C. Arrese-igor, J. I. Garcia-plazaola, A. Hernandez, and P. M. Aparicio-tejo, Effect of low nitrate supply to nodulated lucerne on time course of activites of enzymes involved in inorganic nitrogen metabolism, Physiologia Plantarum, vol.80, issue.2, pp.185-190, 1990.

C. Arrese-igor, F. R. Minchin, A. J. Gordon, and A. K. Nath, Possible causes of the physiological decline in soybean nitrogen fixation in the presence of nitrate, Journal of Experimental Botany, vol.48, issue.4, pp.905-913, 1997.

C. Arrese-igor{, A. J. Gordon{, F. R. Minchin{, and R. F. Denison, Nitrate entry and nitrite formation in the infected region of soybean nodules, Journal of Experimental Botany, vol.49, issue.318, pp.41-48, 1998.

J. Bailey-serres and L. A. Voesenek, Flooding Stress: Acclimations and Genetic Diversity, Annual Review of Plant Biology, vol.59, issue.1, pp.313-339, 2008.

R. Bari, B. Datt-pant, M. Stitt, and W. Scheible, PHO2, MicroRNA399, and PHR1 Define a Phosphate-Signaling Pathway in Plants, Plant Physiology, vol.141, issue.3, pp.988-999, 2006.

E. Baudouin, L. Pieuchot, G. Engler, N. Pauly, and A. Puppo, Nitric Oxide Is Formed in Medicago truncatula-Sinorhizobium meliloti Functional Nodules, Molecular Plant-Microbe Interactions®, vol.19, issue.9, pp.970-975, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02656721

M. Becana, F. R. Minchin, and J. I. Sprent, Short-term inhibition of legume N2 fixation by nitrate, Planta, vol.180, issue.1, pp.40-45, 1989.

M. Becana, I. Yruela, G. Sarath, P. Catalán, and M. S. Hargrove, Plant hemoglobins: a journey from unicellular green algae to vascular plants, New Phytologist, vol.227, issue.6, pp.1618-1635, 2020.

A. Berger, A. Boscari, P. Frendo, and R. Brouquisse, Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis, Journal of Experimental Botany, vol.70, issue.17, pp.4505-4520, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02566712

A. Berger, S. Guinand, A. Boscari, A. Puppo, and R. Brouquisse, Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration, New Phytologist, vol.227, issue.1, pp.84-98, 2020.

M. Reynoso, Análisis del traductoma en etapas tempranas de la simbiosis fijadora de nitrógeno entre Medicago truncatula y Sinorhizobium meliloti

A. Besson-bard, A. Pugin, and D. Wendehenne, New Insights into Nitric Oxide Signaling in Plants, Annual Review of Plant Biology, vol.59, issue.1, pp.21-39, 2008.

C. Bobik, E. Meilhoc, and J. Batut, FixJ: a Major Regulator of the Oxygen Limitation Response and Late Symbiotic Functions of Sinorhizobium meliloti, Journal of Bacteriology, vol.188, issue.13, pp.4890-4902, 2006.

A. Boisson-dernier, M. Chabaud, F. Garcia, G. Bécard, C. Rosenberg et al., Agrobacterium rhizogenes-Transformed Roots of Medicago truncatula for the Study of Nitrogen-Fixing and Endomycorrhizal Symbiotic Associations, Molecular Plant-Microbe Interactions®, vol.14, issue.6, pp.695-700, 2001.

A. Boscari, J. Del-giudice, A. Ferrarini, L. Venturini, A. Zaffini et al., Expression Dynamics of the Medicago truncatula Transcriptome during the Symbiotic Interaction with Sinorhizobium meliloti: Which Role for Nitric Oxide?, Plant Physiology, vol.161, issue.1, pp.425-439, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02648182

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.

R. Brouquisse, F. James, P. Raymond, and A. Pradet, Study of Glucose Starvation in Excised Maize Root Tips, Plant Physiology, vol.96, issue.2, pp.619-626, 1991.
URL : https://hal.archives-ouvertes.fr/hal-02705065

Y. Cam, O. Pierre, E. Boncompagni, D. Hérouart, E. Meilhoc et al., Nitric oxide (NO): a key player in the senescence ofMedicago truncatularoot nodules, New Phytologist, vol.196, issue.2, pp.548-560, 2012.

W. H. Campbell, NITRATE REDUCTASE STRUCTURE, FUNCTION AND REGULATION: Bridging the Gap between Biochemistry and Physiology, Annual Review of Plant Physiology and Plant Molecular Biology, vol.50, issue.1, pp.277-303, 1999.

