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Abstract: Malaria control is an evolving public health concern, especially in times of resistance
to insecticides and to antimalarial drugs, as well as changing environmental conditions that are
influencing its epidemiology. Most literature demonstrates an increased risk of malaria transmission
in areas of active deforestation, but knowledge about the link between land cover evolution and
malaria risk is still limited in some parts of the world. In this study, we discuss different methods
used for analysing the interaction between deforestation and malaria, then highlight the constraints
that can arise in areas where data is lacking. For instance, there is a gap in knowledge in Cambodia
about components of transmission, notably missing detailed vector ecology or epidemiology data, in
addition to incomplete prevalence data over time. Still, we illustrate the situation by investigating
the evolution of land cover and the progression of deforestation within a malaria-endemic area of
Cambodia. To do so, we investigated the area by processing high-resolution satellite imagery from
2018 (1.5 m in panchromatic mode and 6 m in multispectral mode) and produced a land use/land cover
map, to complete and homogenise existing data from 1988 and from 1998 to 2008 (land use/land cover
from high-resolution satellite imagery). From these classifications, we calculated different landscapes
metrics to quantify evolution of deforestation, forest fragmentation and landscape diversity. Over the
30-year period, we observed that deforestation keeps expanding, as diversity and fragmentation
indices globally increase. Based on these results and the available literature, we question the
mechanisms that could be influencing the relationship between land cover and malaria incidence and
suggest further analyses to help elucidate how deforestation can affect malaria dynamics.
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1. Introduction

1.1. Foreword

The link between environmental variables and malaria transmission dynamics involves complex
interactions, especially between vectors and land use, and its comprehension can be limited by the
availability of environmental and epidemiological data. In this article, we examine methods available
for understanding these interactions and discuss associated constraints. To do so, we chose to analyse
land use in a malaria-endemic area of Cambodia. Based on this example, we further examine the
considerations around malaria dynamics linked to anthropization in data-scarce conditions and
potential methodologies for understanding vector exposure and its interaction with land use.

1.2. Background

Conflicting reports exist on the effect of deforestation on the transmission of vector-borne
diseases [1]. This heterogeneity likely arises from the complexity of vector-borne disease transmission
that involves numerous environmental, biological and ecological factors [1]. Modifications to the
environment, such as changes in land use and deforestation, greatly alter the density and activity of
mosquito populations and as a result the dynamics of associated diseases [2,3].

As malaria is a vector-borne disease, its transmission is closely tied to the environment [4,5].
Deforestation greatly alters the breeding, abundance and species composition of Anopheles malaria
vectors [5,6]. This is mediated by changes in the availability of breeding sites for the immature
stages [7], as well as differences in resources, predation [8,9], survival [10], fecundity [10] and ecological
community structures [7]. These factors are known to affect vector species quantitatively more so than
nonvector species [1]. Deforestation and associated phenomena, such as forest fragmentation, have
also been associated with greater contact between sylvatic mosquito vectors and human hosts [7,11–13].
Indeed, deforestation does not only imply the loss of forest cover but also has an impact on landscape
heterogeneity and diversity. Heterogeneity represents the repartition, abundance and size of the
different habitat patches within a landscape. Heterogeneity can be affected by fragmentation, the process
of a homogenous patch of habitat evolving into smaller and disjoined patches [14]. Another aspect of
deforestation is landscape diversity, which corresponds to the proportion of patches from different
classes. Usually as deforestation expands, it is replaced by agricultural land or left vacant, increasing
landscape diversity [15]. A potentially associated phenomenon is the loss of biodiversity [16], which
can be associated with higher malaria burden [17,18] through the decline of the “dilution effect” [19,20]
though this theory remains controversial [19,21]. Overall, even with variations among ecological groups
and individual species [22], extensive anthropization substantially impacts malaria dynamics [17].

