D. Redecker, Glomalean Fungi from the Ordovician, Science, vol.289, issue.5486, pp.1920-1921, 2000.

M. C. Brundrett and L. Tedersoo, Evolutionary history of mycorrhizal symbioses and global host plant diversity, New Phytologist, vol.220, issue.4, pp.1108-1115, 2018.

S. Smith, D. Read, and . Symbiosis, Mycorrhizal Symbiosis, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01268065

A. Keymer and C. Gutjahr, Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond, Current Opinion in Plant Biology, vol.44, pp.137-144, 2018.

S. E. Smith, F. A. Smith, and I. Jakobsen, Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses, Plant Physiology, vol.133, issue.1, pp.16-20, 2003.

M. J. Pozo and C. Azcón-aguilar, Unraveling mycorrhiza-induced resistance, Current Opinion in Plant Biology, vol.10, issue.4, pp.393-398, 2007.

K. Mohammadi, S. Khalesro, Y. Sohrabi, and G. Heidari, A Review: Beneficial Effects of the Mycorrhizal Fungi for Plant Growth, J Appl Environ Biol Sci, vol.1, pp.310-319, 2011.

J. Choi, W. Summers, and U. Paszkowski, Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses, Annual Review of Phytopathology, vol.56, issue.1, pp.135-160, 2018.

A. M. Maclean, A. Bravo, and M. J. Harrison, Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis, The Plant Cell, vol.29, issue.10, pp.2319-2335, 2017.

G. Bécard, S. Kosuta, M. Tamasloukht, N. Séjalon-delmas, and C. Roux, Partner communication in the arbuscular mycorrhizal interaction, Canadian Journal of Botany, vol.82, issue.8, pp.1186-1197, 2004.

G. Nagahashi and D. D. Douds, The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi, Fungal Biology, vol.115, issue.4-5, pp.351-358, 2011.

K. Akiyama, K. Matsuzaki, and H. Hayashi, Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi, Nature, vol.435, issue.7043, pp.824-827, 2005.

A. Besserer, G. Bécard, A. Jauneau, C. Roux, and N. Séjalon-delmas, GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism, Plant Physiology, vol.148, issue.1, pp.402-413, 2008.

A. Besserer, V. Puech-pagès, P. Kiefer, V. Gomez-roldan, A. Jauneau et al., Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria, PLoS Biology, vol.4, issue.7, p.e226, 2006.

V. Gomez-roldan, S. Fermas, P. B. Brewer, V. Puech-pagès, E. A. Dun et al., Strigolactone inhibition of shoot branching, Nature, vol.455, issue.7210, pp.189-194, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02183111

F. Maillet, V. Poinsot, O. André, V. Puech-pagès, A. Haouy et al., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, vol.469, issue.7328, pp.58-63, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02649013

T. Ishii, Y. H. Shrestha, I. Matsumoto, and K. Kadoya, Effect of Ethylene on the Growth of Vesicular-Arbuscular Mycorrhizal Fungi and on the Mycorrhizal Formation of Trifoliate Orange Roots, Engei Gakkai zasshi, vol.65, issue.3, pp.525-529, 1996.

E. Chanclud and J. Morel, Plant hormones: a fungal point of view, Molecular Plant Pathology, vol.17, issue.8, pp.1289-1297, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02636076

B. J. Ferguson and U. Mathesius, Phytohormone Regulation of Legume-Rhizobia Interactions, Journal of Chemical Ecology, vol.40, issue.7, pp.770-790, 2014.

S. Spaepen, S. Bossuyt, K. Engelen, K. Marchal, and J. Vanderleyden, Phenotypical and molecular responses ofArabidopsis thalianaroots as a result of inoculation with the auxin-producing bacteriumAzospirillum brasilense, New Phytologist, vol.201, issue.3, pp.850-861, 2013.

G. Gay, L. Normand, R. Marmeisse, B. Sotta, and J. C. Debaud, Auxin overproducer mutants of Hebeloma cylindrosporum Romagnesi have increased mycorrhizal activity, New Phytologist, vol.128, issue.4, pp.645-657, 1994.

M. Raudaskoski and E. Kothe, Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses, Mycorrhiza, vol.25, issue.4, pp.243-252, 2014.

T. W. Chou and S. F. Yang, The biogenesis of ethylene in Penicillium digitatum, Arch Biochem Biophys, vol.157, pp.90391-90394, 1973.

J. H. Graham and R. G. Linderman, Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas-fir roots, Canadian Journal of Microbiology, vol.26, issue.11, pp.1340-1347, 1980.

V. Chagué, Y. Elad, R. Barakat, P. Tudzynski, and A. Sharon, Ethylene biosynthesis in Botrytis cinerea, FEMS Microbiol Ecol, vol.40, pp.143-149, 2002.

R. Splivallo, U. Fischer, C. Göbel, I. Feussner, and P. Karlovsky, Truffles Regulate Plant Root Morphogenesis via the Production of Auxin and Ethylene, Plant Physiology, vol.150, issue.4, pp.2018-2029, 2009.

