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Abstract: Skeletal muscle is a major metabolic organ that uses mostly glucose and lipids for energy
production and has the capacity to remodel itself in response to exercise and fasting. Skeletal muscle
wasting occurs in many diseases and during aging. Muscle wasting is often accompanied by
chronic low-grade inflammation associated to inter- and intra-muscular fat deposition. During aging,
muscle wasting is advanced due to increased movement disorders, as a result of restricted physical
exercise, frailty, and the pain associated with arthritis. Muscle atrophy is characterized by increased
protein degradation, where the ubiquitin-proteasomal and autophagy-lysosomal pathways, atrogenes,
and growth factor signaling all play an important role. Peroxisome proliferator-activated receptors
(PPARs) are members of the nuclear receptor family of transcription factors, which are activated by
fatty acids and their derivatives. PPARs regulate genes that are involved in development, metabolism,
inflammation, and many cellular processes in different organs. PPARs are also expressed in muscle
and exert pleiotropic specialized responses upon activation by their ligands. There are three PPAR
isotypes, viz., PPARα, -β/δ, and -γ. The expression of PPARα is high in tissues with effective fatty
acid catabolism, including skeletal muscle. PPARβ/δ is expressed more ubiquitously and is the
predominant isotype in skeletal muscle. It is involved in energy metabolism, mitochondrial biogenesis,
and fiber-type switching. The expression of PPARγ is high in adipocytes, but it is also implicated
in lipid deposition in muscle and other organs. Collectively, all three PPAR isotypes have a major
impact on muscle homeostasis either directly or indirectly. Furthermore, reciprocal interactions have
been found between PPARs and the gut microbiota along the gut–muscle axis in both health and
disease. Herein, we review functions of PPARs in skeletal muscle and their interaction with the gut
microbiota in the context of muscle wasting.
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1. Introduction

Skeletal muscle makes up to 40 percent of the total body weight in healthy humans [1]. It is
a striated muscle, which is under the voluntary control of the somatic nervous system. The skeletal
muscles are attached to bones via strong connective tissues called tendons or to other muscles or tissues,
andfacilitates support and movement. Skeletal muscle is also a massive metabolic organ that utilizes the
majority of the available glucose for adenosine triphosphate (ATP) production through insulin-mediated
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glucose uptake, and stores the excess glucose as glycogen. It is also involved in fatty acid (FA) oxidation
for energy production during exercise, fasting, and insulin resistance [2–4]. Deregulation of muscle
metabolism can result in metabolic syndrome, obesity, and diabetes, which predispose to various other
illnesses, including cardiovascular diseases [5,6].