C. Castella, I. Mirtziou, A. Seassau, A. Boscari, F. Montrichard et al., Post-translational modifications of Medicago truncatula glutathione peroxidase 1 induced by nitric oxide, Nitric Oxide, vol.68, pp.125-136, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573246

A. Chamizo-ampudia, E. Sanz-luque, Á. Llamas, F. Ocaña-calahorro, V. Mariscal et al., A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production inChlamydomonas, Plant, Cell & Environment, vol.39, issue.10, pp.2097-2107, 2016.

A. Chamizo-ampudia, E. Sanz-luque, A. Llamas, A. Galvan, and E. Fernandez, Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis, Trends in Plant Science, vol.22, issue.2, pp.163-174, 2017.

J. V. Dean and J. E. Harper, The Conversion of Nitrite to Nitrogen Oxide(s) by the Constitutive NAD(P)H-Nitrate Reductase Enzyme from Soybean, Plant Physiology, vol.88, issue.2, pp.389-395, 1988.

J. Del-giudice, Y. Cam, I. Damiani, F. Fung-chat, E. Meilhoc et al., Nitric oxide is required for an optimal establishment of theMedicago truncatula-Sinorhizobium melilotisymbiosis, New Phytologist, vol.191, issue.2, pp.405-417, 2011.

L. A. Del-r??o, F. Javier-corpas, and J. B. Barroso, Nitric oxide and nitric oxide synthase activity in plants, Phytochemistry, vol.65, issue.7, pp.783-792, 2004.

A. Ferrarini, M. De-stefano, E. Baudouin, C. Pucciariello, A. Polverari et al., Expression of Medicago truncatula Genes Responsive to Nitric Oxide in Pathogenic and Symbiotic Conditions, Molecular Plant-Microbe Interactions®, vol.21, issue.6, pp.781-790, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02656812

M. Fukudome, L. Calvo-begueria, T. Kado, K. Osuki, M. C. Rubio et al., Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in theLotus japonicus?Mesorhizobium lotisymbiosis, Journal of Experimental Botany, vol.67, issue.17, pp.5275-5283, 2016.

J. Gibbs and H. Greenway, Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism, Functional Plant Biology, vol.30, issue.1, p.1, 2003.

E. Gout, A. Boisson, S. Aubert, R. Douce, and R. Bligny, Origin of the Cytoplasmic pH Changes during Anaerobic Stress in Higher Plant Cells. Carbon-13 and Phosphorous-31 Nuclear Magnetic Resonance Studies, Plant Physiology, vol.125, issue.2, pp.912-925, 2001.

K. J. Gupta, M. Stoimenova, and W. M. Kaiser, In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ, Journal of Experimental Botany, vol.56, issue.420, pp.2601-2609, 2005.

J. T. Hancock, Considerations of the importance of redox state for reactive nitrogen species action, Journal of Experimental Botany, vol.70, issue.17, pp.4323-4331, 2019.

R. W. Hardy, R. D. Holsten, E. K. Jackson, and R. C. Burns, The Acetylene-Ethylene Assay for N2 Fixation: Laboratory and Field Evaluation, Plant Physiology, vol.43, issue.8, pp.1185-1207, 1968.

I. Hichri, A. Boscari, C. Castella, M. Rovere, A. Puppo et al., Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis, Journal of Experimental Botany, vol.66, issue.10, pp.2877-2887, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02634162

I. Hichri, A. Boscari, E. Meilhoc, M. Catalá, E. Barreno et al., Nitric Oxide: A Multitask Player in Plant?Microorganism Symbioses, Gasotransmitters in Plants, pp.239-268, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608458

F. Hilliou, T. , and T. , RqPCRAnalysis: Analysis of Quantitative Real-time PCR Data, Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, pp.202-211, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02749276

F. Horchani, M. Prévot, A. Boscari, E. Evangelisti, E. Meilhoc et al., Both Plant and Bacterial Nitrate Reductases Contribute to Nitric Oxide Production in Medicago truncatula Nitrogen-Fixing Nodules, Plant Physiology, vol.155, issue.2, pp.1023-1036, 2010.

A. U. Igamberdiev and R. D. Hill, Nitrate, NO and haemoglobin in plant adaptation to hypoxia: An alternative to classic fermentation pathways, J. Exp. Bot, vol.55, pp.2473-2482, 2004.

A. U. Igamberdiev and R. D. Hill, Plant mitochondrial function during anaerobiosis, Annals of Botany, vol.103, issue.2, pp.259-268, 2008.