1.3. Malaria and Deforestation

Many studies have investigated the link between deforestation and malaria using remote sensing
and landscape analyses. A study that analysed data from 67 nations showed that in developing nations,
at country level, a higher deforestation rate is associated with a higher malaria burden [2]. However,
this is only a general trend based on global measurements of deforestation using FAO estimates of
natural forest areas [2] and may not be valid for all countries. At a more local scale, in the Peruvian
Amazon, processed 30-m Landsat imagery showed that deforestation favoured malaria transmission
by increasing Anopheles darlingi human biting [23]. Furthermore, a controversial publication stated that
forest conservation efforts in the Brazilian Amazon could increase malaria burden in humans, based on
an annual estimation of forest cover from Landsat imagery [24]. The study found a correlation between
greater forest cover in a 20-km radius around cities and higher number of reported malaria cases [24].
However, to perform this analysis, some data was excluded and part of the land use data was too
approximate, i.e., land cover classes associated to different malaria risk were aggregated. Consequently,
the publication was criticized as this methodology could result in potential ecological fallacies [25]. In a
local study in Thailand, land use maps were produced with photointerpretation and their landscape
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indices were computed, which allowed to confirm that the primary malaria vectors, Anopheles maculatus
and Anopheles minimus, were more abundant in forests than in agricultural landscapes [26]. Interestingly,
a recent report has demonstrated a feedback loop between malaria incidence and deforestation in
the Brazilian Amazon whereby forest loss is associated with an increase in malaria incidence, and
this increase, in turn, leads to a decrease in the rate of deforestation. The different geographic scales
and the quality of land cover data, ranging from global estimates of forest area to precise mapping at
high spatial resolution, are important parameters. In addition, studies based on spatial correlations do
not indicate cause and effect relationships. Some studies using aggregated data, at a scale including
whole jurisdictions rather than population or vector scale, can be subject to biases and ecological
fallacies [27]. Publicly available forest cover maps usually have a resolution of 20–30 m, typical of
LANDSAT imagery [28,29].

1.4. Issues When Studying the Relationship between Deforestation and Malaria

To produce a land cover classification, a variety of methodologies can be used. Numerous remote
sensing sources are available, and their classification can either be automated, supervised or manual,
or even done by photointerpretation—all these options are applicable from a wide panel of different
software [30,31]. Choices made regarding the methodology, landscape indices or analyses all influence
the interpretation of results. Additionally, interpretation can be impacted by the oversimplification
of the vector-borne disease paradigm as described in the analyses [1]. Nevertheless, a meaningful
analysis of deforestation and associated human risk is fundamental to contribute to the malaria effort.

The link between deforestation and malaria risk in South-East Asia (SEA) has not been completely
elucidated [11]. Indeed, the complexity of this linkage arises from the many different vectors adapted
to forest or deforested areas, with populations in a steady, close contact to the forest, unlike other
malaria-endemic parts of the world [11]. On one hand, deforestation could decrease malaria risk
by limiting the availability of vector habitats, thus reducing the abundance of primary vectors [11].
Conversely, deforestation may increase malaria transmission as it encourages contact with primary
vectors and induces higher densities of secondary vectors that are often more adapted to deforested
areas [32]. Additionally, malaria risk depends on deforestation effect or edge proximity, more than
the forest extent. Therefore, intense deforestation can lead to higher fragmentation indices and then
augmented malaria transmission. The socioeconomic effects of deforestation also impact malaria risk.
Notably, newly arrived low-immunity populations that settle in deforestation sites, with high exposure
to vectors but potentially no access to appropriate prevention tools or health services, along with
possibly higher transmission due to increased parasites densities [33]. Though, higher wages arising
from deforestation profit can allow better vector prevention in these populations [33,34].

Another difficulty lays in the various temporal and spatial scales needed in the analysis of the
interaction between forest cover change and malaria dynamics [35]. For example, the Amazon Basin is
characterized by frontier malaria [36], where deforestation often takes place for farming and mining,
with new populations settling in and creating an environment with high malaria risk in the first years
of colonization. The process was shown to be transitory, as social and economic factors eventually
cancel out environmental effects, decreasing malaria incidence, usually after 6–8 years [36]. A recent
analysis on malaria prevalence, deforestation, land cover, environmental, sociodemographic, health
services accessibility and housing data on individuals’ data from 17 sub-Saharan countries showed that
their “aggregate and survey wave-specific results imply the absence of a geographically generalizable
relationship between deforestation and malaria, and between forest cover and malaria, across the
countries studied.” These results suggest that Africa’s deforestation effects likely differ from Asia’s and
Latin America’s [33]. Overall, the SEA paradigm is complex, not yet completely defined, and likely
differs from situations described in Africa and the Americas [11].
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1.5. Situation in Cambodia

In Cambodia, the decline in malaria cases has come to a halt, and the estimated number of malaria
cases has been increasing since 2017 [37]. The rise in case numbers could be attributed to the emergence
of various resistant [38,39] and multiresistant [40] Plasmodium falciparum strains in the last decade,
although these are not the only obstacles in the way of malaria elimination. Substandard clinical
practices [41] and vector resistance to insecticides [37] may also contribute to the persistence of malaria.