T. Ogawa, M. Takahashi, T. Fujii, M. Tazaki, and H. Fukuda, The Role of NADH:Fe(III)EDTA Oxidoreductase in Ethylene Formation from 2-Keto-4-Methylthiobutyrate, J Ferment Bioeng, vol.69, pp.90107-90115, 1990.

S. F. Yang, H. S. Ku, and H. K. Pratt, Ethylene production from methionine as mediated by flavin monocucleotide and light, Biochemical and Biophysical Research Communications, vol.24, issue.5, pp.739-743, 1966.

D. C. Billington, B. T. Golding, and S. B. Primrose, Biosynthesis of ethylene from methionine. Isolation of the putative intermediate 4-methylthio-2-oxobutanoate from culture fluids of bacteria and fungi, Biochemical Journal, vol.182, issue.3, pp.827-836, 1979.

T. Hottiger and T. Boller, Ethylene biosynthesis in Fusarium oxysporum f. sp. tulipae proceeds from glutamate/2-oxoglutarate and requires oxygen and ferrous ions in vivo, Archives of Microbiology, vol.157, issue.1, pp.18-22, 1991.

H. Esch, B. Hundeshagen, H. Schneider-poetsch, and H. Bothe, Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis, Plant Sci, vol.99, pp.9-16, 1994.

J. M. Barea and C. Azcón-aguilar, Production of Plant Growth-Regulating Substances by the Vesicular-Arbuscular Mycorrhizal Fungus Glomus mosseae, Applied and Environmental Microbiology, vol.43, issue.4, pp.810-813, 1982.

J. Ludwig-mü-ller, M. Kaldorf, E. G. Sutter, and E. Epstein, Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices, Plant Sci, vol.125, pp.153-162, 1997.

M. Kojima, T. Kamada-nobusada, H. Komatsu, K. Takei, T. Kuroha et al., Highly Sensitive and High-Throughput Analysis of Plant Hormones Using MS-Probe Modification and Liquid Chromatography?Tandem Mass Spectrometry: An Application for Hormone Profiling in Oryza sativa, Plant and Cell Physiology, vol.50, issue.7, pp.1201-1214, 2009.

K. Hoyerova, A. Gaudinova, J. Malbeck, P. I. Dobrev, T. Kocabek et al., Efficiency of different methods of extraction and purification of cytokinins, Phytochemistry, vol.67, issue.11, pp.1151-1159, 2006.

V. Vidova and Z. Spacil, A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition, Analytica Chimica Acta, vol.964, pp.7-23, 2017.

A. Makarov and M. Scigelova, Coupling liquid chromatography to Orbitrap mass spectrometry, Journal of Chromatography A, vol.1217, issue.25, pp.3938-3945, 2010.

Y. Chen, R. Althiab-almasaud, E. Carrie, G. E. Desbrosses, B. M. Binder et al., Ethanol, at physiological concentrations, affects ethylene sensing in tomato germinating seeds and seedlings, Plant Science, vol.291, p.110368, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02874943

, R: A language and environment for statistical computing, R Found Stat Comput, 2020.

F. De-mendiburu and R. Simon, Agricolae - Ten years of an open source statistical tool for experiments in breeding, agriculture and biology, Statistical Procedures for Agricultural Research. 2020, 2015.

H. Wickham, ggplot2, 2016.

N. Fang, S. Yu, M. J. Ronis, and T. M. Badger, Matrix effects break the LC behavior rule for analytes in LC-MS/MS analysis of biological samples, Experimental Biology and Medicine, vol.240, issue.4, pp.488-497, 2014.

J. V. Jacobsen and W. B. Mcglasson, Ethylene Production by Autoclaved Rubber Injection Caps Used in Biological Systems, Plant Physiology, vol.45, issue.5, pp.631-631, 1970.

S. B. Primrose, Evaluation of the Role of Methional, 2-Keto-4-methylthiobutyric Acid and Peroxidase in Ethylene Formation by Escherichia coli, Journal of General Microbiology, vol.98, issue.2, pp.519-528, 1977.

S. F. Yang, . Biosynthesis, and . Ethylene, Ethylene formation from methional by horseradish peroxidase, Arch Biochem Biophys, vol.122, pp.90222-90228, 1967.

M. A. Booker and A. Delong, Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes, Plant Physiology, vol.169, issue.1, pp.42-50, 2015.

M. Houben and B. Van-de-poel, 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene, Frontiers in Plant Science, vol.10, p.695, 2019.

A. Mukherjee and J. Ané, Germinating Spore Exudates from Arbuscular Mycorrhizal Fungi: Molecular and Developmental Responses in Plants and Their Regulation by Ethylene, Molecular Plant-Microbe Interactions®, vol.24, issue.2, pp.260-270, 2011.

