) discussed the use of Expectation-Maximization (EM) algorithms for 

alleviating the computation burden of ML estimators of models based on latent Gaussian SUR 

systems with missing observations. Based on Ruud’s insights we devised an EM type approach 

for updating the estimates of 0 0( , )δ Ψ  in the M step of our SAEM algorithm. 

Our last main estimation issue is due to the computation of the regime choice probability 

function ( | , , ; , )it it itP r +s z γ δ Ψ . Given the structure of our MEMC model, this probability function 

can be defined as a function of the error terms of the acreage share equations. Let vector 
,s

it

+
ε  

collect the error terms of the acreage share models of the crops produced in regime itr  and vector 

,0s

itε  collect those of the crops that are not produced. Vector 
,s

it

+
ε  can be recovered from the 

acreage share model and the data, the observed crop acreages of the produced crops in 

particular. Let function 
,ˆ ( , )s

it

+
ε γ δ  denote the residual function corresponding to error term 

,s

it

+
ε  

The structure of our MEMC model and equation (13) yield: 

 ( ),0 , ,0ˆ( | , , ; , ) ( | , , ; ) | ( , ); ,s s s s

it it it it it it it it itP r P r f d+ += òs z γ δ Ψ γ z ε δ ε ε γ δ δ Ψ ε    (17) 

where 
,0 ,

0 0ˆ( | ; , )s s

itf +
ε ε δ Ψ  denotes the pdf of ,0s

itε  conditional on 
, ,ˆs s

it

+ +=ε ε , which is normal. 

Vector 
,0s

itε  must be considered as missing variables in the estimation process because it cannot 

be recovered by combining the model and the data. The Multinomial Logit functional form of 

function ( | , , ; )s

it it itP r γ z ε δ  prevents its integration over the probability distribution of ,0s

itε , 

either analytically or numerically. Building on the work of Harding and Hausman (2007), we 

use Laplace approximates of the regime choice probability functions ( | , , ; , )it it itP r +s z γ δ Ψ  for 

                                                 
18 Yield supply and input demand levels, ( , )it it

+ +y x , and regime choices, 
itr , are independent conditionally on 

acreage choices, exogenous variables and random parameters, ( , , )it it i

+ =s z γ γ , since error terms ( , )y x

it itε ε , s

itε  and 

ite  are assumed to be mutually independent. 
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computing the likelihood function of our model.19  

The fact that production regime choices and acreage choices depend on 
s

itε  constitutes the first 

source of endogeneity of the regime choices in our ERS-MEMC model.20 Random parameter iγ  

constitutes a supplementary source of regime choice endogeneity in our ERS-MEMC model.  

 

5. Empirical application: crop diversification of French arable crop producers 

This section presents an application aimed to illustrate the empirical tractability of our 

modelling approach as well as to demonstrate the role of crop set choices in analyzes of farmers’ 

production choices. 

 

5.1. Data and model specification details 

The model is estimated on an unbalanced panel data set containing 2276 observations of 415 

French grain crop producers in the North and North-East of France, over the years 2006 to 2011. 

This sample has been extracted from data provided by an accounting agency located in the 

French territorial division La Marne. It contains detailed information about crop production for 

each farm (acreages, yields, input uses and crop prices at the farm gate). We consider seven 

crops: sugar beet, alfalfa, protein pea, rapeseed, winter wheat, corn and spring barley, which 

represent more than 80% of the total acreage in the considered area.21 

The variable input aggregate accounts for the use of fertilizers, pesticides and seeds. The 

corresponding price index is computed as a standard Tornqvist index. When a farmer doesn’t 

produce a crop the corresponding output and input prices are unobserved. These missing prices 

were approximated by the yearly average of the corresponding observed prices. All prices are 

deflated by the hired production services price index (base 1 in 2006) obtained from the French 

                                                 
19 This approach relies on a second order Taylor expansion in ,0s

itε  of function 

( ),0 ,
ˆ( | , , ; ) | ( , ); ,s s s

it it it it it
P r f

+
γ z ε δ ε ε γ δ δ Ψ  around an optimally chosen value of ,0s

itε . Using simulation methods for 

integrating function ( | , , ; , )
it it it

P r
+

s z γ δ Ψ  would be inconvenient in our case due to our using such methods for 

dealing with random parameters. 

20 Indeed, the endogeneity issues raised by s

itε  in our ERS-MEMC model are analogous, from an econometric 

viewpoint, to those raised by the demand function error terms in demand systems with binding non-negativity 

constraints (e.g., Wales and Woodland, 1983; Lee and Pitt; 1986). 

21 The EU sugar beet subsidy scheme requires limited adjustments in our application because the actual sugar beet 

production largely exceeds the subsidized quota for all sugar beet producers of our sample. 
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department of Agriculture. This aggregated price index mainly depends on the price indices of 

machinery, fuel and hired labor, the main inputs involved in the implicit acreage management 

cost function. Climatic variables are provided at the municipality level by Météo France, the 

French national meteorological service. 

Farmers’ crop price expectations are defined by the corresponding lagged prices, according to 

a naïve anticipation scheme. Robustness checks demonstrate that anticipation scheme choices 

mostly impact estimates of the probability distribution of input use flexibility parameters ,
x

k ia , 

with very limited effects on our main results. 

Figure 2 depicts the three levels nesting structure that we adopt for the seven crops. In a first 

level we distinguish a cereal group composed of wheat, corn and barley, and a group of rotation 

entry crops: sugar beet, alfalfa, peas and rapeseed. This structure is intended to reflect the basic 

rotation scheme of grain and industrial crop producers in France. In a second level, the cereal 

group is split into two subgroups: winter cereals on the one hand and spring cereals on the other 

hand, in order to account for the differences in planting seasons. The ‘rotation entry crop’ group 

is split into an ‘oilseeds and protein crops’ subgroup and a subgroup including only sugar beet 

(the only root crop considered here). Wheat, which is the only winter cereal, is used as the 

benchmark crop. Based on these seven crops, 127 regimes could theoretically be chosen by 

farmers. The 8 most frequently observed regimes, out of 78 regimes present in the original 

dataset, were considered for selecting our estimation sample.22 

Figure 2. Nesting structure of the acreage choice model 

 

Source : Authors. 

