J. S. Boyer, Plant Productivity and Environment, Science, vol.218, issue.4571, pp.443-448, 1982.

M. M. Chaves, Effects of Water Deficits on Carbon Assimilation, Journal of Experimental Botany, vol.42, issue.1, pp.1-16, 1991.

M. M. Chaves, J. Flexas, and C. Pinheiro, Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell, Annals of Botany, vol.103, issue.4, pp.551-560, 2008.

G. M. Sagadevan, B. Bienyameen, M. Shaheen, P. Shaun, M. Saberi et al., Physiological and molecular insights into drought tolerance, African Journal of Biotechnology, vol.1, issue.2, pp.28-38, 2002.

M. H. De-carvalho, Drought stress and reactive oxygen species, Plant Signaling & Behavior, vol.3, issue.3, pp.156-165, 2008.
URL : https://hal.archives-ouvertes.fr/bioemco-00370490

J. Mcwilliam, F. W. Baker, and . Ed, The dimensions of drought, CAB International: Wallingford, pp.1-11, 1989.

D. Fleury, S. Jefferies, H. Kuchel, and P. Langridge, Genetic and genomic tools to improve drought tolerance in wheat, Journal of Experimental Botany, vol.61, issue.12, pp.3211-3222, 2010.

R. Tanaka and A. Tanaka, Tetrapyrrole Biosynthesis in Higher Plants, Annual Review of Plant Biology, vol.58, issue.1, pp.321-346, 2007.

W. A. Cramer, G. M. Soriano, M. Ponomarev, D. Huang, H. Zhang et al., SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROMEb6fCOMPLEX OF OXYGENIC PHOTOSYNTHESIS, Annual Review of Plant Physiology and Plant Molecular Biology, vol.47, issue.1, pp.477-508, 1996.

G. Kurisu, H. Zhang, J. L. Smith, and W. A. Cramer, Structure of the Cytochrome b6f Complex of Oxygenic Photosynthesis: Tuning the Cavity, Science, vol.302, issue.5647, pp.1009-1014, 2003.

L. A. Del-río, ROS and RNS in plant physiology: an overview, Journal of Experimental Botany, vol.66, issue.10, pp.2827-2837, 2015.

J. D. Woodson, J. M. Perez-ruiz, and J. Chory, Heme Synthesis by Plastid Ferrochelatase I Regulates Nuclear Gene Expression in Plants, Current Biology, vol.21, issue.10, pp.897-903, 2011.

J. D. Woodson, J. M. Perez-ruiz, R. J. Schmitz, J. R. Ecker, and J. Chory, Sigma factor-mediated plastid retrograde signals control nuclear gene expression, The Plant Journal, vol.73, issue.1, pp.1-13, 2012.

M. T. Page, T. Garcia-becerra, A. G. Smith, and M. J. Terry, Overexpression of chloroplast-targeted ferrochelatase 1 results in a genomes uncoupled chloroplast-to-nucleus retrograde signalling phenotype, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.375, issue.1801, p.20190401, 2020.

M. Moulin and A. G. Smith, Regulation of tetrapyrrole biosynthesis in higher plants, Biochemical Society Transactions, vol.33, issue.4, pp.737-742, 2005.

M. Scharfenberg, L. Mittermayr, E. Von-roepenack-lahaye, H. Schlicke, B. Grimm et al., Functional characterization of the two ferrochelatases inArabidopsis thaliana, Plant, Cell & Environment, vol.38, issue.2, pp.280-298, 2014.

W. T. Zhao, S. J. Feng, H. Li, F. Faust, T. Kleine et al., Salt stress-induced FERROCHELATASE 1 improves resistance to salt stress by limiting sodium accumulation in Arabidopsis thaliana, Scientific Reports, vol.7, issue.1, 2017.

H. N. Little and O. T. Jones, The subcellular loclization and properties of the ferrochelatase of etiolated barley, Biochemical Journal, vol.156, issue.2, pp.309-314, 1976.

