R. A. Kyle, D. R. Larson, T. M. Therneau, A. Dispenzieri, S. Kumar et al., Long-Term Follow-up of Monoclonal Gammopathy of Undetermined Significance, New England Journal of Medicine, vol.378, issue.3, pp.241-249, 2018.

M. V. Dhodapkar, MGUS to myeloma: a mysterious gammopathy of underexplored significance, Blood, vol.128, issue.23, pp.2599-2606, 2016.

N. Van-nieuwenhuijzen, I. Spaan, R. Raymakers, and V. Peperzak, From MGUS to Multiple Myeloma, a Paradigm for Clonal Evolution of Premalignant Cells, Cancer Research, vol.78, issue.10, pp.2449-2456, 2018.

B. G. Barwick, V. A. Gupta, P. M. Vertino, and L. H. Boise, Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma, Frontiers in Immunology, vol.10, 2019.

R. Bataille, G. Jego, N. Robillard, S. Barille-nion, J. L. Harousseau et al., Pellat-Deceunynck, C. The phenotype of normal, reactive and malignant plasma cells. Identification of "many and multiple myelomas" and of new targets for myeloma therapy, Haematologica, vol.91, pp.1234-1240, 2006.

M. Børset, A. Sundan, A. Waage, and T. Standal, Why do myeloma patients have bone disease? A historical perspective, Blood Reviews, vol.41, p.100646, 2020.

P. L. Bergsagel and M. V. Chesi, V. Molecular classification and risk stratification of myeloma, Hematological Oncology, vol.31, issue.S1, pp.38-41, 2013.

J. Corre, N. Munshi, and H. Avet-loiseau, Genetics of multiple myeloma: another heterogeneity level?, Blood, vol.125, issue.12, pp.1870-1876, 2015.

G. Bianchi and N. C. Munshi, Pathogenesis beyond the cancer clone(s) in multiple myeloma, Blood, vol.125, issue.20, pp.3049-3058, 2015.

G. W. Basak, A. S. Srivastava, R. Malhotra, and E. Carrier, Multiple Myeloma Bone Marrow Niche, Current Pharmaceutical Biotechnology, vol.10, issue.3, pp.335-346, 2009.

D. Zipori, The Hemopoietic Stem Cell Niche Versus the Microenvironment of the Multiple Myeloma-Tumor Initiating Cell, Cancer Microenvironment, vol.3, issue.1, pp.15-28, 2010.

J. R. Nair, C. H. Rozanski, and K. P. Lee, Under one roof, OncoImmunology, vol.1, issue.3, pp.388-389, 2012.

J. E. Noll, S. A. Williams, L. E. Purton, and A. C. Zannettino, Tug of war in the haematopoietic stem cell niche: do myeloma plasma cells compete for the HSC niche?, Blood Cancer Journal, vol.2, issue.9, pp.e91-e91, 2012.

D. Toscani, M. Bolzoni, F. Accardi, F. Aversa, and N. Giuliani, The osteoblastic niche in the context of multiple myeloma, Annals of the New York Academy of Sciences, vol.1335, issue.1, pp.45-62, 2014.

Z. Chen, R. Z. Orlowski, M. Wang, L. Kwak, and N. Mccarty, Osteoblastic niche supports the growth of quiescent multiple myeloma cells, Blood, vol.123, issue.14, pp.2204-2208, 2014.

S. Méndez-ferrer, D. Bonnet, D. P. Steensma, R. P. Hasserjian, I. M. Ghobrial et al., Bone marrow niches in haematological malignancies, Nature Reviews Cancer, vol.20, issue.5, pp.285-298, 2020.

M. T. Drake, Unveiling Skeletal Fragility in Patients Diagnosed With MGUS: No Longer a Condition of Undetermined Significance?, Journal of Bone and Mineral Research, vol.29, issue.12, pp.2529-2533, 2014.

J. Adamik, D. L. Galson, and G. D. Roodman, Osteoblast suppression in multiple myeloma bone disease, Journal of Bone Oncology, vol.13, pp.62-70, 2018.

L. M. Merlo, J. W. Pepper, B. J. Reid, and C. C. Maley, Cancer as an evolutionary and ecological process, Nature Reviews Cancer, vol.6, issue.12, pp.924-935, 2006.

S. W. Olechnowicz and C. M. Edwards, Contributions of the Host Microenvironment to Cancer-Induced Bone Disease, Cancer Research, vol.74, issue.6, pp.1625-1631, 2014.

E. Solary and L. Laplane, The role of host environment in cancer evolution, Evolutionary Applications, vol.13, issue.7, pp.1756-1770, 2020.