                                                 
22 Considering a small regime set allowed us to estimate our ERS-MEMC model with regime specific fixed costs 

that are not defined as sums of crop fixed costs. This specification of the regime fixed costs is more flexible but 

only yields a modest improvement in the fit performance of the regime choice model. 
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All farmers grow winter cereals, (spring) barley, (winter) rapeseed and most of them (91.7%) 

grow at least two additional crops. The most frequent regimes in the sample (regimes 2, 3 and 4) 

include five or six crops. Table 1 provides descriptive statistics concerning the production 

regimes observed in the data. Most farmers adopt different production regimes over the 6 years 

of our sample: only 8 out of 415 farmers have not changed their production regime. The average 

gross margins associated to each regime are reported in the last column of Table 1. An 

interesting feature appears here: the most frequently chosen regimes are not the ones that lead 

to the highest average gross margin per hectare. For instance, regime 2 – which excludes corn – 

is characterized by the highest observed gross margin on average, but has been adopted in only 

21.5% of the observations. This comes to illustrate the fact that farmers’ choices of production 

regime are driven by factors other than gross returns, such as the acreage management and 

regime fixed costs represented in our model. 

Because we assume that regime costs are equal to a sum of fixed costs associated to each crop 

produced in the considered regime, the fixed costs associated to winter cereals, spring barley 

and rapeseed, which are always produced in our sample, are set to zero for normalization 

purpose. Interestingly, our data configuration illustrates an important advantage of this regime 

fixed cost specification. According to Table 1, the less frequently produced crop (i.e., corn) is 

produced in at least 24% of our observations while 3 production regimes (i.e., regimes 5, 6 

and 8) out of 8 are adopted in less than 3% of our observations. The probability distribution of 

fixed costs cannot be estimated accurately with our dataset on a pure per regime basis. But, that 

of crop fixed costs can be. 
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Table 1. Descriptive Statistics 

Regime number 

Average crops acreage shares per regime 
Regime 

frequency 

Average gross 

margin (€/ha)b 

Winter 

wheat 
Corn 

Spring 

Barley 

Sugar 

beet 
Alfalfa 

Protein 

pea 
Rapeseed 

  

1 0.38 0.07 0.15 0.12 0.09 0.06 0.13 6.6% 953 
2 0.37  0.16 0.15 0.11 0.06 0.15 21.5% 1014 
3 0.38 0.07 0.17 0.14 0.10  0.14 11.8% 930 
4 0.37  0.20 0.16 0.11  0.16 48.6% 1007 
5 0.41 0.14 0.19 0.10   0.15 2.8% 989 
6 0.50 0.14 0.14    0.22 2.5% 825 
7 0.44  0.23 0.14   0.19 4.9% 970 
8 0.58  0.15    0.27 1.3% 738 

Production frequency 100% 24% 100% 96% 88% 28% 100%   

Average acreage sharea 
0.38 

(0.09) 
0.02 

(0.05) 
0.18 

(0.07) 
0.15 

(0.06) 
0.10 

(0.05) 
0.02 

(0.03) 
0.16 

(0.06) 
  

Average acreage sharea if 
produceda 

0.38 
(0.09) 

0.08 
(0.07) 

0.18 
(0.07) 

0.15 
(0.06) 

0.11 
(0.04) 

0.06 
(0.03) 

0.16 
(0.06) 

  

Average gross margin 
(€/ha)a,b 

843 
(327) 

872 
(449) 

756 
(287) 

1789 
(379) 

562 
(286) 

663 
(269) 

843 
(311) 

  

Average yield (t/ha)a 
8.58b 
(0.88) 

9.23 
(1.73) 

6.82 
(1.21) 

95.19 
(13.01) 

12.62 
(1.92) 

4.72 
(1.28) 

3.89 
(0.64) 

  

Average price (€/t)a 
149b 
(31) 

131 
(34) 

155 
(35) 

25 
(3) 

72 
(15) 

198 
(25) 

323 
(64) 

  

Average fertilization and 
crop protection costsa 

431 
(91) 

308 
(74) 

294 
(70) 

547 
(126) 

350 
(125) 

246 
(66) 

415 
(83) 

  

      Notes: a Empirical standard deviation in parentheses, b Off-quota price of sugar beet.  
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5.2. Estimation results 

The parameter estimates of the yield, input demand, acreage shares and regime choice equations 

are reported in Tables 2 to 4. As shown in Table 2, the expectations of random parameters 

representing potential yields, ,
y

k ib , are precisely estimated for all crops and their values lie in 

reasonable ranges regarding the average yields observed in the sample (Table 1). More 

importantly, the variances of their distributions are also statistically different from zero for all 

crops. These parameters thus significantly vary across farms, despite the fact that we control 

for observed factors characterizing farm heterogeneity (land and capital endowments and 

climatic conditions). This comes to illustrate the importance of unobserved farm heterogeneity 

in our sample. 

Table 2. Selected Parameter Estimates of Yield Supply and Input Demand Models 

 Winter 

wheat 

Corn Spring 

barley 

Sugar 

beet 

Alfalfa Protein 

pea 

Rape-

seed 

Yield supply model        

Error term ,
y

k ite   
 
        

Standard deviation 0.66* 
(0.02) 

1.83* 
(0.07) 

0.95* 
(0.02) 

9.70* 
(0.02) 

2.96* 
(0.02) 

1.72* 
(0.03) 

0.49* 
(0.016) 

Potential yield ,
y

k ib
 

      

Mean 8.71* 
(0.02) 

9.06* 
(0.04) 

6.81* 
(0.02) 

95.60* 
(0.32) 

12.23* 
(0.04) 

4.15* 
(0.03) 

4.04* 
(0.01) 

Standard deviation 0.26* 
(0.01) 

0.65* 
(0.03) 

0.33* 
(0.01) 

5.7* 
(0.17) 

0.69* 
(0.02) 