K. S. Chow, D. P. Singh, A. R. Walker, and A. G. Smith, Two different genes encode ferrochelatase in Arabidopsis: mapping, expression and subcellular targeting of the precursor proteins, The Plant Journal, vol.15, issue.4, pp.531-541, 1998.

S. Nagai, M. Koide, S. Takahashi, A. Kikuta, M. Aono et al., Induction of Isoforms of Tetrapyrrole Biosynthetic Enzymes, AtHEMA2 and AtFC1, under Stress Conditions and Their Physiological Functions in Arabidopsis, Plant Physiology, vol.144, issue.2, pp.1039-1051, 2007.

D. P. Singh, J. E. Cornah, S. Hadingham, and A. G. Smith, Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis, Plant Molecular Biology, vol.50, issue.4/5, pp.773-788, 2002.

A. G. Smith, M. A. Santana, A. D. Wallace-cook, J. M. Roper, and R. Labbe-bois, Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant, J. Boil. Chem, vol.269, pp.13405-13413, 1994.

J. Papenbrock, S. Mishra, H. Mock, E. Kruse, E. Schmidt et al., Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants, The Plant Journal, vol.28, issue.1, pp.41-50, 2001.

K. S. Chow, D. P. Singh, J. M. Roper, and A. G. Smith, A Single Precursor Protein for Ferrochelatase-I fromArabidopsisIs Importedin Vitrointo Both Chloroplasts and Mitochondria, Journal of Biological Chemistry, vol.272, issue.44, pp.27565-27571, 1997.

T. Suzuki, T. Masuda, D. P. Singh, F. Tan, T. Tsuchiya et al., Two Types of Ferrochelatase in Photosynthetic and Nonphotosynthetic Tissues of Cucumber, Journal of Biological Chemistry, vol.277, issue.7, pp.4731-4737, 2001.

D. Hey, P. Ortega-rodes, T. Fan, F. Schnurrer, L. Brings et al., Transgenic Tobacco Lines Expressing Sense or AntisenseFERROCHELATASE 1RNA Show Modified Ferrochelatase Activity in Roots and Provide Experimental Evidence for Dual Localization of Ferrochelatase 1, Plant and Cell Physiology, vol.57, issue.12, pp.2576-2585, 2016.

R. Lister, O. Chew, C. Rudhe, M. Lee, and J. Whelan, Arabidopsis thaliana ferrochelatase-I and -II are not imported into Arabidopsis mitochondria, FEBS Letters, vol.506, issue.3, pp.291-295, 2001.

T. Masuda, T. Suzuki, H. Shimada, H. Ohta, and K. Takamiya, Subcellular localization of two types of ferrochelatase in cucumber, Planta, vol.217, issue.4, pp.602-609, 2003.

D. S. Nagahatenna, P. Langridge, and R. Whitford, Tetrapyrrole?based drought stress signalling, Plant Biotechnology Journal, vol.13, issue.4, pp.447-459, 2015.

D. S. Nagahatenna, P. Langridge, and R. Whitford, Tetrapyrrole?based drought stress signalling, Plant Biotechnology Journal, vol.13, issue.4, pp.447-459, 2015.

S. M. Allen, S. Luck, J. Mullen, H. Sakai, S. Sivasanker et al., Drought Tolerant Plants and Related Constructs and Methods Involving Genes Encoding Ferrochelatases, 2015.

T. Phung, H. Jung, J. Park, J. Kim, K. Back et al., Porphyrin Biosynthesis Control under Water Stress: Sustained Porphyrin Status Correlates with Drought Tolerance in Transgenic Rice, Plant Physiology, vol.157, issue.4, pp.1746-1764, 2011.

J. Kim, K. Back, H. Y. Lee, H. Y. Lee, T. Phung et al., Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress, Plant Molecular Biology, vol.86, issue.3, pp.271-287, 2014.

N. A. Espinas, K. Kobayashi, Y. Sato, N. Mochizuki, K. Takahashi et al., Allocation of Heme Is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells, Frontiers in Plant Science, vol.7, 2016.