The main malaria vectors are classically considered to be An. dirus and An. minimus, usually
found in forest and forest fringes [42,43], and to a lesser extent An. maculatus which is associated with
hilly and mountainous areas [44]. The larval stages of An. dirus are typically found in small sites, such
as streams, ditches, dips and prints in the ground, whereas An. minimus’ larvae can be found in small
natural sites (pools and streams) or large man-made ones (notably rice paddies). An. maculatus’ larvae
are found in a variety of environments; small or large, man-made or natural sites [42], limiting the
effectiveness of landscape analyses to link mosquito risk to standing water.

In Cambodia, forests and their fringes are the primary contact sites for human and vector
populations, making forest activities the most important malaria risk factor [45–47], with a disease
often referred as ”forest malaria.” Thus, the primary at-risk population corresponds to the forest goers
that spend a lot of time in and around the forest [48]. However, literature lacks exhaustive and recent
data about mosquito ecology and precise epidemiology in Cambodia. Indeed, a substantial gap exists
in vector ecology data compared to other parts of the world, notably due to the high diversity of vector
species exhibiting a large spatial heterogeneity in distribution and behavioural patterns both between
and within species [42,44]. In addition, the type of forest, and notably the distinction between primary
and secondary forests, or even between plantation forest and natural forest, is not explored in available
studies. Compared to other parts of the world and notably the Amazon, investigations in Cambodia
are limited by the absence of detailed data about vectors and epidemiology of the disease, but also
by other constraints, such as the difficulty to gather prevalence data over time. The Khmer Rouge
regime in the seventies has had a long-lasting influence on the country and prevented the collection of
any kind of malaria prevalence records [49]. A national malaria information system was developed in
2009 to gather prevalence data from health centres. In 2013, a network of village malaria workers was
implemented to improve malaria detection and treatment access at the village level [50]. Additionally,
private health practitioners that are allowed to treat uncomplicated malaria cases are widely spread
across the country, although cases are not always reported to the national information system [51].
Overall, an aggregated and homogenous malaria dataset is not available in Cambodia and exhaustive
malaria prevalence data at a fine scale is difficult to obtain, increasing the challenges when it comes to
studying the disease. In this data-scarce environment, we can assess trends, formulate hypotheses and
suggest methods adapted to this specific context. However, the lack of homogenous, small-scale data
reduces the possibilities of further analysis.

As deforestation progresses in Cambodia and induces drastic landscape changes [52,53], effects
on malaria transmission are to be expected. The alarming deforestation rate is predominantly caused
by large land concessions where companies buy large plots of land to make way for agriculture [52].
In particular, this has been observed in the north-eastern province of Mondulkiri. This situation
highlights how short-term economic plans lead to long-term impacts on environment stability and are
already threatening forest sustainability [52]. Local communities engage in deforestation through “slash
and burn” methods (Figure 1), allowing them to extend their agriculture parcels [47]. Another form
of forest exploitation that occurs at a slower pace is “selective logging,” where forest goers search
for and cut down specific trees without affecting the surrounding trees. This form of deforestation
is more difficult to keep track of, particularly by remote sensing [54]. Beneficial effects have been
observed from allowing local communities to own and manage nearby forests, compared to large land
concessions [55]. Community forests had higher forest cover persistence and lower rates of forest
cover loss [55].
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Figure 1. Forest recently cut down and burnt to clear space for agriculture, by using the “slash and 
burn” method, Kaev Seima district, Mondulkiri Province, Cambodia (photo: A.P.). 
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carefully determined. Rather than taking a “traditional” approach to land use classification where a 
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Anopheles ecology by grouping environments into classes based on their relevance to malaria 
transmission. Forest is highlighted as the most important risk area in Cambodia as this is the main 
habitat of malaria vectors [45–47]. Appropriate land use classes include forest, plantations, fields and 
built-up areas (Figure 2). Forest can include any type of primary or secondary forest cover that is high 
and dense enough to form a canopy. Separating plantations, referring to tree plantations (notably 
Hevea sp., Musa sp. and Anacardium sp.) from forests can be beneficial because malaria risk in those 

Figure 1. Forest recently cut down and burnt to clear space for agriculture, by using the “slash and
burn” method, Kaev Seima district, Mondulkiri Province, Cambodia (photo: A.P.).

