Z. Liang, C. L. Owens, G. Zhong, and L. Cheng, Polyphenolic profiles detected in the ripe berries of Vitis vinifera germplasm, Food Chemistry, vol.129, issue.3, pp.940-950, 2011.

C. Cavaliere, P. Foglia, R. Gubbiotti, P. Sacchetti, R. Samperi et al., Rapid-resolution liquid chromatography/mass spectrometry for determination and quantitation of polyphenols in grape berries, Rapid Communications in Mass Spectrometry, vol.22, issue.20, pp.3089-3099, 2008.

Y. Yilmaz, Z. Göksel, S. S. Erdo?an, A. Öztürk, A. Atak et al., Antioxidant Activity and Phenolic Content of Seed, Skin and Pulp Parts of 22 Grape (Vitis vinifera L.) Cultivars (4 Common and 18 Registered or Candidate for Registration), Journal of Food Processing and Preservation, vol.39, issue.6, pp.1682-1691, 2014.

H. Nawaz, J. Shi, G. S. Mittal, and Y. Kakuda, Extraction of polyphenols from grape seeds and concentration by ultrafiltration, Separation and Purification Technology, vol.48, issue.2, pp.176-181, 2006.

E. Obreque-slier, A. Pen?a-neira, R. Lo?pez-soli?s, F. Zamora-mari?n, J. M. Ricardo-da-silva et al., Comparative Study of the Phenolic Composition of Seeds and Skins from Carme?ne?re and Cabernet Sauvignon Grape Varieties (Vitis viniferaL.) during Ripening, Journal of Agricultural and Food Chemistry, vol.58, issue.6, pp.3591-3599, 2010.

M. Fanzone, F. Zamora, V. Jofre?, M. Assof, and A. Pen?a-neira, Phenolic Composition of Malbec Grape Skins and Seeds from Valle de Uco (Mendoza, Argentina) during Ripening. Effect of Cluster Thinning, Journal of Agricultural and Food Chemistry, vol.59, issue.11, pp.6120-6136, 2011.

A. Hubner, F. Sobreira, A. Vetore-neto, C. A. Pinto, M. F. Dario et al., The Synergistic Behavior of Antioxidant Phenolic Compounds Obtained from Winemaking Waste?s Valorization, Increased the Efficacy of a Sunscreen System, Antioxidants, vol.8, issue.11, p.530, 2019.

R. Gil-muñoz, J. I. Fernández-fernández, O. Crespo-villegas, and T. Garde-cerdán, Elicitors used as a tool to increase stilbenes in grapes and wines, Food Research International, vol.98, pp.34-39, 2017.

J. Balík, M. Kyseláková, N. Vrchotová, J. T?íska, M. Kum?ta et al., Relations between polyphenols content and antioxidant activity in vine grapes and leaves, Czech Journal of Food Sciences, vol.26, issue.Special Issue, pp.S25-S32, 2009.

M. J. Aguirre, Y. Y. Chen, M. Isaacs, B. Matsuhiro, L. Mendoza et al., Electrochemical behaviour and antioxidant capacity of anthocyanins from Chilean red wine, grape and raspberry, Food Chemistry, vol.121, issue.1, pp.44-48, 2010.

I. I. Rockenbach, E. Rodrigues, L. V. Gonzaga, V. Caliari, M. I. Genovese et al., Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil, Food Chemistry, vol.127, issue.1, pp.174-179, 2011.

B. Bozan, G. Tosun, and D. Özcan, Study of polyphenol content in the seeds of red grape (Vitis vinifera L.) varieties cultivated in Turkey and their antiradical activity, Food Chemistry, vol.109, issue.2, pp.426-430, 2008.

H. Coklar, Antioxidant capacity and phenolic profile of berry, seed, and skin of Ek?ikara (vitis vinifera L) grape: Influence of harvest year and altitude, International Journal of Food Properties, vol.20, issue.9, pp.2071-2087, 2017.

R. Guendez, Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity, Food Chemistry, vol.89, issue.1, pp.1-9, 2005.

A. D. Hosu, C. Cimpoiu, V. Miclaus, and L. Jantschi, Antioxidant Content of Three Different Varieties of Wine Grapes, Biotechnology & Biotechnological Equipment, vol.25, issue.1, pp.2217-2221, 2011.