D. T. Jones, W. R. Taylor, and J. M. Thornton, The rapid generation of mutation data matrices from protein sequences, Bioinformatics, vol.8, issue.3, pp.275-282, 1992.

M. Karimi, D. Inzé, and A. Depicker, GATEWAY? vectors for Agrobacterium-mediated plant transformation, Trends in Plant Science, vol.7, issue.5, pp.193-195, 2002.

K. Kato, Y. Okamura, K. Kanahama, and Y. Kanayama, Nitrate-independent expression of plant nitrate reductase in Lotus japonicus root nodules, Journal of Experimental Botany, vol.54, issue.388, pp.1685-1690, 2003.

K. Kato, K. Kanahama, and Y. Kanayama, Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules, Journal of Plant Physiology, vol.167, issue.3, pp.238-241, 2010.

Z. Kolbert, J. B. Barroso, R. Brouquisse, F. J. Corpas, K. J. Gupta et al., A forty year journey: The generation and roles of NO in plants, Nitric Oxide, vol.93, pp.53-70, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02530125

Z. Kolbert, L. Ortega, and L. Erdei, Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots, Journal of Plant Physiology, vol.167, issue.1, pp.77-80, 2010.

S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura, MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms, Molecular Biology and Evolution, vol.35, issue.6, pp.1547-1549, 2018.

I. G. Libourel, P. C. Bethke, R. De-michele, and R. L. Jones, Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide, Planta, vol.223, issue.4, pp.813-820, 2005.

A. M. Limami, G. Glévarec, C. Ricoult, J. Cliquet, and E. Planchet, Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress, Journal of Experimental Botany, vol.59, issue.9, pp.2325-2335, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02662489

A. M. Limami, H. Diab, and J. Lothier, Nitrogen metabolism in plants under low oxygen stress, Planta, vol.239, issue.3, pp.531-541, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01169251

Y. Lin, Y. Hu, H. Lin, X. Liu, Y. Chen et al., Inhibitory Effects of Propyl Gallate on Tyrosinase and Its Application in Controlling Pericarp Browning of Harvested Longan Fruits, Journal of Agricultural and Food Chemistry, vol.61, issue.11, pp.2889-2895, 2013.

F. Madeira, Y. M. Park, J. Lee, N. Buso, T. Gur et al., The EMBL-EBI search and sequence analysis tools APIs in 2019, Nucleic Acids Research, vol.47, issue.W1, pp.W636-W641, 2019.

C. Mathieu, S. Moreau, P. Frendo, A. Puppo, and M. J. Davies, Direct Detection of Radicals in Intact Soybean Nodules: Presence of Nitric Oxide-Leghemoglobin Complexes, Free Radical Biology and Medicine, vol.24, issue.7-8, pp.1242-1249, 1998.

E. Meilhoc, Y. Cam, A. Skapski, and C. Bruand, The Response to Nitric Oxide of the Nitrogen-Fixing Symbiont Sinorhizobium meliloti, Molecular Plant-Microbe Interactions®, vol.23, issue.6, pp.748-759, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02660348

P. M. Melo, L. S. Silva, I. Ribeiro, A. R. Seabra, and H. G. Carvalho, Glutamine Synthetase Is a Molecular Target of Nitric Oxide in Root Nodules of Medicago truncatula and Is Regulated by Tyrosine Nitration, Plant Physiology, vol.157, issue.3, pp.1505-1517, 2011.

P. M. Melo, L. S. Silva, I. Ribeiro, A. R. Seabra, and H. G. Carvalho, Glutamine Synthetase Is a Molecular Target of Nitric Oxide in Root Nodules of Medicago truncatula and Is Regulated by Tyrosine Nitration, Plant Physiology, vol.157, issue.3, pp.1505-1517, 2011.

R. R. Mendel and R. Hänsch, Molybdoenzymes and molybdenum cofactor in plants, Journal of Experimental Botany, vol.53, issue.375, pp.1689-1698, 2002.

P. Mergaert, K. Nikovics, Z. Kelemen, N. Maunoury, D. Vaubert et al., A Novel Family in Medicago truncatula Consisting of More Than 300 Nodule-Specific Genes Coding for Small, Secreted Polypeptides with Conserved Cysteine Motifs, Plant Physiology, vol.132, issue.1, pp.161-173, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00134878

. Nodule-specific, Genes Coding for Small, Secreted Polypeptides with Conserved Cysteine Motifs, Plant Physiol, vol.132, pp.161-173

K. M. Miranda, M. G. Espey, and D. A. Wink, A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite, Nitric Oxide, vol.5, issue.1, pp.62-71, 2001.