0.51* 
(0.02) 

0.24* 
(0.01) 

Input demand model       

Error term ,
x

k ite          

Standard deviation 0.52* 
(0.01) 

0.59* 
(0.02) 

0.41* 
(0.01) 

0.84* 
(0.02) 

0.88* 
(0.02) 

0.60* 
(0.02) 

0.58* 
(0.01) 

Input requirement ,
x

k ib
 

      

Mean 4.36* 
(0.02) 

2.57* 
(0.02) 

2.92* 
(0.01) 

5.44* 
(0.03) 

3.15* 
(0.03) 

2.29* 
(0.02) 

4.44* 
(0.02) 

Standard deviation 0.37* 
(0.02) 

0.33* 
(0.01) 

0.24* 
(0.01) 

0.54* 
(0.02) 

0.44* 
(0.01) 

0.37* 
(0.01) 

0.41* 
(0.02) 

Input use flexibility ,
x

k ia
   

      

Mean 0.43* 
(0.01) 

0.08* 
(0.00) 

0.30* 
(0.00) 

0.49* 
(0.03) 

0.25* 
(0.00) 

0.33* 
(0.01) 

0.79* 
(0.02) 

Standard deviation 0.13* 
(0.01) 

0.09* 
(0.04) 

0.05* 
(0.00) 

0.58* 
(0.06) 

0.02 
(0.03) 

0.18* 
(0.01) 

0.31* 
(0.01) 

Notes: Estimated standard errors of the ML estimator are in parentheses. Asterisk (*) denotes a statistically 

significant parameter at the 5% level. 
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The parameter estimates of the input demand equations, also reported in Table 2, confirm this 

result: the probability distribution of their farm specific parameters is precisely estimated and 

displays significant heterogeneity. This is true for the random intercepts ,
x

k ib  (the input use 

requirement) but also for the random slope parameters, ,
x

k ia , which represents the response of 

farmers to change in netput prices. 

Turning to the parameter estimates of the acreage share equations in Table 3, again, the 

expectations and variance of random parameters are precisely estimated. Ranges of 

expectations of the acreage flexibility parameters are theoretically consistent. Conditions 

|(g), (g), 0s s s

m i i ia a a³ ³ >  hold on average. These are sufficient conditions for the acreage model 

to be well-behaved. 

 

Table 3. Selected Parameter Estimates of the Acreage Share Models 

Crop level random terms 
Winter 

wheat 
Corn 

Spring 

barley 

Sugar 

beet 
Alfalfa 

Protein 

pea 

Rape- 

-seed 

Error term ,
s

k ite           

Standard deviation 

 

0 
 

11.12* 
(0.38) 

9.91* 
(0.19) 

6.25* 
(0.13) 

6.77* 
(0.15) 

8.56* 
(0.28) 

7.09* 
(0.16) 

Acreage share shifters ,
s

k ib
 

 

Mean 

 
0 
 

17.41* 
(0.73) 

13.88* 
(0.37) 

24.51* 
(0.23) 

11.15* 
(0.24) 

18.78* 
(0.37) 

11.07* 
(0.24) 

Standard deviation 

 

0 
 

3.92* 
(0.02) 

4.19* 
(0.02) 

3.96* 
(0.03) 

2.70* 
(0.06) 

2.62* 
(0.01) 

2.20* 
(0.01) 

        

Acreage choice flexibility 

parameters 
Level 1 

s

ia  Level 2 (groups) ( ),
s

g ia
 . Level 3 (subgroups) |( ),

s

n g ia  

  Cereals Rotation 

heads 

Spring 

cereals 

Oil and 

protein crops
 

 
Cereals vs 

rotation heads 
Spring 

cereals vs 
winter cereals  

Sugar beet vs 
oil and protein 

crops 

Corn vs  
spring barley 

Rapeseed vs 
protein pea vs 

alfalfa 

Mean 

 
0.046* 
(0.001) 

0.053* 
(0.001) 

0.073* 
(0.001) 

0.530* 
(0.029) 

0.11* 
(0.002) 

Standard deviation 

 
0.015* 
(0.001) 

0.013* 
(0.001) 

0.025* 
(0.001) 

0.640* 
(0.029) 

0.020* 
(0.002) 

Notes: Estimated standard errors of the ML estimator are in parentheses. Asterisk (*) denotes a statistically 

significant parameter at the 5% level. 
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Finally, as shown in Table 4, the regime costs associated to crops, ,
c

k id , and the scale parameter, 

is , of the regime choice equation are significantly estimated and heterogeneous across the 

sample. The mean value of the scale parameter, 1.80, is large, reflecting the importance of 

regime profit and fixed cost levels in production regime choices. Simulation results provided in 

the next sub-section illustrate this point. Estimated mean fixed cost of alfalfa is negative on 

average. Two main reasons might explain this result. First, alfalfa is planted for at least two 

years. This crop requires farmers’ intervention mostly at planting and harvesting. In the Marne 

region, the alfalfa downstream (dehydration) industry generally takes on harvest operations, 

which comes to decrease farmers’ workload significantly. Second, being a legume alfalfa 

exhibits good agronomic properties, especially when used as a previous crop for cereals. Crop 

fixed cost estimates should, however, be considered cautiously given their high variability 

across farms. 

Once we have estimated the parameters characterizing the distribution of the random 

parameters iγ , we can “statistically calibrate” those parameters for each farmer in our sample 

and thus obtain a set of farmer specific “calibrated” models that can then be used for simulation 

purposes (Koutchadé et al., 2018). In this study, the specific parameter iγ  of farm i is calibrated 

as the mode of its (simulated) probability distribution conditional on ( , , , , )it it it it itr+ + +y x s z  for 

1,...,t T=  (i.e. according to a ML ‘calibration’ criterion conditionally on what is known about 

farm i in the data). One interesting feature is that this procedure also allows us to calibrate the 

parameters of the yield, input demand and acreage equations corresponding to crops that have 

not been grown by the considered farmer as well as farmer specific regime fixed costs for 

regimes that have never been chosen by the considered farmer. 