M. Giovannetti, A. Mari, M. Novero, and P. Bonfante, Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates, Frontiers in Plant Science, vol.6, p.480, 2015.

M. Chabaud, A. Genre, B. J. Sieberer, A. Faccio, J. Fournier et al., Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis, New Phytologist, vol.189, issue.1, pp.347-355, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02651489

E. N. Morrison, S. Knowles, A. Hayward, R. G. Thorn, B. J. Saville et al., Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis, Mycologia, vol.107, issue.2, pp.245-257, 2015.

J. ?imura, I. Antoniadi, J. ?iroká, D. Tarkowská, M. Strnad et al., Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics, Plant Physiology, vol.177, issue.2, pp.476-489, 2018.

S. J. Barker and D. Tagu, The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses, J Plant Growth Regul, vol.19, pp.144-154, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02695388

E. G. Wulff, J. L. Sørensen, M. Lübeck, K. F. Nielsen, U. Thrane et al., Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity, Environ Microbiol, vol.12, pp.649-657, 2010.

Y. Sugiura, R. Akiyama, S. Tanaka, K. Yano, H. Kameoka et al., Myristate as a carbon and energy source for the asymbiotic growth of the arbuscular mycorrhizal fungus Rhizophagus irregularis, Proc Natl Acad Sci, 2020.

J. M. Dunwell, A. Purvis, and K. S. Cupins, The most functionally diverse protein superfamily?, Phytochemistry, vol.65, pp.7-17, 2004.

L. Marquer, M. Bécard, G. , F. Dit-frey, and N. , Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis, New Phytol, vol.222, pp.1030-1042, 2019.

K. Jentschel, D. Thiel, F. Rehn, and J. Ludwig-mü-ller, Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization, Physiol Plant, vol.129, pp.320-333, 2006.

C. Meixner, J. Ludwig-mü-ller, O. Miersch, P. Gresshoff, C. Staehelin et al., Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007, Planta, vol.222, pp.709-715, 2005.

E. Foo, Something old, something new: Auxin and strigolactone interact in the ancient mycorrhizal symbiosis, Plant Signal Behav, vol.8, 2013.

L. Buendia, F. Maillet, D. O'connor, Q. Van-de?kerkhove, S. Danoun et al., Lipo?chitooligosaccharides promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon, New Phytologist, vol.221, issue.4, pp.2190-2202, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02336134

A. Zsögön, M. R. Lambais, V. A. Benedito, A. Figueira, and L. Peres, Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants, Sci Agric, vol.65, pp.259-267, 2008.

G. Fracetto, L. Peres, M. C. Mehdy, and M. R. Lambais, Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts, Symbiosis, vol.60, pp.155-167, 2013.

A. Hérivaux, T. Dugé-de-bernonville, C. Roux, M. Clastre, V. Courdavault et al., The Identification of Phytohormone Receptor Homologs in Early Diverging Fungi Suggests a Role for Plant Sensing in Land Colonization by, vol.8, pp.1739-1755, 2017.

X. Liu, Z. Feng, H. Zhu, and Q. Yao, Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status, Mycorrhiza, vol.29, p.31617006, 2019.

M. Nagata, N. Yamamoto, T. Miyamoto, A. Shimomura, S. Arima et al., Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated Lotus japonicus, Plant Signal Behav, vol.11, 2016.

N. M. Van-dam and H. J. Bouwmeester, Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication, Trends in Plant Science, pp.256-265, 2016.

C. H. Kong, S. Z. Zhang, Y. H. Li, Z. C. Xia, X. F. Yang et al., Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals, Nat Commun, vol.9, p.30250243, 2018.

H. K. Kirwa, L. K. Murungi, J. J. Beck, and B. Torto, Elicitation of Differential Responses in the Root-Knot Nematode Meloidogyne incognita to Tomato Root Exudate Cytokinin, Flavonoids, and Alkaloids, J Agric Food Chem, vol.66, pp.11291-11300, 2018.

V. Vives-peris, A. Gó-mez-cadenas, P. Rez-clemente, and R. M. , Citrus plants exude proline and phytohormones under abiotic stress conditions, Plant Cell Rep, vol.36, pp.1971-1984, 2017.

F. F. Wang, S. T. Cheng, Y. Wu, B. Z. Ren, and W. Qian, A Bacterial Receptor PcrK Senses the Plant Hormone Cytokinin to Promote Adaptation to Oxidative Stress, Cell Rep, vol.21, pp.2940-2951, 2017.

L. Galland, The gut microbiome and the brain, Journal of Medicinal Food, pp.1261-1272, 2014.

M. H. Karavolos, K. Winzer, P. Williams, and C. Khan, Pathogen espionage: Multiple bacterial adrenergic sensors eavesdrop on host communication systems, Molecular Microbiology, pp.455-465, 2013.

T. Urbanová, D. Tarkowská, P. Nová-k-o,-hedden, and M. Strnad, Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry, Talanta, vol.112, pp.85-94, 2013.