P. Romano, M. Ciani, and G. Fleet, Yeast Ecology of Wine Production in Yeast in the Production of Wine 2-31, 2020.

K. Zott, C. Miot-sertier, O. Claisse, A. Lonvaud-funel, and I. Masneuf-pomarede, Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking, Int. J. Food Microbiol, vol.125, issue.2, pp.197-203, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02663559

K. Zott, Characterization of the yeast ecosystem in grape must and wine using real-time PCR, Food Microbiol, vol.27, issue.5, pp.559-567, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02667631

M. R. Goddard, Quantifying the complexities of Saccharomyces cerevisiae's ecosystem engineering via fermentation, Ecology, vol.89, issue.8, pp.2077-2082, 2008.

Z. Salvadó, F. N. Arroyo-lópez, E. Barrio, A. Querol, and J. M. Guillamón, Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae, Food Microbiol, vol.28, issue.6, pp.1155-1161, 2011.

P. E. Mcgovern, U. Hartung, V. R. Badler, D. L. Glusker, and L. J. Exner, The Beginnings of Winemaking and Viticulture in the Ancient Near East and Egypt, Expedition, vol.39, issue.1, pp.3-21, 1997.

D. Cavalieri, P. E. Mcgovern, D. L. Hartl, R. Mortimer, and M. Polsinelli, Evidence for S. cerevisiae fermentation in ancient wine, J. Mol. Evol, vol.57, issue.1, pp.226-232, 2003.

J. C. Fay and J. A. Benavides, Evidence for domesticated and wild populations of Saccharomyces cerevisiae, PLoS Genet, vol.1, issue.1, p.5, 2005.

J. L. Legras, D. Merdinoglu, J. M. Cornuet, and F. Karst, Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history, Mol. Ecol, vol.16, issue.10, pp.2091-2102, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02667071

P. Almeida, A population genomics insight into the Mediterranean origins of wine yeast domestication, Mol. Ecol, vol.24, issue.21, pp.5412-5427, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837756

D. Dubourdieu, Identification de souches de levures de vin par l'analyse de leur AND mitochondrial, Connaissance Vigne Vin, vol.4, pp.267-278, 1987.

A. Querol, E. Barrio, T. Huerta, and D. Ramón, Molecular monitoring of wine fermentations conducted by active dry yeast strains, Appl. Environ. Microbiol, vol.58, issue.9, pp.2948-2953, 1992.

M. S. Cappello, G. Bleve, F. Grieco, F. Dellaglio, and G. Zacheo, Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard, J. Appl. Microbiol, vol.97, issue.6, pp.1274-1280, 2004.

D. Schuller, H. Alves, S. Dequin, and M. Casal, Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal, FEMS Microbiol. Ecol, vol.51, issue.2, pp.167-177, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02681134

F. A. Cubillos, C. Vásquez, S. Faugeron, A. Ganga, and C. Martínez, Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations, FEMS Microbiol. Ecol, vol.67, issue.1, pp.162-170, 2009.

F. Vezinhet, B. Blondin, and J. N. Hallet, Chromosomal DNA patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol, vol.32, issue.5, pp.568-571, 1990.
URL : https://hal.archives-ouvertes.fr/hal-02700717

V. Frezier and D. Dubourdieu, Ecology of yeast strains Saccharomyces cerevisiae during spontaneous fermentation in Bordeaux Winery, Am. J. Enol. Vitic, vol.43, issue.4, pp.375-380, 1992.

A. Versavaud, P. Courcoux, C. Roulland, L. Dulau, and J. N. Hallet, Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl. Environ. Microbiol, vol.61, issue.10, pp.3521-3529, 1995.

E. Valero, B. Cambon, D. Schuller, M. Casal, and S. Dequin, Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts, FEMS Yeast Res, vol.7, pp.317-329, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02663239

F. Ness, F. Lavalle, D. Dubourdieu, M. Aigle, and L. Dulau, Identification of yeast strains unsing polymerase chain reaction, J. Sci Food Agric, vol.62, pp.89-94, 1993.

J. L. Legras and F. Karst, Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation, FEMS Microbiol. Lett, vol.221, issue.2, pp.249-255, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00489891

M. Ciani, I. Mannazzu, P. Marinangeli, F. Clementi, and A. Martini, Contribution of winery-resident Saccharomyces cerevisiae strains to spontaneous grape must fermentation, Antonie Van Leeuwenhoek, vol.85, issue.2, pp.159-164, 2004.

C. Le-jeune, C. Erny, C. Demuyter, and M. Lollier, Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation, Food Microbiol, vol.23, issue.8, pp.709-716, 2006.

I. Vigentini, The vintage effect overcomes the terroir effect: A three year survey on the wine yeast biodiversity in Franciacorta and Oltrepo Pavese, two Northern Italian Vine-Growing Areas, Microbiology, vol.161, issue.Pt_2, pp.362-373, 2015.