Table 4. Parameter Estimates of Regime Choice Models 

 Crop fixed costs ,
c

k ib  
Scale 

parameter 

is  

 
Winter 

wheat 
Corn 

Spring 

barley 

Sugar 

beet 
Alfalfa Peas Rapeseed 

 

Meana 

 
0 
 

3.80* 
(0.24) 

0 
 

0.30* 
(0.12) 

-4.70* 
(0.28) 

1.30* 
(0.04) 

0 
 

1.80* 
(0.07) 

Std deva 

 
0 
 

4.16* 
(0.10) 

0 
 

2.22* 
(0.05) 

4.40* 
(0.11) 

0.67* 
(0.01) 

0 
 

1.40* 
(0.07) 

Notes: Estimated standard deviation of the estimator in parentheses. Asterisk (*) denotes a statistically non 

null parameter at the 5% level. 
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Table 5. Fitting Criteria (Sim-R²) 

 
Winter 

wheat 
Corn 

Spring 

barley 

Sugar 

beet 
Alfalfa Peas 

Rape- 

-seed 

Yield supply models 0.37 0.24 0.35 0.42 0.28 0.39 0.45 

Input demand models 0.44 0.30 0.40 0.34 0.30 0.43 0.40 

Acreage share models  0.57 0.34 0.83 0.70 0.53 0.41 

 

The estimated farmer specific models allow us to compute fitting criteria, Sim-R², which are 

reported in Table 5. The Sim-R² criterion measures the quality of the prediction of the observed 

choices of farmers by the estimated models. Its construction is analogous to that of the R2 

criterion of the standard linear regression model: for a given choice variable and a given model, 

the Sim-R2 criterion is defined as the ratio of the empirical variance of the prediction of this 

variable to the empirical variance of the observed variable. 

These estimated criteria tend to show that the proposed model offers a satisfactory fit to our 

data.23 Using the estimated farmer specific models to predict the regime choices observed in 

our data, we find our model to exhibit a relatively good predictive power with 72.4% of regime 

choices correctly predicted. Importantly, our investigations on this issue tend to demonstrate 

that our results are robust to various distributional assumptions related to the model random 

parameters. 

 

5.3. Simulation results 

The structure of the proposed ERS multi-crop micro-econometric model allows to investigate 

the relative importance of the main drivers of production regime choices. For that purpose, we 

consider the simulation model obtained from the estimated one by calibrating the farm specific 

parameters for each farm of our sample. Then we use this simulation model for investigating 

the prediction power of three elements of the regime choice models: the weighted sum of the 

expected crop gross returns ( )it it r¢π s , the acreage management costs ( )( )it itC rs  and the 

regime fixed costs 
r

id  for rÎR . We simulate the regime choices according to each of these 

elements as well as combinations of these elements, and then confront them, on average, with 

the observed regime choices. Taken together these simulation results confirm that regime fixed 

                                                 
23 Much better fit levels are obtained for crop supply, acreage and input demand model defined at the farm level, 
mostly due to the explanatory power of the cropland area variable. 
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costs matter, but mainly in combination with the other drivers of the regime choice model. The 

maximization of gross margins, or the minimization of acreage management costs or regime 

fixed cost alone leads to predictions of regime choices that are strongly biased on average. 

Considering pairs of these choice criteria only slightly improve the predictions, while 

considering together these three criteria unsurprisingly provides predicted choices very close, 

on average, to the observed ones. 

To illustrate the relevance of the approach we propose to deal with corner solutions in acreage 

choices, we simulate the impacts of changes in expected crop prices on acreage choices. As 

acreage price elasticities play a crucial role in this type of exercise, we present them first. In our 

ERS-MEMC model these elasticities account for the impact of crop prices on both acreages 

within any given regime and switch in production regimes. These two effects can be 

distinguished by generalizing, to a multiple regime case, the decomposition proposed by 

McDonald and Moffit (1980) for standard Tobit models. The average acreage own price 

elasticities of our farm sample are reported in Table 6. They have expected signs and, because 

of the crop disaggregation level of our data, are larger than those commonly found in the 

literature. The decomposition of these elasticities shows that a large part of the price effects on 

acreages can be due to the inclusion or not of these crops in the production regimes chosen by 

farmers. For crops like corn or pea, which are minor crops in the considered area, changes in 

the production regimes account for about one third of the estimated price elasticities. However, 

changes in the production regimes can also have significant effects for frequently produced 

crops. For instance, they account for 11% of the sugar beet acreage own price elasticities. 

 

Table 6. Average Own Price Elasticities of Crop Acreages 

 Winter 

wheat 
Corn 

Spring 

barley 

Sugar 

beet 
Alfalfa 

Protein 

pea 

Rape- 

-seed 

Average crop acreage own price 

elasticities 
0.33 4.26 0.44 1.39 0.74 1.22 0.76 

Due to changes in acreages 

within production regimes 

0.33 
(100%) 

2.33 
(55%) 

0.43 
(98%) 

1.24 
(89%) 

0.60 
(81%) 

0.71 
(58%) 

0.75 
(99%) 

Due to changes in production 

regimes 

0.00 
(0%) 

1.93 
(45%) 

0.01 
(2%) 

0.15 
(11%) 

0.14 
(19%) 

0.51 
(42%) 

0.01 
(1%) 
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Table 7. Per Regime Average Own Price Crop Acreage Elasticities 

Regime  Crops produced in the regime 

Number Frequency 
Crop 

number 

 Winter 

wheat 
Corn 

Spring 

barley 

Sugar 

beet 
Alfalfa Peas 

Rape- 

-seed 

1 6.6% 7  0.33 0.95 0.92 1.19 0.62 0.68 0.84 

2 21.5% 
6 

 0.31  0.32 1.17 0.61 0.67 0.82 

3 11.8%  0.32 0.95 0.92 1.16 0.57  0.75 

4 48.6% 
5 

 0.30  0.32 1.14 0.56  0.74 

5 2.8%  0.31 0.95 0.90 1.10   0.44 

6 2.5% 
4 

 0.29 0.95 0.90    0.35 

7 4.9%  0.29  0.31 1.10   0.43 

8 1.3% 3  0.27  0.30    0.30 

 

Observing how crop acreage elasticities within production regimes vary across regimes allows 

to illustrate the main features distinguishing ERS-MEMC models from their CR-MEMC 

counterparts. Table 7 reports the estimated means of own price crop acreage elasticities per 

regime.  