The skeletal muscle consists of oxidative and glycolytic fibers that differ in their contractile
properties [7,8]. Moreover, it is made by different cell populations, including myocytes, stem cells,
and fibroblasts. It also contains nerve endings and blood vessels [8,9]. The process of myogenesis is
tightly controlled by a complex series of spatiotemporal signaling cascades. It originates from muscle
precursor cells during embryogenesis in the dermomyotome compartment of the somites [10–12].
These cells express the paired box proteins Pax3, Pax7, and myogenic factor 5 (Myf5) transcription factors
(Figure 1). The muscle precursor cells de-epithelialize by the interaction of the scatter factor/hepatocyte
growth factor (SF/HGF) with its receptor c-met. The long-range migration of these cells to form the
various muscles in the entire body also requires this receptor–ligand interaction [13,14]. Throughout
development, multiple waves of muscle precursor cells, called myoblasts, originate from the skeletal
muscle progenitor cells. During both mouse embryogenesis and neonatal life, i.e., the initial 4 weeks
after birth, increased proliferation (hyperplasia) of myoblasts takes place [15–18]. During postnatal
muscle growth, the proliferating myoblasts fuse to form the differentiated multinucleated myotubes
resulting in increased muscle fiber size (hypertrophy) (Figure 1). Myocytes express Myf5, the myogenic
determination factor MyoD, Myogenin, and the myogenic regulatory factor MRF4. Myf5 and MyoD are
myogenic determination factors that belong to the helix-loop-helix superfamily of transcription factors,
whereas Myogenin and MRF4 are myogenic differentiation factors [13,14,19,20]. These myogenic
transcription factors bind to the promoter of their target genes, such as the myocyte enhancer
factor Mef2, and peroxisome proliferator-activated receptor (PPAR) gamma coactivators Pgc-1α and
Pgc-1β to regulate their expression levels [17]. During myogenesis, a portion of the progenitor cell
population does not differentiate, but self-renews to maintain the muscle stem cell pool for tissue
homeostasis. This self-renewal process is accompanied by a high level of Pax7 expression in these
cells [21]. During postnatal growth, adult muscle stem cells are referred to as satellite cells because
of their location underneath the basal lamina of myofibers (Figure 1). The satellite cells are thought
to be derived from the progenitor cells originating from the dermomyotome cell population [11,22].
They retain an uncommitted state in contrast to the more committed myogenic progenitors [22–24].
Ultimately, these satellite cells are responsible for postnatal muscle growth and maintenance, repair,
and regeneration in the aging muscle and after muscle injury [25–33]. However, the number of skeletal
muscle satellite cells decreases during aging, which causes a loss of muscle mass due to a reduction
of regenerative capacity and function [34–37]. Various secreted signaling molecules from the muscle
and its surrounding tissues not only induce myogenesis but also influence cellular processes, such as
muscle cell proliferation and differentiation [38]. Thus, the proper coordination of the molecular events
starting in stem cells is crucial for muscle development, repair, and regeneration, as well as function
in postnatal growth. The mechanisms of satellite cell activation and self-renewal are not yet fully
understood. However, various growth factors and signaling pathways have been implicated in these
processes during skeletal muscle regeneration [39–42]. The already-mentioned paired box transcription
factors Pax3 and Pax7 play an essential role in the processes of early specification, migration, myogenic
differentiation, and skeletal muscle formation [21,43,44]. Pax7 is the most consistently expressed
satellite cell marker across species and different muscles. Pax7-null mice display a complete absence of
satellite cells, suggesting that Pax7 is a crucial factor for satellite cell biogenesis and survival [45,46].
Overexpression of Pax7 inhibits cell cycle progression and myogenesis by downregulating MyoD.
Pax7 also plays a major role in satellite cell self-renewal [21]. During routine maintenance of tissue
homeostasis, satellite cells are recruited individually for the localized repair of subtle injuries and
self-renew to maintain tissue homeostasis. Upon muscle injury, the quiescent satellite cells expressing
high levels of Pax7 and Myf5 get activated and proliferate with stimulation of MyoD expression.
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The proliferating myoblasts then fuse to differentiate into new multinucleated myotubes expressing
Myogenin, which are key players in muscle repair.

Skeletal muscle fiber has high remodeling plasticity on demand, but is also prone to deterioration.
Muscle mass is lost in various genetic abnormalities that are commonly observed in several myopathies
and muscular dystrophies to varying degrees [47]. Moreover, metabolic syndrome and its manifestations
(obesity and diabetes), and other diseases, including cancer cachexia, heart, respiratory and kidney
failures, severe burns, and sepsis also trigger muscle mass reduction [48,49]. During aging, the muscle
mass decreases gradually beginning at the age of approximately 40 years in humans. This process,
referred to as sarcopenia, which also comprises a decrease in muscle stem cell number and regenerative
capacity, is often accompanied by osteopenia/osteoporosis [34–37].

The aim of this review is to summarize the roles PPARs and their crosstalk with microbiota in
skeletal muscle health and wasting. Understanding these roles in skeletal muscle pathophysiology
and organ–organ crosstalk, including the gut–microbiota interactions would pave the way for future
therapeutic and lifestyle interventions in muscle diseases.
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homeostasis (satellite cells pool). The mature myotubes turn into myofibers upon the expression of 
various structural proteins such as myosin light and heavy chains and myocyte enhancer factor 2c. 
Myonuclei—red; stem cell nuclei—green. The blue arrow points to a satellite cell located on the 
myofiber. Pax3/7: paired box 3/7; Myf5: myogenic factor 5; MyoD: myogenic determination factor D1; 
MRF4: muscle regulatory factor 4. 