1.6. Objectives

This article aims to discuss methodologies and constraints associated with studying land cover
changes and malaria dynamics using Cambodia as a case study. Available data is used to investigate
trends in malaria prevalence over time and space, at country and provincial levels. In addition, we use
high resolution satellite imagery of a chosen malaria-endemic area to produce land use/land cover maps
from 2018, completing available classifications from 1988 and from 1998 to 2008 of the same locality.
Based on these classifications, we quantify land use and land cover characteristics and modifications
over these three decades. From the results of this study, we provide insight about appropriate study
scale, satellite imagery treatment, landscape metrics interpretation and adapted statistical analysis in
such a context and discuss their limitations.

2. Materials and Methods

2.1. Considerations for Methodological Choices

To understand malaria vector ecology, land use/land cover classes and study scales need to be
carefully determined. Rather than taking a “traditional” approach to land use classification where
a high number of classes are defined, a simpler, more easily attainable classification could better
depict Anopheles ecology by grouping environments into classes based on their relevance to malaria
transmission. Forest is highlighted as the most important risk area in Cambodia as this is the main
habitat of malaria vectors [45–47]. Appropriate land use classes include forest, plantations, fields and
built-up areas (Figure 2). Forest can include any type of primary or secondary forest cover that is high
and dense enough to form a canopy. Separating plantations, referring to tree plantations (notably
Hevea sp., Musa sp. and Anacardium sp.) from forests can be beneficial because malaria risk in those
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environments differs from that in forests. However, if plantations are separated from forests, they can
also be separated from other agricultural areas, as plantations in Mondulkiri have a substantial higher
malaria risk in comparison to other kind of crops [56]. Agriculture areas that are not trees, such as rice
paddies or cassava fields, should ideally correspond to another class, defined in this study as “Fields.”
Lastly, built-up areas stand out as lands that are irreversibly urban in character (houses, buildings,
roads, etc.).
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Figure 2. Example of the main environments within the study area. (A) Built-up area in a village.
(B) Field used for cassava culture photographed after the collection of cassava plants. (C) Rubber tree
plantation. (D) Primary forest.

Scale is also an important parameter to consider; as seen from previous publications, using
insufficient resolution or inappropriate scale can lead to fallacies or misinterpretations [27]. To select
the optimal scale for analysis, several parameters must be known or estimated, such as the extent
of the human and mosquito populations’ mobility. Flight distance of Cambodian vectors remains
hypothetical. A study in Malaysia showed that An. maculatus’ flight distance could reach 1.6 km [57],
but this parameter remains undetermined for the other vectors. Consequently, with such limited
knowledge, the minimal resolution needed for delimitating all potential habitat patches for vectors is
speculative and dispersal capacity of malaria vectors in the Cambodian context cannot be estimated.

2.2. Study Site

We chose a study area in north-eastern Cambodia where the incidence of malaria is high and the
rate of deforestation has been fast. We also had the opportunity to choose an area where deforestation
had been previously studied, in 1988 and 1998 and 2008 [53], which gave us the chance to update the
situation 10 years later. The study site spans 32 km from north to south and 39 km from west to east,
within Kaev Seima district, in Mondulkiri province (Figure 3). The population is mostly engaged in
agriculture, notably cassava, rice, cashew nut and rubber production. Forest activities, such as wood
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logging and hunting, are part of daily life. Families spend nights at their huts if work requires them to
and these huts are typically located in open areas, cultivated areas or forest.
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2.3. Malaria Data

At national level, the estimated number of malaria cases in Cambodia was gathered from the
latest annual WHO World Malaria Reports from 2019 [37]. The values from a single report were
preferred rather than aggregating data from various sources. At a provincial level, the CNM (National
Centre for Parasitology Entomology and Malaria Control) has provided data on malaria incidence from
Mondulkiri since 2008 (Dysoley, personal communication). Long-term, provincial-level prevalence
data is difficult to access in Cambodia and data prior to 2008 could not be retrieved. District data was
too miscellaneous to be presented.

2.4. Satellite Imagery and Processing

In order to compare recent land use with that of the former study, we chose to acquire images
in 2018. In the former study, different spatial resolutions were used, the SPOT1 images from 1988
to 1998 having a 20 m resolution and the SPOT5 image from 2008 having a resolution of 2.5 m for
panchromatic mode and 10 m for multispectral mode [53]. The land use/land cover maps were
produced using object-based image analysis with eCognition software. Since we could not access
this software, we chose to describe the 2018 land use/land cover by photointerpretation using the
same classes. This method, simple to set up but time consuming, allowed us to find objects that
are homogeneous from the point of view of their pixels but with fine contours for comparison with
other classifications. This required the acquisition of high spatial resolution images. Therefore, the
GEOSUD Equipex project provided SPOT 6/7 satellite images of the study area (© Airbus DS 2018)
acquired between 8th and 28th of March 2018. These images have a high spatial resolution of 1.5 m
for panchromatic mode and 6 m for multispectral mode. Cloud-free images were chosen as much
as possible.