These estimates display significant differences across production regimes. In particular, crop 

acreage own price elasticities grow with the number of crops produced in the considered 

production regime. The higher the crop number, the more farmers can make use of crop acreage 

substitution opportunities. For instance, the more the considered regime contains rotation 

starting crops, the more rapeseed acreage choices are responsive to rapeseed price. This 

elasticity range, on average, from 0.30, when rapeseed is the only rotation starting crop in the 

regime, to 0.84, in regimes with 4 rotation entry crops. Similarly, barley acreages are much 

more responsive to changes in barley price in regimes including corn than in regimes without 

corn. Corn and barley are the only spring cereals in farmers’ crop set. Crop acreage models of 

CR-MEMC models cannot represent the substitution patterns uncovered by our estimation 

results. These models account for crop regimes but consider the same crop acreage model for 

all production regimes. 

The impact of the production regime choice is further highlighted by simulating the effects of 

increases in the price of protein pea on its acreages. Owing to its fixing atmospheric nitrogen 

for themselves as well as for following crops, French agricultural scientists consider pea as a 

“diversification crop” of particular interest. Yet, protein pea acreages have declined over the 
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last decade in the considered area mostly because of lacking profitability, especially as regards 

to that of other rotation starting crops. The simulated impacts of increases in the price of peas 

on crop acreages are depicted in Figure 3.  

According to our results, a 40% increase in the expected price of pea would increase the average 

pea acreage share by 1.3%, from 2.0% to 3.3%. These additional pea acreages would mainly 

replace those of other rotation starting crops. The combined average acreage share of rapeseed, 

alfalfa and sugar beet would decrease by 0.9% while that of cereals would only decrease by 

0.4%. This illustrates the interest in considering crop – agronomic and management – 

characteristics when specifying the acreage management cost function. Interestingly, about two 

thirds of the increase in the pea acreage would be due to new producers. This also explains 

another feature of our simulation results. The simulated increases in the pea acreage is not linear 

in the price of pea. In particular, the increase in the pea acreages is more pronounced above the 

20% price increase level than below. Threshold effects due to production regime fixed costs 

and changes in crop acreage elasticities due to regime changes can explain this pattern. These 

induce kinks in farmers’ pea acreage choices that are smoothed by the averaging process. 

Figure 3. Estimated impacts of protein pea expected price on crop acreage shares 

 

Source : Authors’ calculations based on estimation results. 
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6. Concluding remarks 

The main aims of this article are threefold. First, we present an original modelling framework 

for dealing with null acreages in MEMC models. This framework is fully consistent from an 

economic viewpoint and explicitly considers regime fixed costs. These features make the ERS-

MEMC model proposed in this article suitable for analyzing and, to some extent, disentangling, 

the effects of the main drivers of farmers’ acreage choices at disaggregation levels at which 

issues raised by null acreages are pervasive. Our estimation and simulation results notably tend 

to demonstrate that expected crop returns are not the sole significant drivers of farmers’ crop 

acreage choices, at least in the short run. In particular, crop production fixed costs also matter. 

These results also show that crop acreages display patterns that cannot be accounted for by the 

CR-MCEM models currently used for handling null acreage choices. Effects of economic 

incentives on the crop acreage choices of a farmer strongly depend on the crop set chosen by 

the considered farmer. 

Second, the application presented in this article illustrates the empirical tractability of random 

parameter ERS-MEMC models for investigating farmers’ production choices. Of course, 

estimating such models raises challenging issues. But, this is also necessary for estimating 

structured micro-econometric models suitably accounting for important features characterizing 

micro-economic agricultural production data, among which significant unobserved 

heterogeneity. In particular, to estimate such models enables analysts to calibrate simulation 

models consisting of samples of farm specific models. 

Third, according to our experience, ML estimators computed with stochastic versions of EM 

algorithms appear to be interesting alternatives to Simulated ML estimators for relatively large 

systems of interrelated equations such as the random parameter ERS-MEMC models 

considered in our empirical application. SAEM algorithms appear to be particularly relevant. 

Of course, significant specification and estimation issues remain to be addressed. First, the 

empirical tractability of the ERS-MEMC model proposed in this article strongly relies on 

properties that are specific to the MNL crop acreage share models proposed by Carpentier and 

Letort (2014). Adapting our modelling approach to other crop acreage choice models would 

widen the scope of specification search for ERS-MEMC models. Also, the ERS-MEMC model 

considered in our empirical application relies on restrictive assumptions regarding the dynamic 

features of multi-crop technologies and farmers’ choice process. Finally, the estimation cost of 

the models proposed in this article is relatively high, due to long computing and coding times. 
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This article proposes solutions to methodological issues that could be used for improving micro-

econometric analyzes of policies impacting crop acreage choices. For instance, Babcock (2015) 

noted that policies related to biofuels led to a dramatic increase in interest in the econometric 

analyses of crop supply response to crop prices. The ERS-MEMC models considered in this 

article not only allow to disentangle intensive and extensive margin effects, they also allow to 

investigate crop choice effects. Analyzing crop choices also appear crucial for investigating 

agri-environmental policies and issues. For instance, changes in the location of crop production 

induced by climate change are due to crop set choices made the farm level. Also, as fostering 

crop diversification tend to become an important agri-environmental objective in many 

countries, including those of the European Union, coherent model of farmers’ crop set choices 

appear to be especially relevant. Finally, random parameter ERS-MEMC models can contribute 

to close the gap existing between MEMC models and mathematical programming models (e.g., 

Heckeleï et al., 2012; Mérel and Howitt, 2014). The overall structure of our ERS-MEMC 

models is similar to that of mathematical programming models and their random parameter 

versions can be used for calibrating heterogeneous farm models. 