2. The Peroxisome Proliferator-Activated Receptors (PPARs) 

PPARs belong to the nuclear receptor superfamily of transcription factors, which is comprised 
of 48 and 49 members in humans and mice, respectively [8,50–52]. Nuclear receptors are activated by 
specific natural ligands such as lipids, retinoids, steroids, and thyroid hormones. They are also the 
targets for synthetic therapeutic compounds. These receptors and their ligands regulate a multitude 
of diverse functions in all organs during development and the whole lifespan, and in various 
pathophysiological conditions, such as inflammation and metabolic diseases [8,52,53]. Many nuclear 
receptors are found to be expressed in skeletal muscle, including PPARs [54]. The PPAR subfamily 
comprises three related isotypes, PPARα (NR1C-1), PPARβ/δ (NR1C-2), and PPARγ (NR1C-3), 
produced by three different genes located on different chromosomes in vertebrates [8,54–60]. The 

Myoblasts

Pax3
Pax7
Myf5

Specification 

Myogenic 
precursor cells

Myotubes

Myofiber

MyoD
Myogenin

MRF4

Pax7
Myf5

Pluripotent 
stem cell

Satellite cells

Proliferation
migration Differentiation Maturation

Pax7
Myf5
MyoD

Figure 1. Myogenic lineage in myofiber formation. The myogenic precursor cells (Pax3/Pax7/Myf5
positive) are derived from pluripotent stem cells of the dermomyotome compartment of the somites
during embryogenesis and undergo multiple waves of division followed by migration for the formation
of myofibers in different parts of the body. The primary myofibers arise mostly from Pax3 positive
myogenic progenitor cells, whereas the secondary myofibers are formed from the Pax7 positive myogenic
progenitors using the primary myofibers as scaffold. Subsequent to activation and proliferation,
the myogenic precursor cells transform into myoblasts expressing Pax7, Myf5, and MyoD. Myf5
acts alongside the expression of paired box genes, which is followed by the expression of MyoD,
a downstream effector of myogenesis. During differentiation, the committed myoblasts, also known as
myocytes expressing MyoD, exit the cell cycle, and fuse to form the multinucleated myotubes upon the
induction of Myogenin and MRF4 genes. During both myoblast proliferation and differentiation some
cells maintain high levels of Pax7 expression and self-renew to maintain tissue homeostasis (satellite cells
pool). The mature myotubes turn into myofibers upon the expression of various structural proteins
such as myosin light and heavy chains and myocyte enhancer factor 2c. Myonuclei—red; stem cell
nuclei—green. The blue arrow points to a satellite cell located on the myofiber. Pax3/7: paired box 3/7;
Myf5: myogenic factor 5; MyoD: myogenic determination factor D1; MRF4: muscle regulatory factor 4.

2. The Peroxisome Proliferator-Activated Receptors (PPARs)

PPARs belong to the nuclear receptor superfamily of transcription factors, which is comprised of
48 and 49 members in humans and mice, respectively [8,50–52]. Nuclear receptors are activated by
specific natural ligands such as lipids, retinoids, steroids, and thyroid hormones. They are also the targets
for synthetic therapeutic compounds. These receptors and their ligands regulate a multitude of diverse
functions in all organs during development and the whole lifespan, and in various pathophysiological
conditions, such as inflammation and metabolic diseases [8,52,53]. Many nuclear receptors are found
to be expressed in skeletal muscle, including PPARs [54]. The PPAR subfamily comprises three related
isotypes, PPARα (NR1C-1), PPARβ/δ (NR1C-2), and PPARγ (NR1C-3), produced by three different
genes located on different chromosomes in vertebrates [8,54–60]. The whole subfamily was first
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identified in Xenopus laevis. Based on the sequence similarities with PPARs from mammals, they were
named PPARα, PPARβ/δ, and PPARγ [59–62]. PPARs heterodimerize with retinoid X receptors
(RXRs) and upon ligand activation bind to peroxisome proliferator response elements (PPRE) in the
regulatory regions of their target genes [8,63]. PPARs either activate or repress gene expression by
recruiting co-activators or co-repressors, respectively. The activity of PPARs is also modulated through
phosphorylation, SUMOylation, ubiquitination, and interactions with coregulators as mentioned
above [8,58,64–69].