The objective of the 2018 classification was to find the three main classes that allowed for
comparisons of the former classifications: forests, plantations, fields and built-up areas. For the purpose
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of future studies, we chose to separate wooded areas into forests and plantations. We produced the
2018 land use/land cover map by photointerpreting the satellite images, displayed in true colours using
GIS software. We used QGIS software (QGIS Development Team, 2020. QGIS Geographic Information
System v3. Open Source Geospatial Foundation Project. qgis.osgeo.org) and SavGIS software (Souris
M., 2020. SavGIS Geographic Information System v9. www.savgis.org).

2.5. Ground Truthing and Accuracy Measurement

A ground truth survey was conducted to assess the accuracy of the 2018 land use/land cover map.
In the field, a minimum of 32 locations for each class were randomly described. We used the Locus
Map (www.locusmap.eu) Android application in order to use a Google Earth background and GIS
vector information to better visualize the environment once in the field. This also allowed us to place
description points in the middle of the environments (the phone provides the GPS location and the
recorded point can be shifted to the location described). These records were imported into QGIS and
compared to the land use classification. We computed a confusion matrix and calculated the overall
accuracy and the Kappa index to assess the classification accuracy [58].

2.6. Comparison between Maps and Landscape Metrics

In order to compare the 2018 map with those produced from 1988 and between 1998 and 2008,
the “Forests” and “Plantations” classes were merged into a single class defined as “Wooded areas.”
This step allowed us to incorporate the land use data from 2018 into the dataset built from 1988 and
between 1998 and 2008, adding a temporal scale to the spatial observation of the area. We then clipped
the extent of all the raster maps at their intersection, in order to compute indices over the same frame
of the widest area possible.

To reflect landscape diversity and its evolution since 1988, we computed the same landscape
indices over the three decades. These indices are: Shannon’s Diversity Index (SHDI) [59], Simpson’s
Diversity Index (SIDI) [60], Edge Density (ED) and Patch Density (PD) at landscape level for all classes.
SHDI and SIDI quantify diversity, whereas patch and edge density indices can be interpreted as
fragmentation indices quantifying heterogeneity. SHDI, the most popular diversity index, is used
as a relative index for comparing different landscapes or the same landscape at different times [61].
SHDI increases as the number of different patch types (i.e., patch richness) increases and/or the
proportional distribution of area among patch types becomes more even. SIDI is another popular
diversity measure that is less sensitive to the presence of rare types. Specifically, the SIDI value
represents the probability that any two cells selected at random would be different. Thus, the higher
the value, the greater the likelihood that any two randomly drawn cells would have different values.
As SIDI is a probability, it can be interpreted in both absolute and relative terms. SIDI reaches 1 as the
number of different patch types (i.e., patch richness) increases and the proportional distribution of
area among patch types becomes more equitable [61]. Additionally, the percentage of landscape that
belonged to each land use category was computed at a class level.

Once all classifications from 1988 to 2018 were produced and homogenised, the landscape
metrics mentioned above were calculated using FRAGSTATS software (McGarigal, Cushman, and
Ene, 2012. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps.
www.umass.edu/landeco/research/fragstats/fragstats.html).

3. Results

3.1. Malaria Situation in Mondulkiri Province

Although malaria control efforts achieved a diminution of estimated cases in Cambodia until 2016
(124,137 cases or 8 per 1000 inhabitants), a sharp increase occurred in 2017 and 2018 (202,696 cases or
13 per 1000 inhabitants, and 272,272 cases or 17 per 1000 inhabitants, Figure 4) [37]. In Mondulkiri,
malaria incidence was stable from 2008 to 2016, ranging from 18 to 28 cases per 1000 inhabitants.

qgis.osgeo.org
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The incidence tripled in 2017 and 2018, reaching 59 and 56 cases per 1000 inhabitants, respectively
(National Centre for Parasitology Entomology and Malaria Control, unpublished data).Remote Sens. 2020, 11, x FOR PEER REVIEW 9 of 21 
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3.2. Land Use/Land Cover Classification

The 2018 classification based on forest, plantations, fields and built-up areas classes permitted
the production of a malaria-relevant map, a useful resource for potential upcoming investigations
in the study area. The land use/land cover classifications from 2018 are represented in Figure 6.
The predominant class identified was “Fields” accounting for 47.9% of the study area, followed by
“Forests” (38.1%), “Plantations” (13.7%) and finally “Built-up areas” (0.3%).
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Table 1. Confusion matrix including user’s accuracy, relative omission error, producer’s accuracy and
relative commission error.