Estimation costs appears to be among the limitations of our modelling framework that need to 

be addressed. Significant computing and coding costs make applied research work, such as 

specification search, tedious and time consuming. Relatively slight modifications of the model 

specification could, however, significantly reduce the estimation cost of the ERS-MEMC model 

presented in this article. For instance, in the model considered in the empirical application the 

covariance parameters of the random parameter vector iγ  represent more than 64% of the (786) 

estimated parameters. Yet, our estimates demonstrate that the random parameters of the crop 

yield supply and input demand models are strongly correlated, for a given crop but also across 

crops. This suggests that these parameters are linked by a few farmer specific “productivity 

factors”. Such latent productivity factors could be used for imposing some structure on the 

variance-covariance matrix of the considered random parameters and, thereby, for significantly 

reducing the number of covariance parameters to be estimated. Also, relying on Laplace 

approximates for the regime choice probability function of the ESR-MEMC model involves 

tedious and time consuming computations. Less accurate but significantly simpler 

approximation approaches could dramatically reduce the estimation burden. But, these cruder 

approximation approaches could also impact the consistency of the estimated model. The extent 

of these impacts and the related – estimation burden versus specification approximation – trade-

off is worth investigating in future work. 
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Appendix. SAEM algorithm structure 

The aim of our estimation procedure is to compute the ML estimator of 0θ  or, at least, an 

estimator that is asymptotically equivalent to this estimator which is practically “infeasible”. 

The ML estimator of 0θ  is the solution in θ  to the ML problem max ( )NLθ θ  where 

( )1 1 1
( ) ln ( ) ( , | , ; , ) ( ; )

N N T

N i it it iti i t
L f r dj+

= = =
= = -å å Õòθ θ w z γ δ Ψ γ μ Ω γ

i i t1 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 1

N N TN N TN N TN N TN N T
( )( )( )

1 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 1
( ))( )( ))( )( )( ))( ) . EM algorithms were 

proposed by (Dempster et al, 1977) for maximizing the likelihood function of models involving 

missing information, of which random parameter models are typical examples. Extensions of 

the original EM algorithm were then proposed for overcoming limitations of this algorithm 

(e.g., McLachlan and Krishnan, 2007; Lavielle, 2014), including issues such as those raised by 

the integration of the likelihood function of our model. 

EM type algorithms are constructed based on the expectation conditional on the “observed data” 

of the “complete data” sample log-likelihood function of the considered model. Contribution 

of farmer i to the likelihood function of the model corresponds to the pdf of her/his sequence 

of production choices conditional on the sequence of exogenous variables characterizing this 

choice sequence. This choice sequence is given by ( , )i i

+w r  with ( : 1,..., )i it t T+ += =w w  and 

( : 1,..., )i itr t T= =r  and the corresponding conditioning set by ( : 1,..., )i it t Tº =z z . The complete 

– observed and unobserved modelled variables – data related to farmer i consist of her/his 

observed production choice sequence, ( , )i i

+w r , and her/his specific parameter vector, iγ . The 

complete data log-likelihood function of our model is thus given by: 

 
1 1 1 1
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. (A.1) 

The “observed data” related to farmer i, thereafter denoted by iκ  , consist of her/his observed 

production choice sequence, ( , )i i

+w r , and of the exogenous variables conditioning these choice 

sequence, iz . That is to say, ( , , )i i i i

+=κ w r z . According to our notations function 0( | ; )i if γ κ θ  

denotes the density of iγ  conditional on iκ . Let function 
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denote the expectation of the ln ( , )C

i iθ γ( , )C

i i( ,,,,i i,,  conditional on iκ  based on the pdf ( | ; )i if γ κ θ  where 

θ  is a candidate estimate of 0θ . Function 
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defines the expectation of the complete data sample log-likelihood function 
1
ln ( , )

N C

i ii=å θ γ( , )C

i i( ,( ,,i i,,  

conditional on ( : 1,..., )i i N=κ  based on the pdfs ( | ; )i if γ κ θ  for 1,...,i N= . This function, 

which can be interpreted as a well-behaved proxy of ( )NL θ  when θ  is suitably chosen, is the 
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“engine” of EM type algorithms that can be used for estimating 0θ . 

SAEM algorithms iterate three steps until numerical convergence: a Simulation (S) step, an 

Approximation (A) step and a Maximization (M) step. They generate sequences of estimates of 

0θ  that converge to maxima of ( )NL θ  under mild assumptions, thereby allowing to compute 

ML estimators of 0θ  (Delyon et al, 1999; Kuhn et Lavielle, 2005; Lavielle, 2014). Assuming 

that the estimate of 0θ  obtained at the end of iteration n is given by ( )nθ , our SAEM algorithm 

proceeds as follows at iteration 1n+ . 

The S step consists of integrating terms 
( ) ( )[ln ( , ) | ] ln ( , ) ( | ; )C C

n i i i i i i nE f d= òθ γ κ θ γ γ κ θ γ( ) (
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 with 

simulation methods for 1,...i N= . Building on the work of Caffo et al (2005), we use an 

Importance Sampling approach. Terms ( )[ln ( , ) | ]C

n i i iE θ γ κ( , ) |C

n i i(( , ) |, ) |n i i, ) |, ), ) |  are approximated with simulated 
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    (A.4) 

are their corresponding normalized importance weights, for ( )1,..., nj J= . Other proposed 

densities are more efficient than that of ( ) ( )( , )n nμ ΩN  but are more difficult to draw from. 