I. Ky and P. Teissedre, Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic Content and Antioxidant Activity, Molecules, vol.20, issue.2, pp.2190-2207, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02639426

M. S. Lingua, M. P. Fabani, D. A. Wunderlin, and M. V. Baroni, From grape to wine: Changes in phenolic composition and its influence on antioxidant activity, Food Chemistry, vol.208, pp.228-238, 2016.

T. M. Rababah, K. I. Ereifej, M. A. Al-mahasneh, K. Ismaeal, A. Hidar et al., Total Phenolics, Antioxidant Activities, and Anthocyanins of Different Grape Seed Cultivars Grown in Jordan, International Journal of Food Properties, vol.11, issue.2, pp.472-479, 2008.

H. C. Kadouh, S. Sun, W. Zhu, and K. Zhou, ?-Glucosidase inhibiting activity and bioactive compounds of six red wine grape pomace extracts, Journal of Functional Foods, vol.26, pp.577-584, 2016.

P. M. Sales, P. M. Souza, L. A. Simeoni, P. O. Magalhães, and D. Silveira, ?-Amylase Inhibitors: A Review of Raw Material and Isolated Compounds from Plant Source, Journal of Pharmacy & Pharmaceutical Sciences, vol.15, issue.1, p.141, 2012.

H. J. Lee, O. Kwon, and J. Y. Kim, Supplementation of a polyphenol extract from Ecklonia cava reduces body fat, oxidative and inflammatory stress in overweight healthy subjects with abdominal obesity: A randomized, placebo-controlled, double-blind trial, Journal of Functional Foods, vol.46, pp.356-364, 2018.

B. U. Jack, C. J. Malherbe, M. Mamushi, C. J. Muller, E. Joubert et al., Adipose tissue as a possible therapeutic target for polyphenols: A case for Cyclopia extracts as anti-obesity nutraceuticals, Biomedicine & Pharmacotherapy, vol.120, p.109439, 2019.

E. T. Callcott, A. B. Santhakumar, J. Luo, and C. L. Blanchard, Therapeutic potential of rice-derived polyphenols on obesity-related oxidative stress and inflammation, Journal of Applied Biomedicine, vol.16, issue.4, pp.255-262, 2018.

S. Khurana, M. Piche, A. Hollingsworth, K. Venkataraman, and T. C. Tai, Oxidative stress and cardiovascular health: therapeutic potential of polyphenols, Canadian Journal of Physiology and Pharmacology, vol.91, issue.3, pp.198-212, 2013.

M. Amiot, C. Riollet, and J. Landrier, Polyphénols et syndrome métabolique, Médecine des Maladies Métaboliques, vol.3, issue.5, pp.476-482, 2009.

T. Richard, H. Temsamani, J. Delaunay, S. Krisa, and J. Mérillon, Stilbènes : de la chimie à la neuroprotection, Cahiers de Nutrition et de Diététique, vol.49, issue.4, pp.173-180, 2014.

B. Lorrain, I. Ky, L. Pechamat, and P. Teissedre, Evolution of Analysis of Polyhenols from Grapes, Wines, and Extracts, Molecules, vol.18, issue.1, pp.1076-1100, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02653115

J. Hoyos-arbeláez, M. Vázquez, and J. Contreras-calderón, Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review, Food Chemistry, vol.221, pp.1371-1381, 2017.

Y. Dai and K. Shiu, Glucose Biosensor Based on Multi-Walled Carbon Nanotube Modified Glassy Carbon Electrode, Electroanalysis, vol.16, issue.20, pp.1697-1703, 2004.

A. Chowdhry, J. Kaur, M. Khatri, V. Puri, R. Tuli et al., Characterization of functionalized multiwalled carbon nanotubes and comparison of their cellular toxicity between HEK 293 cells and zebra fish in vivo., Heliyon, vol.5, issue.10, p.e02605, 2019.

M. Liu, J. Xiang, J. Zhou, and H. Ding, A disposable amperometric sensor for rapid detection of serotonin in the blood and brain of the depressed mice based on Nafion membrane-coated colloidal gold screen-printed electrode, Journal of Electroanalytical Chemistry, vol.640, issue.1-2, pp.1-7, 2010.