Reference Test Accuracy

Fields Forests Plantations Built-Up
Areas Total User’s

Accuracy

Relative
Omission

Error

Remote
sensing

Classification

Fields 37 3 2 1 43 0.86 0.14
Forests 11 17 2 2 32 0.53 0.47

Plantations 8 1 29 0 38 0.76 0.24
Built-up Areas 7 0 1 28 36 0.78 0.22

Total 63 21 34 31 149
Producer’s
Accuracy 0.59 0.81 0.85 0.90

Relative
Commission

Error
0.41 0.19 0.15 0.10

Overall, accuracy between remote sensing classification and reference test was 74%. From the
same values, weighted Kappa’s index was 0.67 (5% confidence interval: 0.55–0.79). Although there
is no standardized interpretation of the Kappa’s index, this value indicates that the classification
accuracy is “substantial” according to Landis and Koch’s scale (0–0.20 = slight, 0.21–0.40 = fair,
0.41–0.60 = moderate, 0.61–0.80 = substantial, and 0.81–1 = almost perfect) [58].

3.3. Comparison between Maps

Once all maps were clipped at their intersection, the final size of the area spanned 24 km from
north to south and 25 km from west to east (Figure 7).

Deforestation keeps expanding (Figure 8); from 1988 to 2018, the extent of wooded areas decreased
from 90.78% to 47.41% while the percentage of landscape classified as fields increased from 9.11% to
51.98%. Built-up areas also increased from 0.018% in 1988 to 0.531% in 2018, extending the existing
patches as a consequence of urbanization and the development of villages and roads.

SHDI and SIDI diversity indices also increased over time (Figure 9). From 1988 to 2018, SHDI
increased from 0.31 to 0.72, whereas SIDI increased from 0.17 to 0.50. PD and ED (Figure 10) demonstrate
quite a different pattern as they regularly increased until 2008 (PD: from 0.54 number per 100 hectares in
1988 to 1.36 in 2008 and ED: from 12.31 in 1988 to 31.21 m per hectare in 2008) and then both decreased
in 2018 (PD to 0.98 and ED to 26.52).
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Figure 8. Evolution of landscape percentage for each land use/land cover class over time, between 1988
and 2018.
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Figure 9. Evolution of the diversity indices, Shannon’s Diversity Index (SHDI) and Simpson’s Diversity
Index (SIDI), from 1988 to 2018.
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Figure 10. Evolution of the fragmentation indices, Patch Density (PD, number per 100 hectares) and
Edge Density (ED, metres per hectares), as a function of time, from 1988 to 2018.

4. Discussion

The spatial resolution of the imagery was fine enough to separate relevant patches at human
and mosquito scale. A smaller resolution would be more difficult to obtain and might highlight
unnecessary patches, too small to be of biological interest, i.e., groups of trees not extensive enough
to represent a suitable environment for a vector population, whereas a larger resolution would not
have been fine enough for delimitating all potential patches of interest. Within the confusion matrix,
most of the agreement errors arose from the “Fields” class where only 58.7% were rightly attributed
(compared with the field control points). Indeed, the producer’s accuracy of this class is particularly
low (41.3%). These fields were classified either as Forests (17.5%), Plantations (12.7%) or Built-up areas
(11.1%). The incorrect assignment of sites to the “Forests” or “Plantations” classes may have occurred
as a consequence of the 18 months delay between the date the satellite images were taken and the
collection of control points, particularly in this context where fast pace deforestation occurs, often
as the result of “slash and burn” activities. For future classifications, ground truthing and accuracy
assessment should be performed immediately after the production of the classification.