A. Moing, L. Svanella, D. Rolin, M. Gaudille?re, J. Gaudille?re et al., Compositional Changes during the Fruit Development of Two Peach Cultivars Differing in Juice Acidity, Journal of the American Society for Horticultural Science, vol.123, issue.5, pp.770-775, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02693089

M. Nagata, E. Murakami, Y. Shimoda, F. Shimoda-sasakura, K. Kucho et al., Expression of a Class 1 Hemoglobin Gene and Production of Nitric Oxide in Response to Symbiotic and Pathogenic Bacteria in Lotus japonicus, Molecular Plant-Microbe Interactions®, vol.21, issue.9, pp.1175-1183, 2008.

J. Navascues, C. Perez-rontome, M. Gay, M. Marcos, F. Yang et al., Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules, Proceedings of the National Academy of Sciences, vol.109, issue.7, pp.2660-2665, 2012.

P. E. Pfeffer, D. B. Rolin, T. F. Kumosinski, J. S. Macfall, and J. H. Schmidt, 31P Relaxation Responses Associated with N2/O2 Diffusion in Soybean Nodule Cortical Cells and Excised Cortical Tissue, Plant Physiology, vol.100, issue.4, pp.1682-1690, 1992.

Y. Pii, M. Crimi, G. Cremonese, A. Spena, and T. Pandolfini, Auxin and nitric oxide control indeterminate nodule formation, BMC Plant Biology, vol.7, issue.1, p.21, 2007.

E. Planchet, K. Jagadis-gupta, M. Sonoda, and W. M. Kaiser, Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport, The Plant Journal, vol.41, issue.5, pp.732-743, 2005.

A. Puppo, N. Pauly, A. Boscari, K. Mandon, and R. Brouquisse, Hydrogen Peroxide and Nitric Oxide: Key Regulators of the Legume?Rhizobiumand Mycorrhizal Symbioses, Antioxidants & Redox Signaling, vol.18, issue.16, pp.2202-2219, 2013.

J. K. Roberts, P. M. Ray, N. Wade-jardetzky, and O. Jardetzky, Estimation of cytoplasmic and vacuolar pH in higher plant cells by 31P NMR, Nature, vol.283, issue.5750, pp.870-872, 1980.

J. K. Roberts, J. Callis, D. Wemmer, V. Walbot, and O. Jardetzky, Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia., Proceedings of the National Academy of Sciences, vol.81, issue.11, pp.3379-3383, 1984.

C. Roby, J. B. Martin, R. Bligny, and R. Douce, Biochemical changes during sucrose deprivation in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies, J. Biol. Chem, vol.262, pp.5000-5007, 1987.

P. Rockel, F. Strube, A. Rockel, J. Wildt, and W. M. Kaiser, Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro, Journal of Experimental Botany, vol.53, issue.366, pp.103-110, 2002.

D. B. Rolin, R. T. Boswell, C. Sloger, N. I. Tu, and P. E. Pfeffer, In Vivo31P NMR Spectroscopic Studies of Soybean Bradyrhizobium Symbiosis, Plant Physiology, vol.89, issue.4, pp.1238-1246, 1989.

P. Nmr-spectroscopic, Studies of Soybean Bradyrhizobium Symbiosis, Plant Physiol, vol.89, pp.1238-1246

B. Roux, N. Rodde, M. F. Jardinaud, T. Timmers, L. Sauviac et al., An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing, The Plant Journal, vol.77, issue.6, pp.817-837, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639318

B. Ruiz, A. Le-scornet, L. Sauviac, A. Rémy, C. Bruand et al., The Nitrate Assimilatory Pathway in Sinorhizobium meliloti: Contribution to NO Production, Frontiers in Microbiology, vol.10, p.1526, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02623355

M. Sainz, L. Calvo-begueria, C. Pérez-rontomé, S. Wienkoop, J. Abián et al., Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism, The Plant Journal, vol.81, issue.5, pp.723-735, 2015.

S. Saito, A. Yamamoto-katou, H. Yoshioka, N. Doke, and K. Kawakita, Peroxynitrite Generation and Tyrosine Nitration in Defense Responses in Tobacco BY-2 Cells, Plant and Cell Physiology, vol.47, issue.6, pp.689-697, 2006.

S. Saito, A. Yamamoto-katou, H. Yoshioka, N. Doke, and K. Kawakita, Peroxynitrite Generation and Tyrosine Nitration in Defense Responses in Tobacco BY-2 Cells, Plant and Cell Physiology, vol.47, issue.6, pp.689-697, 2006.