R. Bataille, D. Chappard, and M. F. Basle, Quantifiable excess of bone resorption in monoclonal gammopathy is an early symptom of malignancy: a prospective study of 87 bone biopsies, Blood, vol.87, issue.11, pp.4762-4769, 1996.

T. L. Andersen, K. Søe, T. E. Sondergaard, T. Plesner, and J. M. Delaisse, Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells, British Journal of Haematology, vol.148, issue.4, pp.551-561, 2010.

M. A. Lawson, M. M. Mcdonald, N. Kovacic, W. Hua-khoo, R. L. Terry et al., Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche, Nature Communications, vol.6, issue.1, 2015.

R. Das, T. Strowig, R. Verma, S. Koduru, A. Hafemann et al., Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice, Nature Medicine, vol.22, issue.11, pp.1351-1357, 2016.

O. Castaneda and R. Baz, Multiple Myeloma Genomics-A Concise Review, Acta Med. Acad, vol.48, pp.57-67, 2019.

R. C. Graham and G. M. Bernier, THE BONE MARROW IN MULTIPLE MYELOMA: CORRELATION OF PLASMA CELL ULTRASTRUCTURE AND CLINICAL STATE, Medicine, vol.54, issue.3, pp.225-243, 1975.

L. Israel, Tumour Progression: Random Mutations or an Integrated Survival Response to Cellular Stress Conserved from Unicellular Organisms?, Journal of Theoretical Biology, vol.178, issue.4, pp.375-380, 1996.

D. P. Steensma, M. A. Gertz, P. R. Greipp, R. A. Kyle, M. Q. Lacy et al., A high bone marrow plasma cell labeling index in stable plateau?phase multiple myeloma is a marker for early disease progression and death, Blood, vol.97, issue.8, pp.2522-2523, 2001.

M. V. Dhodapkar, R. Weinstein, G. Tricot, S. Jagannath, A. M. Parfitt et al., Biologic and Therapeutic Determinants of Bone Mineral Density in Multiple Myeloma, Leukemia & Lymphoma, vol.32, issue.1-2, pp.121-127, 1998.

G. M. Campbell, J. A. Peña, S. Giravent, F. Thomsen, T. Damm et al., Assessment of Bone Fragility in Patients With Multiple Myeloma Using QCT-Based Finite Element Modeling, Journal of Bone and Mineral Research, vol.32, issue.1, pp.151-156, 2016.

W. M. Kuehl and P. L. Bergsagel, Molecular pathogenesis of multiple myeloma and its premalignant precursor, Journal of Clinical Investigation, vol.122, issue.10, pp.3456-3463, 2012.

C. Pawlyn and G. J. Morgan, Evolutionary biology of high-risk multiple myeloma, Nature Reviews Cancer, vol.17, issue.9, pp.543-556, 2017.

E. Braggio, K. M. Kortüm, and A. K. Stewart, SnapShot: Multiple Myeloma, Cancer Cell, vol.28, issue.5, pp.678-678.e1, 2015.

S. Robiou-du-pont, A. Cleynen, C. Fontan, M. Attal, N. Munshi et al., Genomics of Multiple Myeloma, Journal of Clinical Oncology, vol.35, issue.9, pp.963-967, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01813387

F. Maura, N. Bolli, N. Angelopoulos, K. J. Dawson, D. Leongamornlert et al., Genomic landscape and chronological reconstruction of driver events in multiple myeloma, Nature Communications, vol.10, issue.1, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02290176

L. Rasche, S. S. Chavan, O. W. Stephens, P. H. Patel, R. Tytarenko et al., Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing, Nature Communications, vol.8, issue.1, p.268, 2017.

A. Paner, P. Patel, and B. Dhakal, The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma, Blood Reviews, vol.41, p.100643, 2020.

M. Chesi and P. L. Bergsagel, Many Multiple Myelomas: Making More of the Molecular Mayhem, Hematology, vol.2011, issue.1, pp.344-353, 2011.

O. Decaux, L. Lodé, F. Magrangeas, C. Charbonnel, W. Gouraud et al., Prediction of Survival in Multiple Myeloma Based on Gene Expression Profiles Reveals Cell Cycle and Chromosomal Instability Signatures in High-Risk Patients and Hyperdiploid Signatures in Low-Risk Patients: A Study of the Intergroupe Francophone du Myélome, Journal of Clinical Oncology, vol.26, issue.29, pp.4798-4805, 2008.

H. Kaufmann, J. Ackermann, V. Odelga, V. Sagaster, T. Nösslinger et al., Cytogenetic patterns in multiple myeloma after a phase of preceding MGUS, European Journal of Clinical Investigation, vol.38, issue.1, pp.53-60, 2007.