J. L. Legras, O. Ruh, D. Merdinoglu, and F. Karst, Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains, Int. J. Food Microbiol, vol.102, issue.1, pp.73-83, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02670852

D. Schuller, Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments. Yeast, vol.24, issue.8, pp.625-636, 2007.

D. Schuller, Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions, PLoS ONE, vol.7, issue.2, p.32507, 2012.

D. H. Catlin, Metapopulation viability of an endangered shorebird depends on dispersal and human-created habitats: Piping plovers (Charadrius melodus) and prairie rivers, Mov. Ecol, vol.4, p.6, 2016.

S. Knight and M. R. Goddard, Quantifying separation and similarity in a Saccharomyces cerevisiae metapopulation, ISME J, vol.9, issue.2, pp.361-370, 2015.

S. J. Knight, O. Karon, and M. R. Goddard, Small scale fungal community differentiation in a vineyard system, Food Microbiol, vol.87, p.103358, 2020.

M. R. Goddard, N. Anfang, R. Tang, R. C. Gardner, and C. Jun, A Distinct population of Saccharomyces cerevisiae in New Zealand: Evidence for local dispersal by insects and human-aided global dispersal in Oak Barrels, Environ. Microbiol, vol.12, issue.1, pp.63-73, 2010.

I. Stefanini, Role of social wasps in Saccharomyces cerevisiae ecology and evolution, Proc. Natl. Acad. Sci. U.S.A, vol.109, issue.33, pp.13398-13403, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651761

C. C. Buser, R. D. Newcomb, A. C. Gaskett, and M. R. Goddard, Niche construction initiates the evolution of mutualistic interactions, Ecol. Lett, vol.17, issue.10, pp.1257-1264, 2014.

N. Francesca, D. E. Canale, L. Settanni, and G. Moschetti, Dissemination of Wine-Related Yeasts by Migratory Birds, Environmental Microbiology Reports, vol.4, issue.1, pp.105-112, 2012.

V. Gayevskiy and M. R. Goddard, Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand, ISME J, vol.6, issue.7, pp.1281-1290, 2012.

G. Cordero-bueso, T. Arroyo, and E. Valero, A long term field study of the effect of fungicides penconazole and sulfur on yeasts in the vineyard, Int. J. Food Microbiol, vol.189, pp.189-194, 2014.

J. Oliva, Influence of fungicides on grape yeast content and its evolution in the fermentation, Commun. Agric. Appl. Biol. Sci, vol.72, pp.181-189, 2007.

, Scientific RepoRtS |, vol.10, p.16214, 2020.

G. Cordero-bueso, Influence of the farming system and vine variety on yeast communities associated with grape berries, Int. J. Food Microbiol, vol.145, issue.1, pp.132-139, 2011.

V. Milanovi?, F. Comitini, and M. Ciani, Grape berry yeast communities: Influence of fungicide treatments, Int. J. Food Microbiol, vol.161, pp.240-246, 2013.

M. De-celis, Diversity of Saccharomyces Cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish Vineyards, Lett. Appl. Microbiol, vol.68, issue.6, pp.580-588, 2019.

E. Valero, D. Schuller, B. Cambon, M. Casal, and S. Dequin, Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study, FEMS Yeast Res, vol.5, pp.959-969, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02681123

R. Franco-duarte, Intrastrain genomic and phenotypic variability of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments, FEMS Yeast Res, vol.15, issue.6, p.63, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837750

G. Cordero-bueso, T. Arroyo, A. Serrano, and E. Valero, Remanence and survival of commercial yeast in different ecological niches of the vineyard, FEMS Microbiol. Ecol, vol.77, pp.429-437, 2011.

R. Mortimer and M. Polsinelli, On the origins of wine yeast, Res. Microbiol, vol.150, issue.3, pp.199-204, 1999.

G. Rosini, F. Federici, and A. Martini, Yeast flora of grape berries during ripening, Microb. Ecol, vol.8, issue.1, pp.83-89, 1982.

N. A. Bokulich, M. Ohta, P. M. Richardson, and D. A. Mills, Monitoring seasonal changes in winery-resident microbiota, PLoS ONE, vol.8, issue.6, p.66437, 2013.

R. Dion, Aux origines du vignoble bordelais: La création du vignoble bordelais, 1952.

G. Aubin and R. P. Lavaud, Bordeaux: vignoble millénaire.Bordeaux : l'Horizon chimérique, p.215, 1996.

G. Liti, Population genomics of domestic and wild yeasts, Nature, vol.458, issue.7236, pp.337-341, 2009.

R. Bruvo, N. K. Michiels, T. G. D'souza, and H. Schulenburg, A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level, Mol. Ecol, vol.13, issue.7, pp.2101-2106, 2004.

H. Gao, S. Williamson, and C. D. Bustamante, A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data, Genetics, vol.176, issue.3, pp.1635-1651, 2007.