Landscape metrics indices showed a consistent evolution of deforestation rate, along with the
progress of cultivated areas and built-up areas. Shannon and Simpson’s indices are still increasing
through the years, demonstrating an increasing landscape diversity which is emerging from the
diversification of patches within the study area. However, even if fragmentation appears to be
increasing, the edge density and patch density decreased from 2008 to 2018. This result can usually
be linked to (1) a decrease in the number of patches within the landscape (which is not the case here
because SHDI is increasing during this time interval) and/or (2) shorter edges on average, arising from
more homogenous patches. We can propose at least three hypotheses to explain these results. First,
with the cultivated areas extending further every year, an actual homogenization between patches
might be occurring, with shorter edges as agriculture spreads and/or as various patches of agriculture
that were disconnected now being connected as cultivated areas surfaces expand. Second, the imagery
resolution changed in 2018 and might have affected the map output and therefore, the edge density
and the patch density values. Lastly, this tendency could arise from the different methodology used in
2018, giving smoother edges, leading to an underestimation of the indices. If the photointerpretation
method used in 2018 appears appropriate for quantifying classes’ abundance and repartition, it might
estimate fragmentation indices differently than the object-oriented classification. Indeed, during an
object-oriented classification, the user defines the parameters for segmentation, which are compactness,
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shape and scale. Their values are decisive for edge length, as they determine the level of compactness
of the patches and the degree of fineness of the edges. Consequently, the resulting edges might appear
differently between object-oriented or photointerpretation methods (Figure 11), leading to a different
estimation of fragmentation indices.
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Figure 11. A detail of the land use/land cover map from 2008 with object-oriented method (a) and from
2018 with photointerpretation (b). In addition to the difference of wooded areas surface, edges appear
coarser on (a), while on (b), patches are more compact, with shorter edges.

It is worth noting that along with edge density, patch density is also decreasing between 2008 and
2018. The latter index is less sensitive to the method used; as it counts the number of patches and does
not take into account the coarseness or shape of these patches. Thus, if patch density is decreasing, we
can assume that fragmentation may have decreased between 2008 and 2018, a phenomenon that could
be explained through the hypothesis previously mentioned of an actual homogenisation, which might
result from the extension of fields that join the existing parcels between them.

Obviously, difficulties arise when attempting to compare images from different dates, and this is
amplified by the different methodology used in 2018. For future studies, analysis and interpretation
would be eased by using a homogenous classification method. In the case of malaria context and
understanding its mechanisms, photointerpretation appears to be a valid approach, notably because
it allows the separation between the different wooded areas. Yet, this technique requires very
high-resolution satellite imagery, which is not always available. The technique is, in the context of
this study, an uncomplicated way to complete an available dataset with free, accessible methodology.
Since the 1980s, remote sensing has deeply evolved, as we can observe from the satellite resolutions used
between 1988 and 2008 in the study by Dupuy et al. [53], with panchromatic resolution varying from
10 to 2.5 m between SPOT1 and SPOT5. Over the years, satellite technology and their resolution have
improved [31], bringing some challenge for studies spanning various decades. As such, depending on
the hypothesis, a protocol could focus on (i) getting data with identical resolutions and methodologies
from a limited timeframe or (ii) coping with variability within dataset but allowing a larger time frame.
In the case of this study, we aim to give an update about deforestation on a rather long timeframe,
thus opting for the latter option. In the case of a more detailed analysis, a smaller time frame would
probably fit better, with satellite imagery of a consistent resolution.

Over the last decades in Cambodia, it has been assessed and quantified that deforestation has been
increasing in every province [15,62]. On the other side, Mondulkiri province has shown a rather slow
malaria decrease over time compared to countrywide data, with a rebound in 2017, concomitant to the
national increase. Literature shows indeed that malaria does not always follow linearly deforestation
expanse. It is important to consider that malaria is a multifactorial dynamic system, not only driven by
deforestation, and that temporal scale matters. More variables, and over a smaller time scale, such as
yearly data would be needed to allow a thorough multivariate analysis.



Remote Sens. 2020, 12, 2972 16 of 21

Multivariate models have been used on yearly data with variables such as malaria count, human
development index, deforestation rate, sociocultural and land cover factors, with spatial scales at
the province, municipality or health district levels. Scale has a considerable effect on results of such
analyses [63] and consequently, these methods can create ecological fallacies. It has been stated that
health district scale would be the most appropriate to conduct such analyses [25,64]—a radically
different scale than most studies in literature at province levels.

However, this sort of multivariate model would be hardly applicable to the Cambodian context,
due to the lack of data at a relevant scale. Indeed, in the Amazon Basin, organisations such as the
SIVEP-Malaria, recording individually malaria cases at municipality level [65], or the Brazil’s National
Institute for Space Research (INPE), mapping deforestation since 1988, are supporting the design of
malaria studies and allowed to explain the frontier malaria paradigm. Such recording is essential to
allow in-depth investigation of the effect of deforestation on malaria dynamics. However, Cambodia’s
geopolitical context makes it difficult to obtain exhaustive malaria data, and almost impossible for
long-term data at a relevant scale, as a consequence of the Khmer Rouge regime [49]. Nevertheless,
over the last decade, the census data observes net improvements and future studies would probably be
able to rely on more complete malaria prevalence. Additionally, future studies must be able to rely on
substantial vector data, gathered from mosquito collections. This would ultimately lead to defined
transmission-prone environments and allow in-depth investigation on malaria dynamics. Indeed,
prevalence data alone is subject to biases—individual immunity, treatment availability and efficacy,
control interventions and diagnostic sensibility—and, as such, must be completed by vector data
relevant to the study area.