R. Garand, H. Avet-loiseau, F. Accard, P. Moreau, J. L. Harousseau et al., t(11;14) and t(4;14) translocations correlated with mature lymphoplasmacytoid and immature morphology, respectively, in multiple myeloma, Leukemia, vol.17, issue.10, pp.2032-2035, 2003.

S. Manier, Y. Kawano, G. Bianchi, A. M. Roccaro, and I. M. Ghobrial, Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma, Current Opinion in Hematology, vol.23, issue.4, pp.426-433, 2016.

O. C. Lomas, S. Tahri, and I. M. Ghobrial, The microenvironment in myeloma, Current Opinion in Oncology, vol.32, issue.2, pp.170-175, 2020.

J. A. Fowler, G. R. Mundy, S. T. Lwin, and C. M. Edwards, Bone Marrow Stromal Cells Create a Permissive Microenvironment for Myeloma Development: A New Stromal Role for Wnt Inhibitor Dkk1, Cancer Research, vol.72, issue.9, pp.2183-2189, 2012.

J. Delgado-calle, J. Anderson, M. D. Cregor, M. Hiasa, J. M. Chirgwin et al., Bidirectional Notch Signaling and Osteocyte-Derived Factors in the Bone Marrow Microenvironment Promote Tumor Cell Proliferation and Bone Destruction in Multiple Myeloma, Cancer Research, vol.76, issue.5, pp.1089-1100, 2016.

R. Bataille, Management of Myeloma with Bisphosphonates, New England Journal of Medicine, vol.334, issue.8, pp.529-530, 1996.

R. Bataille, D. Chappard, C. Marcelli, P. Dessauw, J. Sany et al., Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease., Journal of Clinical Oncology, vol.7, issue.12, pp.1909-1914, 1989.

R. Bataille, P. D. Delmas, D. Chappard, and J. Sany, Abnormal serum bone Gla protein levels in multiple myeloma. Crucial role of bone formation and prognostic implications, Cancer, vol.66, pp.167-172, 1990.

R. Bataille, S. C. Manolagas, and J. R. Berenson, PATHOGENESIS AND MANAGEMENT OF BONE LESIONS IN MULTIPLE MYELOMA, Hematology/Oncology Clinics of North America, vol.11, issue.2, pp.349-361, 1997.

R. Bataille, D. Chappard, C. Marcelli, J. F. Rossi, P. Dessauw et al., Osteoblast stimulation in multiple myeloma lacking lytic bone lesions, British Journal of Haematology, vol.76, issue.4, pp.484-487, 1990.

R. Bataille, D. Chappard, C. Marcelli, P. Dessauw, P. Baldet et al., Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma., Journal of Clinical Investigation, vol.88, issue.1, pp.62-66, 1991.

T. L. Andersen, T. E. Sondergaard, K. E. Skorzynska, F. Dagnaes-hansen, T. L. Plesner et al., A Physical Mechanism for Coupling Bone Resorption and Formation in Adult Human Bone, The American Journal of Pathology, vol.174, issue.1, pp.239-247, 2009.

J. Delgado-calle, T. Bellido, and G. D. Roodman, Role of osteocytes in multiple myeloma bone disease, Current Opinion in Supportive and Palliative Care, vol.8, issue.4, pp.407-413, 2014.

M. Capulli, R. Paone, and N. Rucci, Osteoblast and osteocyte: Games without frontiers, Archives of Biochemistry and Biophysics, vol.561, pp.3-12, 2014.

J. E. Maldonado, B. L. Riggs, E. D. Bayrd, and . Pseudomyeloma, Pseudomyeloma, Archives of Internal Medicine, vol.135, issue.2, p.267, 1975.

X. Luo, Y. Fu, A. J. Loza, B. Murali, K. M. Leahy et al., Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development, Cell Reports, vol.14, issue.1, pp.82-92, 2016.

K. Asosingh, H. De-raeve, M. De-ridder, G. A. Storme, A. Willems et al., Role of the Hypoxic Bone Marrow Microenvironment in Multiple Myeloma Tumor Progression., Blood, vol.104, issue.11, pp.2348-2348, 2004.

Y. T. Tai, S. F. Cho, and K. C. Anderson, Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1, Frontiers in Immunology, vol.9, p.1822, 2018.

J. P. Capp and R. Bataille, Multiple Myeloma Exemplifies a Model of Cancer Based on Tissue Disruption as the Initiator Event, Frontiers in Oncology, vol.8, p.355, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886496

C. Pellat-deceunynck and T. Defrance, The Origin of the Plasma-Cell Heterogeneity, Frontiers in Immunology, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01820475

N. Zojer, H. Ludwig, M. Fiegl, F. K. Stevenson, and S. S. Sahota, Patterns of somatic mutations in VH genes reveal pathways of clonal transformation from MGUS to multiple myeloma, Blood, vol.101, issue.10, pp.4137-4139, 2003.