PPARs are often co-expressed in different tissues, including skeletal muscle at variable levels [8].
PPARα is highly expressed in the liver, heart, brown adipose tissue, and kidney; it is also found in
skeletal muscle. Among other roles, it has an important function in fatty acid catabolism [70–75]. PPARα
regulates the peroxisomal and mitochondrial β-oxidation, and the microsomalω-oxidation of fatty
acids. It also participates in glucose metabolism, and is key in the control of energy expenditure and
inflammation [55,73,74]. PPARβ/δ is ubiquitously expressed, but at different levels, in various tissues
and has several functions. It is the predominant PPAR isotype in skeletal muscle, and is also expressed
in muscle satellite cells [8,67]. It is involved in lipid and glucose metabolism, energy expenditure,
inflammation, tissue repair and regeneration, and myofiber type switch associated with physical
exercise [68,69,75–78]. There are two isoforms of PPARγ, viz., PPARγ1 and PPARγ2 [79]. PPARγ1 is
highly expressed in adipocytes and is found to be expressed at variable levels in other tissues such
as the liver and colon for example. PPARγ2 is predominantly expressed in adipose tissue and plays
a major role in adipogenesis and triglyceride storage. One of the main functions of PPARγ is the
deposition of fat in several organs, including skeletal muscle [79–81].

Over the years, the pharmacological activation of PPARs has received much attention, not least
because of their hypolipidemic and anti-diabetic effects. Well-known activators of the fibrate and
thiazolidinedione classes of compounds, as well as dual- and pan-agonists, are used in clinics or are
in development for the treatment of conditions such as non-alcoholic fatty liver disease (NAFLD).
These compounds and their beneficial as well as their potential adverse effects have recently been
extensively reviewed [82–87] and therefore will not be further discussed here.

3. Roles of PPARs in Muscle

PPARs are key players in the control of different aspects of metabolism that are needed for muscle
activities and thermoregulation [88,89] (Figure 2). Both PPARα and PPARβ/δ regulate genes coding
for proteins participating in fatty acid uptake and mitochondrial β-oxidation, such as the cluster of
differentiation 36 (CD36), lipoprotein lipase (LPL), fatty acid-binding protein 3 (FABP3), carnitine
palmitoyltransferase 1 (CPT1), and stearoyl-CoenzymeA desaturase (SCD). However, PPARβ/δ has
emerged as a master regulator of fatty acid catabolism in muscle and has, therefore, received much
attention in muscle biology, as will be discussed below. In the fed state, most of the circulating glucose
is utilized by skeletal muscle for energy (ATP) production under the control of insulin signaling.
Glucose excess is used for lipid synthesis or stored as glycogen. Although PPARα is involved in de
novo lipid synthesis and storage of fatty acids as triglycerides, PPARγ is key for the deposition of fat in
muscle tissues. During fasting, both PPARα and PPARβ/δ regulate the cellular uptake and use of free
fatty acids as an alternate energy source for ATP production through the mitochondrial β-oxidation
pathway [8,54,88,89]. Several observations suggest at least partial interlinking and overlapping roles
of the PPAR isotypes in muscle.