The A step consists of constructing function ( ) ( )nQ θ( ) ( )( )( )Q( ) )) , the stochastic approximation 

of  ( )( | )nQ θ θ , by using the following recursive formula: 

 ( )

( ) ( ) ( 1) ( ) ,( ) ,( )1 1
( ) (1 ) ( ) ln ( , )nN J j C j

n n n n i n i i ni j
Q Ql l w- = =

= - + å åθ θ θ γ( ) ( ) ( 1) ( )( ) (1 ) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) (( ) (Q( ) (( ) (1( ) (( ) (( ) (( ) (( ) (( ) ( ) ( )) ( ) å( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )) ( 1) ( )) (1)( ) (( ) (( ) (( ) ( ) ( 1( ) ( ) ( 1( ) ( ) ( 1) ( 1( ) ( ( ))( )) ( )) ( )) ( 1) ( )) ( )) ( 1) ( )) ( )) ( )))( ) ( ) ( 1) ( 1) ( 1( ) ( ) ( 1) ( 1(1( ) (( ) (( ) (( ) (( ) ( ( ))) ( 1) ( )) ( 1) ( )) ( )) ( 1) ( )) ( 1) ( )) ( )) ( 1) ( 1) ( )) ( ))( ) ( ) ( 1( ) ( ) ( 1) ( 1( ) (( ) ( ) ( 1) ( 1) ( 1( ) ( )j C jl,( ),( ),( ) ln,( ),( ) ln,( ),( ),( ),( ),( ) ,( ),( )
j C j(( ,( ),( ),( ),( )( ,( ,( .  (A.5) 

Delyon et al (1999) and Kuhn and Lavielle (2005) provide guidelines for suitably choosing the 

sequence of weight terms ( )nl , which must lie in (0,1] . Large values of ( )nl  allow to explore 

the parameter space and yield a quick convergence to the neighborhood of a solution to the ML 

problem. But they also imply large simulation noise. Reducing the value of ( )nl  reduces the 

simulation noise and allow the algorithm to converge in the neighborhood of a solution to the 

ML problem. 

Kuhn and Lavielle (2005) also provide guidelines for suitably choosing the number of 

draws ( )nJ . Importantly, large numbers of random draws are not needed at each iteration since 

function ( ) ( )nQ θ( ) ( )( )( )Q( ) (( , by construction, reuses the random draws obtained in previous iterations. 

Indeed, “recycling” previous iteration draws is a major advantage of SAEM algorithms over 

their competing alternatives such as MCEM algorithms (Delyon et al, 1999; Lavielle, 2014). 
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As a matter of fact, the SAEM algorithm presented here performs significantly better that its 

MCEM counterpart, which corresponds to the SAEM algorithm with ( ) 1nl = , in our empirical 

application.  

The M step consists of updating the estimate of 0θ  by computing ( 1)n+θ . This updated estimate 

is defined either as: 

 ( 1) ( )argmax ( )n nQ+ = θθ θ) ( ) ( ))) ( )) ( )) ( )) ( )) () ( (() ( )) ( )) ( )) () () () (          (A.6) 

or as any ( 1)n+θ  such that condition ( ) ( 1) ( ) ( )( ) ( )n n n nQ Q+ ³θ θ( ) ( 1) ( ) ( )( ) ( )) ( )( ) ( 1) ( ) ( )( ) ( 1) ( ) ( )( ) ( 1) ( ) ( )( ) ( 1) ( ) ( )) ( )1) (1) (1) (Q( ) (( )( ) (( ) (( ) (( ) (( ) (( ) ( ((1) ( ) ( )) ( )) ( )1) ( ) ( )1) ( ) ( )1) ( ) ( )) ( )))( ) ( 1) (1) (1) (( ) (( ) ( 1) (1) (( ) ( 1) (( ) ( 1) (1) (  holds. 

The main advantage of SAEM algorithms, and of other EM type algorithms, for maximizing 

the log-likelihood function of random parameters models is due to the following decomposition 

of ( ) ( )nQ θ( ) ( )( )( )Q( ) : 

 ( ) ( ) ( )( ) ( , ) ( , )n n nQ W M= +θ δ Ψ μ Ω( ) (( ) (( ) (( ) (( ) (( )Q( ) (( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ()))( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ( ) ( )( , ) ( , )( ) ( ) ( )( ) ( ) ( ) μ) ( ) ( ,( ,) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( , )( , )( , )( ) ( ) ( )( ) ( ) ( )) ( )) ( )( ) ( ) ( )) ( )) ( )) ( )( , ), )( , )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )) ( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (        (A.7) 

where: 

  ( )
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( , ) (1 ) ( , ) ln ( , | , ; , )nN J Tj j

n n n n i n it it it i ni j t
W W f rl l w +

- = = =
= - + å å åδ Ψ δ Ψ w z γ δ Ψ( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )W( ) (( , ) (1 ) ( , )( ) (( ) (( ) (( ) (( ) (( ) ( ) ( ) å, ) (1, )( ) (( ) (( ) (( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )) ( 1( ) ( ) ( 1) ( )) ( , ))) ( , )( , )) ( )) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )) ( 1( ) ( ) ( 1) ( )) ( 1) ( )) ( 1) ( 1(1(1( ) (( ) (( ) (( ) (( ) ( ) ( , )) , )( , )( ) ( ) ( 1) ( )) ( 1) ( )) ( 1( ) (( ) ( ) ( 1) ( )) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( 1( ) ( ) ( )) ( 1) ( ) ,( )1 1 1
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N J Tj j|
N J T

,( ),( )i j t1 1 11 1 1,( ) l (l (j jj j
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N J TN J TN J TN J TN J T

,( )| , ; , )| , ; , ),( )|| ,( ),( ),( ),( )ln ( ,,,ln (ln (ln (,( ),( ),( ),( ),( ),( ),( ),( ),( ),( ),( ),( ),( ),( ),( ),( ),( )
 (A.8) 

and: 

 ( )

( ) ( ) ( 1) ( ) ,( ) ,( )1
( , ) (1 ) ( , ) ln ( ; )nN J j j

n n n n i n i ni j
M Ml l w j- =

= - + -å åμ Ω μ Ω γ μ Ω( ) ( ) ( 1) ( )( ) (1 ) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) (( ) (M ( ) ((( ) (( ) (( ) (( ) (( ) (( ) ( ) ( ) å) (1)( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) (( ) (( ) () (1)( ) (( ) (( ) (( ) (( ) (( ) (( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )) ( 1) ( )) ( ))) ( 1) ( 1(1( ) (( ) (( ) (( ) (( ) ( ( ))) ( 1) ( )) ( 1) ( )) ( )) ( )) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )( ) ( ) ( 1) ( )) ( )) ( 1) ( ))( ) ( ) ( 1( ) ( ) ( 1) ( 1( ) (( ) ( ) ( 1( ) ( ) ( 1( ) ( ) ( 1) ( 1( ) ( ,( ) ,( ) ; )j jl (l (,( ) ,( ),( ) ,( )l ( μ,( ) ; ); ),( )((,( ) ,( ),( ) ,( ),( ),( ),( ),( ),( ),( ),( ),( ) ln ((( ,( )((( ,( ),( )ln (ln (,( ) ln (ln (,( ),( ),( ),( )
. (A.9) 