V. Gayevskiy, S. Klaere, S. Knight, and M. R. Goddard, ObStruct: A method to objectively analyse factors driving population structure using Bayesian ancestry profiles, PLoS ONE, vol.9, issue.1, p.85196, 2014.

L. Sundqvist, K. Keenan, M. Zackrisson, P. Prodöhl, and D. Kleinhans, Directional genetic differentiation and relative migration, Ecol. Evol, vol.6, pp.3461-3475, 2016.

V. Gayevskiy, S. Lee, and M. R. Goddard, European derived Saccharomyces cerevisiae colonisation of New Zealand vineyards aided by humans retorius I, editor, FEMS Yeast Res, vol.16, issue.7, p.91, 2016.

M. E. Setati, D. Jacobson, U. C. Andong, and F. Bauer, The vineyard yeast microbiome, a mixed model microbial map, PLoS ONE, vol.7, issue.12, p.52609, 2012.

F. Cus and P. Raspor, The Effect of Pyrimethanil on the Growth of Wine Yeasts, Lett. Appl. Microbiol, vol.47, issue.1, pp.54-59, 2008.

A. Viel, The geographic distribution of Saccharomyces cerevisiae isolates within three italian neighboring winemaking regions reveals strong differences in yeast abundance, genetic diversity and industrial strain dissemination, Front Microbiol, vol.8, p.1595, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608876

P. Garijo, The occurrence of fungi, yeasts and bacteria in the air of a Spanish winery during vintage, Int. J. Food Microbiol, vol.125, issue.2, pp.141-145, 2008.

J. Schacherer, J. A. Shapiro, D. M. Ruderfer, and L. Kruglyak, Comprehensive polymorphism survey elucidates population structure of S. cerevisiae, Nature, vol.458, issue.7236, pp.342-345, 2009.

T. White, T. Bruns, S. Lee, and T. Taylor, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, PCR Protocols: A Guide to Methods and Applications, pp.315-337, 1990.

L. Granchi, M. Bosco, A. Messini, and M. Vincenzini, Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region, J. Appl. Microbiol, vol.87, issue.6, pp.949-956, 1999.

D. Field and C. Wills, Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces, Proc. Natl. Acad. Sci. U. S. A, vol.95, issue.4, pp.1647-1652, 1998.

A. González-techera, S. Jubany, F. M. Carrau, and C. Gaggero, Differentiation of industrial wine yeast strains using microsatellite markers, Lett. Appl. Microbiol, vol.33, issue.1, pp.71-75, 2001.

C. Hennequin, Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains, J. Clin. Microbiol, vol.39, issue.2, pp.551-559, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02678266

M. A. Pérez, F. J. Gallego, I. Martínez, and P. Hidalgo, Detection, distribution and selection of microsatellites (SSRs) in the genome of the yeast Saccharomyces cerevisiae as molecular markers, Lett. Appl. Microbiol, vol.33, issue.6, pp.461-466, 2001.

J. E. Bradbury, A homozygous diploid subset of commercial wine yeast strains, Antonie Van Leeuwenhoek, vol.89, issue.1, pp.27-37, 2005.

R. K. Colwell, Interpolating, extrapolating, and comparing incidence-based species accumulation curves, Ecology, vol.85, issue.10, pp.2717-2727, 2004.

S. Arnaud-haond and K. Belkhir, GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization, Mol. Ecol. Notes, vol.7, issue.1, pp.15-17, 2007.

R. M. Cormack, A review of classification, J. R. Stat. Soc. A, vol.134, pp.321-367, 1971.

Z. N. Kamvar, J. F. Tabima, and N. J. Grünwald, Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction, Peer J, vol.2, p.281, 2014.

E. Paradis, J. Claude, and K. Strimmer, APE: Analyses of phylogenetics and evolution in R language, Bioinformatics, vol.20, pp.289-290, 2004.
URL : https://hal.archives-ouvertes.fr/ird-01887318

J. L. Legras, Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication, Mol. Biol. Evol, vol.35, issue.7, pp.1712-1727, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01918076

R. Suzuki, H. Shimodaira, and . Package, Pvclust: Hierarchical Clustering with P-values via multiscale bootstrap resampling, 2014.

N. Mantel, The detection of disease clustering and a generalized regression approach, Cancer Res, vol.27, issue.2, pp.209-220, 1967.

R. Peakall, P. E. Smouse, and . Genalex, Genetic analysis in excel. Population genetic software for teaching and research-An update, Bioinformatics, vol.6, pp.2537-2539, 2012.

J. A. Diniz-filho, Mantel test in population genetics, Genet. Mol. Biol, vol.36, issue.4, pp.475-485, 2013.

L. Jost, GST and its relatives do not measure differentiation, Mol. Ecol, vol.17, pp.4015-4026, 2008.

P. Beerli and P. Michal, Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, vol.185, issue.1, pp.313-326, 2010.