D. S. Nagahatenna, J. Tiong, E. J. Edwards, P. Langridge, and R. Whitford, Altering Tetrapyrrole Biosynthesis by Overexpressing Ferrochelatases (Fc1 and Fc2) Improves Photosynthetic Efficiency in Transgenic Barley, Agronomy, vol.10, issue.9, p.1370, 2020.

S. Tingay, D. Mcelroy, R. Kalla, S. Fieg, M. Wang et al., Agrobacterium tumefaciens-mediated barley transformation, The Plant Journal, vol.11, issue.6, pp.1369-1376, 1997.

P. R. Matthews, M. Wang, P. M. Waterhouse, S. Thornton, S. J. Fieg et al., Marker gene elimination from transgenic barley, using co-transformation with adjacenttwin T-DNAs' on a standard Agrobacterium transformation vector, Molecular Breeding, vol.7, issue.3, pp.195-202, 2001.

T. Améglio, P. Archer, M. Cohen, C. Valancogne, F. Daudet et al., Significance and limits in the use of predawn leaf water potential for tree irrigation, Plant and Soil, vol.207, issue.2, pp.155-167, 1998.

K. P. Lee, C. Kim, D. W. Lee, and K. Apel, TIGRINA d , required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana 1, FEBS Letters, vol.553, issue.1-2, pp.119-124, 2003.

J. D. Hiscox and G. F. Israelstam, A method for the extraction of chlorophyll from leaf tissue without maceration, Canadian Journal of Botany, vol.57, issue.12, pp.1332-1334, 1979.

R. A. Burton, S. A. Jobling, A. J. Harvey, N. J. Shirley, D. E. Mather et al., The Genetics and Transcriptional Profiles of the Cellulose Synthase-Like HvCslF Gene Family in Barley, Plant Physiology, vol.146, issue.4, pp.1821-1833, 2008.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative CT method, Nature Protocols, vol.3, issue.6, pp.1101-1108, 2008.

G. Dutton, Microarray Testing for Unmet Needs, Clinical OMICs, vol.1, issue.10, pp.20-21, 2014.

J. Zhang and M. B. Kirkham, Drought-Stress-Induced Changes in Activities of Superoxide Dismutase, Catalase, and Peroxidase in Wheat Species, Plant and Cell Physiology, vol.35, issue.5, pp.785-791, 1994.

H. Mock, W. Heller, A. Molina, B. Neubohn, H. Sandermann et al., Expression of Uroporphyrinogen Decarboxylase or Coproporphyrinogen Oxidase Antisense RNA in Tobacco Induces Pathogen Defense Responses Conferring Increased Resistance to Tobacco Mosaic Virus, Journal of Biological Chemistry, vol.274, issue.7, pp.4231-4238, 1999.

H. Mock, U. Keetman, E. Kruse, B. Rank, and B. Grimm, Defense Responses to Tetrapyrrole-Induced Oxidative Stress in Transgenic Plants with Reduced Uroporphyrinogen Decarboxylase or Coproporphyrinogen Oxidase Activity, Plant Physiology, vol.116, issue.1, pp.107-116, 1998.

Y. Chen, Y. Chao, Y. Y. Hsu, C. Hong, and C. H. Kao, Heme oxygenase is involved in nitric oxide- and auxin-induced lateral root formation in rice, Plant Cell Reports, vol.31, issue.6, pp.1085-1091, 2012.

W. Xuan, F. Zhu, S. Xu, B. Huang, T. Ling et al., The Heme Oxygenase/Carbon Monoxide System Is Involved in the Auxin-Induced Cucumber Adventitious Rooting Process, Plant Physiology, vol.148, issue.2, pp.881-893, 2008.

S. Xu, B. Zhang, Z. Cao, T. Ling, and W. Shen, Heme oxygenase is involved in cobalt chloride-induced lateral root development in tomato, BioMetals, vol.24, issue.2, pp.181-191, 2010.