This decomposition enables us to separately update parameters ( , )μ Ω  and ( , )δ Ψ . Moreover, 

term ( 1) ( 1) ( )( , ) argmax ( , )n n nM+ + = θμ Ω μ Ω( ) ( , )( )( ) ( , )( , )( )( )( )( )( )  can be obtained in analytical closed form based on 

the “sufficient statistic approach” proposed by Delyon et al (1999). 

Maximizing ( ) ( , )nW δ Ψ( ) ( , )( )( )W( ) ,,  in ( , )δ Ψ  appears to be much more difficult due to the functional form 

of ( , | , ; )it it it if r+w z γ η . Yet, function ( ) ( , )nW δ Ψ( ) ( , )( )( )W( ) , ), )  can be rewritten as: 

 ( ) ( ) ( )( , ) ( , ) ( , )yxs r

n n nW W W= +δ Ψ δ Ψ δ Ψ( ) ( ) ( )( , ) ( , ) ( , )) ( )
yxs r( )( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )W( ) ((( ) (( ) (( ) (( ) (( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( , ) ( , ) ( , )( , ) ( , ) ( , )) ( )( )) ( )) ( )( , ) ,,( , )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( , ),,( ) ( ) ( )( ) ( ) ( )( ) (( ) ( ) ( )) ( )( )( )( )                (A.10) 

where: 
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      (A.11) 

and: 
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it,( ),( )i j t1 1 11 1 1,( )
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.     (A.12) 

Terms ln ( | , ; , )it it if +w z γ δ Ψ  are defined – up to an additive term that doesn’t depend on ( , )δ Ψ  

– as log-likelihood functions at ( , )δ Ψ  of a Gaussian Seemingly Unrelated (linear) Regression 

(SUR) system with dependent variables missing at random (conditionally on ( , )it iz γ ). 
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Ruud (1991) discussed the use of EM algorithms for computing ML estimators of models with 

latent Gaussian SUR systems. Based on Ruud’s insights, we devised a simple EM type 

procedure aimed at obtaining values of ( , )δ Ψ  ensuring that condition 

( ) ( ) ( ) ( )( , ) ( , )yxs yxs

n n n nW W³δ Ψ δ Ψ( ) ( ) ( ) ( )( , )( )
yxs yxs( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )W( ) ((( ) (( ) (
yxs (( ) (( ) (( ) (( ) (( ) ( ((( ) ( ) ( ) ( )( ) ( ) ( )) ( ) ( )( )( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )) ( ) ( )( ))( )( ) (( ) (( ) (( ) (( ))( )( ) (( ) (( ) (( ) (( ) (( ) (  holds. This procedure defines ( 1) ( 1)( , )n n+ +δ Ψ , which, together with 

( 1) ( 1)( , )n n+ +μ Ω , completes ( 1)n+θ . 

We don’t consider function ( ) ( , )r

nW δ Ψ( ) ( , )r

( )( )W( ) ,,  when updating the estimate of 0 0( , )δ Ψ  because this 

function is an awkward function of ( , )δ Ψ . It involves the regime choice probability functions 

( | , , ; , )it it i itP r +z γ s δ Ψ . Yet, our ignoring ( ) ( , )r

nW δ Ψ( ) ( , )r

( )( )W( ) , ), )  in the construction of ( 1) ( 1)( , )n n+ +δ Ψ  doesn’t 

ensure that condition ( ) ( 1) ( ) ( )( ) ( )n n n nQ Q+ ³θ θ( ) ( 1) ( ) ( )( ) ( )) ( )( ) ( 1) ( ) ( )( ) ( 1) ( ) ( )( ) ( 1) ( ) ( )( ) ( 1) ( ) ( )( ) ( 1) ( ) ( )1) (1) (1) (Q( ) (( )( ) (( ) (( ) (( ) (( ) (( ) (( ) ( ((1) ( ) ( )) ( )) ( )1) ( ) ( )1) ( ) ( )1) ( ) ( )) ( )( ))(( ) ( 1) (1) (1) (( ) (( ) ( 1) (1) (( ) ( 1) (( ) ( 1) (1) (  holds whereas it is necessary for the convergence 

of the SAEM algorithm. We devised a simple heuristic for coping with cases where ( 1)n+θ  

doesn’t succeed in increasing ( ) ( )nQ θ( ) ( )( )( )Q( )  from ( ) ( )( )n nQ θ( ) ( )( )( ) ( )( ) (( ) (( ) (( ) (( ) (( ) (Q( ) (( ) (( ) (( ) (( ) ( . Yet, this heuristic was rarely activated 

when running this SAEM algorithm for estimating the ESR-MEMC model considered in our 

application. Two explanations can be put forward. If regime choice probability functions 

( | , , ; , )it it i itP r +z γ s δ Ψ  don’t have any “active” role when computing ( 1) ( 1)( , )n n+ +δ Ψ , they have 

important “passive” roles though their effects as elements of IS weights ,( )
j

i nw ,( )
j

i n,( ),( )w jj

i n . Also, the 

recursive structure of the considered ERS-MEMC model implies that most statistical 

information needed to estimate 0 0( , )δ Ψ  is contained in farmers’ crop level choices that are 

considered in ( ) ( , )yxs

nW δ Ψ( ) ( , )yxs

( )( )W( ) , ), ) . Parameter 0 0( , )δ Ψ  only impacts regime choices through its effects 

on the expected crop profitability levels. 
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