G. Bordonaba, J. Terry, and L. A. , Electrochemical behaviour of polyphenol rich fruit juices using disposable screen-printed carbon electrodes: Towards a rapid sensor for antioxidant capacity and individual antioxidants, Talanta, vol.90, pp.38-45, 2012.

P. Pasakon, J. P. Mensing, D. Phokaratkul, C. Karuwan, T. Lomas et al., A high-performance, disposable screen-printed carbon electrode modified with multi-walled carbon nanotubes/graphene for ultratrace level electrochemical sensors, Journal of Applied Electrochemistry, vol.49, issue.2, pp.217-227, 2018.

M. Zerbib, J. Mazauric, E. Meudec, C. Le-guernevé, A. Lepak et al., New flavanol O-glycosides in grape and wine, Food Chemistry, vol.266, pp.441-448, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01918062

J. A. Kennedy and G. P. Jones, Analysis of Proanthocyanidin Cleavage Products Following Acid-Catalysis in the Presence of Excess Phloroglucinol, Journal of Agricultural and Food Chemistry, vol.49, issue.4, pp.1740-1746, 2001.

S. Pérez-magariño and M. L. González-san-josé, Evolution of Flavanols, Anthocyanins, and Their Derivatives during the Aging of Red Wines Elaborated from Grapes Harvested at Different Stages of Ripening, Journal of Agricultural and Food Chemistry, vol.52, issue.5, pp.1181-1189, 2004.

A. Ricci, K. J. Olejar, G. P. Parpinello, A. U. Mattioli, N. Tesli? et al., Antioxidant activity of commercial food grade tannins exemplified in a wine model, Food Additives & Contaminants: Part A, vol.33, issue.12, pp.1761-1774, 2016.

W. Brand-williams, M. E. Cuvelier, and C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Science and Technology, vol.28, issue.1, pp.25-30, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01197008

R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang et al., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine, vol.26, issue.9-10, pp.1231-1237, 1999.

I. F. Benzie and J. J. Strain, The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ?Antioxidant Power?: The FRAP Assay, Analytical Biochemistry, vol.239, issue.1, pp.70-76, 1996.

F. Torchio, E. Cagnasso, V. Gerbi, and L. Rolle, Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas, Analytica Chimica Acta, vol.660, issue.1-2, pp.183-189, 2010.

L. Rolle, S. Ri?o-segade, F. Torchio, S. Giacosa, E. Cagnasso et al., Influence of Grape Density and Harvest Date on Changes in Phenolic Composition, Phenol Extractability Indices, and Instrumental Texture Properties during Ripening, Journal of Agricultural and Food Chemistry, vol.59, issue.16, pp.8796-8805, 2011.

K. Bindon, C. Varela, J. Kennedy, H. Holt, and M. Herderich, Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry, Food Chemistry, vol.138, issue.2-3, pp.1696-1705, 2013.

J. A. Kennedy, G. J. Troup, J. R. Pilbrow, D. R. Hutton, D. Hewitt et al., Development of seed polyphenols in berries from Vitis vinifera L. cv. Shiraz, Australian Journal of Grape and Wine Research, vol.6, issue.3, pp.244-254, 2000.

M. M. Panteli?, D. ?. Dabi?-zagorac, S. M. Davidovi?, S. R. Todi?, Z. S. Be?li? et al., Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia, Food Chemistry, vol.211, pp.243-252, 2016.

J. Mulero, F. Pardo, and P. Zafrilla, Antioxidant activity and phenolic composition of organic and conventional grapes and wines, Journal of Food Composition and Analysis, vol.23, issue.6, pp.569-574, 2010.

R. Delgado, P. Martín, M. Delálamo, and M. González, Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates, Journal of the Science of Food and Agriculture, vol.84, issue.7, pp.623-630, 2004.

S. Niu, F. Hao, H. Mo, J. Jiang, H. Wang et al., Phenol profiles and antioxidant properties of white skinned grapes and their coloured genotypes during growth, Biotechnology & Biotechnological Equipment, vol.31, issue.1, pp.58-67, 2016.

J. Ryan and E. Revilla, Anthocyanin Composition of Cabernet Sauvignon and Tempranillo Grapes at Different Stages of Ripening, Journal of Agricultural and Food Chemistry, vol.51, issue.11, pp.3372-3378, 2003.

S. P. Robinson and C. Davies, Molecular biology of grape berry ripening, Australian Journal of Grape and Wine Research, vol.6, issue.2, pp.175-188, 2000.