Without formal malaria data, statistical analysis should not be undertaken, but trends can be
observed from the observation of land cover changes and the situation of the area under study.
First, selective logging might be one reason for the difficulty to formulate a relevant hypothesis.
Forest goers create a situation arduous to measure and to model as selective logging induces very
low-level to undetectable deforestation [54], while potentially maintaining high malaria prevalence [66].
This highlights the necessity of high geographical precision, attainable with a very fine scale of analysis.
A follow-up of this risk population aiming to characterize their mobility and activities within the forest
would help to quantify their exposure and their effect on the forest. In addition, an estimation of
true forest versus plantations within the wooded areas over time would be a valuable dataset. From
the increase in wooded areas near the main road between 2008 and 2018, we can suggest that there
was a relative increase of plantation versus forest over the least 10 years. This hypothesis would
correlate with the recent investment into rubber and cashew trees observed in the area. Methodologies
categorizing the different types of forest are highly valuable in this context, as plantations might have
been the land cover category that has extended the most in this landscape. A specific quantification of
this increase is required to fully understand malaria dynamics, as some plantations, notably rubber,
have been correlated to malaria exposure in Thailand [67] and Cambodia [56].

Second, some forested areas might represent untouched malaria hotbeds that deforestation
affects little, where malaria incidence would then mostly depend on other factors. Those include
diagnostic efficacy, which might induce bias in the observed incidence, as well as availability of
treatments [41], drug efficacy [40] or even long-lasting insecticidal nets real coverage and use [68],
which are substantial determinants in malaria dynamics evolution and completely independent from
deforestation. In addition, deforestation—even when occurring fast—is a slow process (here observed
over 30 years) compared to other factors that could affect malaria incidence (e.g., climatic variation,
national control program performance, drug supply, etc.), which can vary from year to year.

Overall, studying the evolution of land use is quite a simple methodology quantifying the forest
cover and the anthropogenic changes of the environment. Complementary field approaches would be
useful to understand spatiotemporal patterns of exposure to vectors and to ultimately guide efforts
towards malaria control and elimination [69]. Techniques relying on active follow-up of populations
could favour such an understanding [70]. For example, tracking by GPS data-loggers, coupled with
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clinical follow-ups and questionnaires to define at-risk behaviours, have revealed great efficiency
to determine the conditions for transmission and helped identify malaria hotspots, risk behaviours
and modalities of transmission [71,72]. Following up with Cambodians most exposed to vectors
in this area, such as forest goers, coupled with characterization of environments as we did, should
provide precious information about malaria transmission modalities and help characterize transmission
hotspots. Altogether, predicting the direction of pathogen responses to anthropogenic land use change
requires an understanding of the biology and natural history of the pathogen as well as identifying the
mechanisms of disease transmission in different epidemiologic situations [73]. Using a GIS approach,
some malaria control strategies and elimination programmes have improved their efficacy [74–76].
These approaches must be transdisciplinary and include spatiotemporal, ecological as well as social
perspectives in order to develop prevention methods able to break the transmission cycle [16].

5. Conclusions

This investigation illustrates the tremendous anthropogenic land use changes happening in
the study area in Cambodia, affecting humans, vectors and their interactions. Indeed, this analysis
highlights rapidly growing deforestation in one district of a Cambodian province, along with an
increasing diversity of the landscape. The collated malaria data suggests that the interaction between
incidence and deforestation is not linear nor easy to decipher. The lack of detailed ecological,
environmental and epidemiological data in the area hinders any in-depth analysis. However, the
use of fine-scale satellite imagery, photointerpretation, relevant classification and landscape metrics
indices not only show their potential but also their limitations for the analysis of the disease dynamics.
To further understand malaria transmission dynamics, the temporal and spatial scales should be
carefully chosen in order to correctly address the problem. Additionally, multiple factors such as
diagnostic efficacy, availability of treatments, drug efficacy or current fit of control strategies must
be considered. Future research programs should also utilise remote sensing methodologies with
multidisciplinary approaches in order to quantify malaria exposure and eventually grasp how land
cover impacts human exposure to vectors.
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