Transgenic mice overexpressing PPARα in muscles develop glucose intolerance, and are insulin
resistant even though they are protected from diet-induced obesity. This lean phenotype is accompanied
by decreased 5′ adenosine monophosphate-activated protein kinase (AMPK) activity as well as reduced
glucose transporter GLUT4, MEF2A, and PGC1α expression [90]. In line with these observations,
diet-induced insulin resistance is prevented in PPARα knockout (KO) mice despite being obese and
with no alterations in the AMPK activity when compared to wild-type mice [90]. PPARα agonists are
used to treat patients with metabolic syndrome to improve lipid metabolism and insulin sensitivity [89].
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However, the direct effects of these drugs on the skeletal muscle are not known. Recently, it was
reported that bezafibrate treatment of streptozotocin-injected diabetic mice that mimic type 1 diabetes
improves skeletal muscle insulin sensitivity through the serine/threonine kinase Akt phosphorylation
and signaling, which may also be due to the improved whole-body insulin sensitivity [91] (Figure 2).
Since bezafibrate is a pan-PPAR agonist, the two other PPAR isotypes may potentially also participate
in this effect as the expression level of all three PPARs was found to be decreased with streptozotocin
treatment [91]. In a non-small cell lung cancer mouse model associated with muscle wasting that
mimic the human cancer cachexia syndrome, administration of fenofibrate restores the loss of muscle
mass and body weight [92]. Furthermore, the expression level of PPARα is increased in the skeletal
muscle of humans undergoing endurance exercise [93,94].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 23 
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multiple roles in muscle development, function, metabolism, and inflammation. The function of PPARγ
is mainly connected with metabolism and energy utilization. However, it also contributes to changes in
muscle fiber type and inhibits myosteatosis. The list of depicted functions is not exhaustive and relates
to the content of the review. PPAR: peroxisome proliferator-activated receptor; Akt: serine/threonine
kinase also known as Protein Kinase B (PKB); MyoD: myoblast determination protein 1; Myf5:
myogenic factor 5; RelB: a member of the NF-κB family; AMPK: adenosine monophosphate-activated
protein; LPL: lipoprotein lipase; CD36: cluster of differentiation 36, also known as fatty acid
translocase (FAT); PDK4: pyruvate dehydrogenase kinase 4; FOXO1: forkhead box protein O1;
PGC-1: peroxisome proliferator-activated receptor gamma coactivator 1; GLUT1: glucose transporter 1;
GLUT4: glucose transporter 4.

PPARβ/δ in muscle has been studied in various experimental systems, not least in cell cultures,
mainly in vitro models of mouse and rat myoblasts, and human primary myotubes cultures treated
with either fatty acids or synthetic (GW501516, GW0742) ligands. In vivo, these PPARβ/δ agonists
enhance the expression of FoxO1, a marker for muscle atrophy and metabolism, with a parallel increase
in the rate-limiting pyruvate dehydrogenase kinase of glucose metabolism PDK4 [95]. Additionally,
CD36 and lipoprotein lipase levels are also stimulated, suggesting a preferential use of fatty acids
rather than glucose in muscle tissue in mouse and rat models [89]. Interestingly, PPARβ/δ and PPARα
are also upregulated during fasting in the skeletal muscles of mice. However, in humans, PPARα
protein levels are unaffected during fasting [96,97]. The expression level of the rate-limiting PDK4
enzyme, which inhibits the pyruvate dehydrogenase complex activity, is not affected in the PPARα KO
mice under fasting conditions, suggesting that PPARβ/δmight be the primary factor that regulates fatty
acid uptake and β-oxidation as an alternative source for energy production in skeletal muscle during
fasting [70,89]. Mice treated with the PPARβ/δ agonist GW501516 also display increased expression
levels of PGC-1α, together with an ameliorated wheel-running performance [98]. This treatment also
increases succinate dehydrogenase (SDH)-positive myofibers, which are oxidative slow-twitch fibers
rich in mitochondria, suggesting increased hydrolysis of triglycerides and catabolism of FAs through
mitochondrial fatty acid β-oxidation [98].
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In addition to the experimental use of agonists, tissue-specific PPARβ/δ gain and loss of function
mouse models have been very instrumental for unveiling the skeletal muscle functions of this receptor
isotype. Mice with muscle-specific overexpression of PPARβ/δ display increased fast/slow twitch
oxidative myofibers, enhanced fatty acid catabolism in the muscles through mitochondrial β-oxidation,
and decreased body fat mass with smaller adipocytes [99]. These transgenic mice display increased
glucose metabolism in addition to increased fatty acid β-oxidation. Another transgenic mouse model
expressing a constitutively active PPARβ/δ, the fusion protein VP16-PPARβ/δ, also displays decreased
adiposity [100]. Moreover, muscle-specific overexpression of this constitutively active VP16-PPARβ/δ