G. D. Farquhar and T. D. Sharkey, Stomatal Conductance and Photosynthesis, Annual Review of Plant Physiology, vol.33, issue.1, pp.317-345, 1982.

K. A. Mott, Do Stomata Respond to CO2 Concentrations Other than Intercellular?, Plant Physiology, vol.86, issue.1, pp.200-203, 1988.

M. M. Chaves, J. P. Maroco, and J. S. Pereira, Understanding plant responses to drought ? from genes to the whole plant, Functional Plant Biology, vol.30, issue.3, p.239, 2003.

J. Flexas and H. Medrano, Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited, Annals of Botany, vol.89, issue.2, pp.183-189, 2002.

J. Flexas, J. Bota, F. Loreto, G. Cornic, and T. D. Sharkey, Diffusive and Metabolic Limitations to Photosynthesis under Drought and Salinity in C 3 Plants, Plant Biology, vol.6, issue.3, pp.269-279, 2004.

B. J. Pogson, N. S. Woo, B. Förster, and I. D. Small, Plastid signalling to the nucleus and beyond, Trends in Plant Science, vol.13, issue.11, pp.602-609, 2008.

T. Pfannschmidt, Plastidial retrograde signalling ? a true ?plastid factor? or just metabolite signatures?, Trends in Plant Science, vol.15, issue.8, pp.427-435, 2010.

C. Zhao, A. M. Haigh, P. Holford, and Z. Chen, Roles of Chloroplast Retrograde Signals and Ion Transport in Plant Drought Tolerance, International Journal of Molecular Sciences, vol.19, issue.4, p.963, 2018.

Y. Xiao, T. Savchenko, E. E. Baidoo, W. E. Chehab, D. M. Hayden et al., Retrograde Signaling by the Plastidial Metabolite MEcPP Regulates Expression of Nuclear Stress-Response Genes, Cell, vol.149, issue.7, pp.1525-1535, 2012.

J. D. Woodson and J. Chory, Organelle Signaling: How Stressed Chloroplasts Communicate with the Nucleus, Current Biology, vol.22, issue.17, pp.R690-R692, 2012.

J. Galmés, P. J. Andralojc, M. V. Kapralov, J. Flexas, A. J. Keys et al., Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3genusLimonium(Plumbaginaceae), New Phytologist, vol.203, issue.3, pp.989-999, 2014.

S. Jansson, The light-harvesting chlorophyll ab-binding proteins, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1184, issue.1, pp.1-19, 1994.

X. Liu, H. Xu, J. Zhang, G. Liang, Y. Liu et al., Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85, Physiologia Plantarum, vol.145, issue.3, pp.384-394, 2012.

Y. Xu, R. Liu, L. Yan, Z. Liu, S. Jiang et al., Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis, Journal of Experimental Botany, vol.63, issue.3, pp.1095-1106, 2011.

S. De-bianchi, N. Betterle, R. Kouril, S. Cazzaniga, E. Boekema et al., Arabidopsis Mutants Deleted in the Light-Harvesting Protein Lhcb4 Have a Disrupted Photosystem II Macrostructure and Are Defective in Photoprotection, The Plant Cell, vol.23, issue.7, pp.2659-2679, 2011.

J. Flexas, Ü. Niinemets, A. Gallé, M. M. Barbour, M. Centritto et al., Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency, Photosynthesis Research, vol.117, issue.1-3, pp.45-59, 2013.

R. B. Austin, Genetic variation in photosynthesis, The Journal of Agricultural Science, vol.112, issue.3, pp.287-294, 1989.

R. Sobotka, M. Tichy, A. Wilde, and C. N. Hunter, Functional Assignments for the Carboxyl-Terminal Domains of the Ferrochelatase from Synechocystis PCC 6803: The CAB Domain Plays a Regulatory Role, and Region II Is Essential for Catalysis, Plant Physiology, vol.155, issue.4, pp.1735-1747, 2010.

D. Goslings, R. Meskauskiene, C. Kim, K. P. Lee, M. Nater et al., Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants, The Plant Journal, vol.40, issue.6, pp.957-967, 2004.