E. Boido, M. García-marino, E. Dellacassa, F. Carrau, J. C. Rivas-gonzalo et al., Characterisation and evolution of grape polyphenol profiles of Vitis vinifera L. cv. Tannat during ripening and vinification, Australian Journal of Grape and Wine Research, vol.17, issue.3, pp.383-393, 2011.

L. Haselgrove, D. Botting, R. Heeswijck, P. B. Høj, P. R. Dry et al., Canopy microclimate and berry composition: The effect of bunch exposure on the phenolic composition of Vitis vinifera L cv. Shiraz grape berries, Australian Journal of Grape and Wine Research, vol.6, issue.2, pp.141-149, 2000.

P. A. Kilmartin, H. Zou, and A. L. Waterhouse, Correlation of Wine Phenolic Composition versus Cyclic Voltammetry Response, Am. J. Enol. Vitic, vol.53, pp.294-302, 2002.

E. F. Newair, P. A. Kilmartin, and F. Garcia, Square wave voltammetric analysis of polyphenol content and antioxidant capacity of red wines using glassy carbon and disposable carbon nanotubes modified screen-printed electrodes, European Food Research and Technology, vol.244, issue.7, pp.1225-1237, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01918071

J. C. Danilewicz, F. Folin-ciocalteu, and D. , Folin-Ciocalteu, FRAP, and DPPH* Assays for Measuring Polyphenol Concentration in White Wine, American Journal of Enology and Viticulture, vol.66, issue.4, pp.463-471, 2015.

Â. Vilas-boas, P. Valderrama, N. Fontes, D. Geraldo, and F. Bento, Evaluation of total polyphenol content of wines by means of voltammetric techniques: Cyclic voltammetry vs differential pulse voltammetry, Food Chemistry, vol.276, pp.719-725, 2019.

P. A. Kilmartin, H. Zou, and A. L. Waterhouse, A Cyclic Voltammetry Method Suitable for Characterizing Antioxidant Properties of Wine and Wine Phenolics, Journal of Agricultural and Food Chemistry, vol.49, issue.4, pp.1957-1965, 2001.

S. Dudonne?, X. Vitrac, P. Coutie?re, M. Woillez, and J. Me?rillon, Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays, Journal of Agricultural and Food Chemistry, vol.57, issue.5, pp.1768-1774, 2009.

I. Ky, B. Lorrain, N. Kolbas, A. Crozier, and P. Teissedre, Wine by-Products: Phenolic Characterization and Antioxidant Activity Evaluation of Grapes and Grape Pomaces from Six Different French Grape Varieties, Molecules, vol.19, issue.1, pp.482-506, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02638989

Y. El-rayess, R. Barbar, E. A. Wilson, and J. Bouajila, Analytical Methods for Wine Polyphenols Analysis and for Their Antioxidant Activity Evaluation, 2014.

R. L. Prior, X. Wu, and K. Schaich, Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements, Journal of Agricultural and Food Chemistry, vol.53, issue.10, pp.4290-4302, 2005.

A. Floegel, D. Kim, S. Chung, S. I. Koo, and O. K. Chun, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, Journal of Food Composition and Analysis, vol.24, issue.7, pp.1043-1048, 2011.

K. Tkacz, A. Wojdy?o, P. Nowicka, I. Turkiewicz, and T. Golis, Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids, Journal of Functional Foods, vol.56, pp.353-363, 2019.

P. Schober, C. Boer, and L. A. Schwarte, Correlation Coefficients, Anesthesia & Analgesia, vol.126, issue.5, pp.1763-1768, 2018.

M. José-jara-palacios, M. Luisa-escudero-gilete, J. Miguel-hernández-hierro, F. J. Heredia, and D. J. Hernanz, Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products, Talanta, vol.165, pp.211-215, 2017.

A. R. Selcuk, E. Demiray, and Y. Yilmaz, Antioxidant Activity of Grape Seeds Obtained from Molasses (Pekmez) and Winery Production, Acad. Food J, vol.9, pp.39-43, 2011.

P. Doshi, P. Adsule, and K. Banerjee, Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (Sharad Seedless) during maturation, International Journal of Food Science and Technology, vol.41, issue.s1, pp.1-9, 2006.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2020 by the authors. Licensee MDPI