Y. Sakihama, S. Nakamura, Y. , and H. , Nitric Oxide Production Mediated by Nitrate Reductase in the Green Alga Chlamydomonas reinhardtii: an Alternative NO Production Pathway in Photosynthetic Organisms, Plant Cell Physiol, vol.43, pp.290-297, 2002.

C. Sánchez, A. J. Gates, G. E. Meakin, T. Uchiumi, L. Girard et al., Production of Nitric Oxide and Nitrosylleghemoglobin Complexes in Soybean Nodules in Response to Flooding, Molecular Plant-Microbe Interactions®, vol.23, issue.5, pp.702-711, 2010.

D. M. Santucci, B. Haas, and J. Smarrelli, Regulation of the inducible soybean nitrate reductase isoform in mutants lacking constitutive isoform(s), Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1247, issue.1, pp.46-50, 1995.

D. M. Santucci, B. Haas, and J. Smarrelli, Regulation of the inducible soybean nitrate reductase isoform in mutants lacking constitutive isoform(s), Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1247, issue.1, pp.46-50, 1995.

A. R. Seabra and H. G. Carvalho, Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme, Frontiers in Plant Science, vol.6, p.578, 2015.

J. A. Silveira, J. C. Matos, V. M. Cecatto, R. A. Viegas, and J. T. Oliveira, Nitrate reductase activity, distribution, and response to nitrate in two contrasting Phaseolus species inoculated with Rhizobium spp., Environmental and Experimental Botany, vol.46, issue.1, pp.37-46, 2001.

J. G. Streeter, Nitrate Inhibition of Legume Nodule Growth and Activity, Plant Physiology, vol.77, issue.2, pp.325-328, 1985.

J. G. Streeter, Nitrate Inhibition of Legume Nodule Growth and Activity, Plant Physiology, vol.77, issue.2, pp.321-324, 1985.

J. J. Terpolilli, G. A. Hood, and P. S. Poole, What Determines the Efficiency of N2-Fixing Rhizobium-Legume Symbioses?, Advances in Microbial Physiology, vol.60, pp.325-389, 2012.

J. C. Trinchant and J. Rigaud, Nitrite and Nitric Oxide as Inhibitors of Nitrogenase from Soybean Bacteroids, Applied and Environmental Microbiology, vol.44, issue.6, pp.1385-1388, 1982.

H. N. Truong, E. Thalineau, L. Bonneau, C. Fournier, S. Potin et al., TheMedicago truncatulahypermycorrhizal B9 mutant displays an altered response to phosphate and is more susceptible toAphanomyces euteiches, Plant, Cell & Environment, vol.38, issue.1, pp.73-88, 2014.

M. K. Udvardi and D. A. Day, METABOLITE TRANSPORT ACROSS SYMBIOTIC MEMBRANES OF LEGUME NODULES, Annual Review of Plant Physiology and Plant Molecular Biology, vol.48, issue.1, pp.493-523, 1997.

W. Van-de-velde, J. C. Guerra, A. D. Keyser, R. De-rycke, S. Rombauts et al., Aging in Legume Symbiosis. A Molecular View on Nodule Senescence in Medicago truncatula, Plant Physiology, vol.141, issue.2, pp.711-720, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00118573

J. S. Velterop and F. Vos, A rapid and inexpensive microplate assay for the enzymatic determination of glucose, fructose, sucrose,L-malate and citrate in tomato (Lycopersicon esculentum) extracts and in orange juice, Phytochemical Analysis, vol.12, issue.5, pp.299-304, 2001.

Q. Wang, J. Liu, and H. Zhu, Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions, Frontiers in Plant Science, vol.9, p.313, 2018.

P. P. Wong, Nitrate and Carbohydrate Effects on Nodulation and Nitrogen Fixation (Acetylene Reduction) Activity of Lentil (Lens esculenta Moench), Plant Physiology, vol.66, issue.1, pp.78-81, 1980.

T. T. Xiao, S. Schilderink, S. Moling, E. E. Deinum, E. Kondorosi et al., Fate map of Medicago truncatula root nodules, Development, vol.141, issue.18, pp.3517-3528, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02636064

J. Xiong, G. Fu, Y. Yang, C. Zhu, and L. Tao, Tungstate: is it really a specific nitrate reductase inhibitor in plant nitric oxide research?, Journal of Experimental Botany, vol.63, issue.1, pp.33-41, 2011.

H. Yamasaki and Y. Sakihama, Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species, FEBS Letters, vol.468, issue.1, pp.89-92, 2000.