J. P. Capp, Stochastic gene expression, disruption of tissue averaging effects and cancer as a disease of development, BioEssays, vol.27, issue.12, pp.1277-1285, 2005.

J. P. Capp, Nouveau Regard sur le Cancer. Pour une Révolution des Traitements; Belin-Pour la science, 2012.

J. P. Capp, Tissue disruption increases stochastic gene expression thus producing tumors: Cancer initiation without driver mutation, International Journal of Cancer, vol.140, issue.11, pp.2408-2413, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01600555

L. Khodadadi, Q. Cheng, A. Radbruch, and F. Hiepe, The Maintenance of Memory Plasma Cells, Frontiers in Immunology, vol.10, 2019.

J. P. Capp and B. Laforge, A Darwinian and Physical Look at Stem Cell Biology Helps Understanding the Role of Stochasticity in Development, Frontiers in Cell and Developmental Biology, vol.8, p.659, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02930016

S. Efroni, R. Duttagupta, J. Cheng, H. Dehghani, D. J. Hoeppner et al., Global Transcription in Pluripotent Embryonic Stem Cells, Cell Stem Cell, vol.2, issue.5, pp.437-447, 2008.

A. Richard, L. Boullu, U. Herbach, A. Bonnafoux, V. Morin et al., Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irreversible Commitment in a Differentiation Process, PLOS Biology, vol.14, issue.12, p.e1002585, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01934489

A. Moussy, J. Cosette, R. Parmentier, C. Da-silva, G. Corre et al., Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment, PLOS Biology, vol.15, issue.7, p.e2001867, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01934491

J. P. Capp, Phenotypic instability induced by tissue disruption at the origin of cancer, Phenotypic Switching, pp.677-690, 2020.

H. Levine, P. Kulkarni, M. Jolly, and V. Nanjundiah, , 2020.

K. Featherstone, K. Hey, H. Momiji, A. V. Mcnamara, A. L. Patist et al., Spatially coordinated dynamic gene transcription in living pituitary tissue, eLife, vol.5, 2016.

C. Pellat-deceunynck, G. Jego, N. Robillard, F. Accard, M. Amiot et al., Reactive plasmacytoses, a model for studying the biology of human plasma cell progenitors and precursors, The Hematology Journal, vol.1, issue.6, pp.362-366, 2000.

J. P. Capp, Stochastic gene expression stabilization as a new therapeutic strategy for cancer, BioEssays, vol.34, issue.3, pp.170-173, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268404

G. Shay, L. Hazlehurst, and C. C. Lynch, Dissecting the multiple myeloma-bone microenvironment reveals new therapeutic opportunities, Journal of Molecular Medicine, vol.94, issue.1, pp.21-35, 2015.

R. Bataille and J. L. Harousseau, Multiple Myeloma, New England Journal of Medicine, vol.336, issue.23, pp.1657-1664, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02192667

G. D. Roodman, Bone building with bortezomib, Journal of Clinical Investigation, vol.118, pp.462-464, 2008.

M. Zangari and L. J. Suva, The effects of proteasome inhibitors on bone remodeling in multiple myeloma, Bone, vol.86, pp.131-138, 2016.

N. Nemani, L. Santo, H. Eda, D. Cirstea, Y. Mishima et al., Role of Decorin in Multiple Myeloma (MM) Bone Marrow Microenvironment, Journal of Bone and Mineral Research, vol.30, issue.3, pp.465-470, 2015.

S. Vallet and N. Raje, Bone Anabolic Agents for the Treatment of Multiple Myeloma, Cancer Microenvironment, vol.4, issue.3, pp.339-349, 2011.

M. M. Mcdonald, M. R. Reagan, S. E. Youlten, S. T. Mohanty, A. Seckinger et al., Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma, Blood, vol.129, issue.26, pp.3452-3464, 2017.

S. Tsukamoto, M. B. Løvendorf, J. Park, K. Z. Salem, M. R. Reagan et al., Inhibition of microRNA-138 enhances bone formation in multiple myeloma bone marrow niche, Leukemia, vol.32, issue.8, pp.1739-1750, 2018.

A. Hameed, J. J. Brady, P. Dowling, M. Clynes, and P. O'gorman, Bone Disease in Multiple Myeloma: Pathophysiology and Management, Cancer Growth and Metastasis, vol.7, p.CGM.S16817, 2014.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2020 by the authors. Licensee MDPI