protein increases the number of SDH-positive myofibers in the hind limb muscles tibialis anterior and
soleus of mice, suggesting a switch in substrate use in myofiber types from glycolysis to oxidation [100].
Additionally, in these transgenic mice, the myofiber type switch is associated with an increase in
mitochondrial number and activity together with an increased blood capillary density, and myoglobin
levels making the myofibers appear red in color. Most interestingly, these mice demonstrate increased
performance by continuously running over twice the distance and time compared to control mice [100].
Thus, these transgenic mice with a muscle-specific constitutively active PPARβ/δ are more resistant
to fatigue and present a phenotype that mimics the effects of endurance training [100]. Yet another
transgenic model, expressing VP16-PPARβ/δ in adipose tissue, also displays increased fatty acid
catabolism with decreased fat depots and better lipid profiles. These mice are also resistant to high
fat diet induced obesity suggesting a plausible organ–organ crosstalk in these transgenic mice [101].
In a loss of function mouse model based on the ablation of PPARβ/δ in muscle only, impaired energy
metabolism with decreased fast/slow twitch oxidative myofibers was observed [102]. Further, in these
muscle-specific PPARβ/δ KO mice there also is an increase in body weight with both regular and
high-fat-diet feeding. This increase in body weight is due to increased fat mass and adipocyte size in the
white adipose tissues. Further, during aging these PPARβ/δ KO mice display adipocyte hypertrophy
and glucose intolerance, and are insulin resistant, which is reminiscent of metabolic disorders such as
obesity and diabetes in mice and humans [102]. Collectively, these findings have unveiled the crucial
roles played by PPARβ/δ in skeletal muscle metabolism and indicate that loss of muscle oxidative
function leads to diabetes and, in this case, not diabetes to muscle dysfunction. Additionally, Pgc-1α
has been demonstrated to be a downstream target gene of PPARβ/δ in mice and humans [102,103].
Furthermore, PGC-1α expression increases in skeletal muscle during exercise and fasting [104,105] and
overexpression of PPARβ/δ in rat muscles also increases PGC-1α protein levels with an impact on fatty
acid oxidation and glucose metabolism [106]. Furthermore, mice overexpressing PGC-1α and PGC-1β
in muscle phenocopy PPARβ/δ transgenic mice with increased oxidative myofibers [107,108].

We and others have reported previously that the deficiency of PPARβ/δ in mice results in a reduction
in muscle satellite cell number and its regenerative capacity, suggesting that PPARβ/δ regulates
postnatal myogenesis and regeneration in mice [109,110]. Thus, PPARβ/δ deficiency in mice ultimately
results in muscle atrophy thereby resulting in decreased muscle and body weights [109]. In fact,
several studies have implicated PPARβ/δ in postnatal myogenesis, myofiber switch to slow oxidative
fibers, and oxidative metabolism in mitochondria [2,99–101,110]. Furthermore, activation in mice
of PPARβ/δ with GW0742 generates muscle hyperplasia. The observed muscle hyperplasia was
attributed to an increase in myonuclear density, which is associated with the enhanced expression
of the muscle regulatory factors Myf5 and MyoD, suggesting their involvement in myocyte fusion.
Interestingly, the decrease in myonuclear accretion during aging is blunted in mice treated with
PPARβ/δ agonists [111,112]. In addition, MyoD, the master regulator of myogenesis, in association
with the nuclear factor NF-kB transcription factor subunit RelB, occupies multiple sites on the Pgc1β
promoter region in mice, which leads to an increased expression of Pgc1β and enhanced oxidative
metabolism in the skeletal muscles [113].

PPARβ/δ KO mice mimic the effects of physical inactivity in humans. These mutant mice
exhibit muscles with lower oxidative capacity, which leads to the development of obesity and
diabetes, and reduced running capacity [102]. On the contrary, muscle-specific overexpression
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of PPARβ/δ and the use of PPARβ/δ synthetic agonists in mice phenocopies some of the effects
of running in endurance training [98]. In fact, both endurance and resistance exercises result in
increased PPARβ/δ expression in mouse muscles [99,114]. Furthermore, the administration of the
AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and the GW0742
PPARβ/δ agonist potentiates the beneficial effects of exercise in mice [115]. The activation of PPARβ/δ

also prevents inflammation and increases insulin sensitivity through the activation of AMPK and
subsequent inhibition of the extracellular signal-regulated kinase ERK1/2 or lysophosphatidylcholines
signaling [116,117]. Therefore, PPARβ/δ in myocytes is key for the maintenance of oxidative fibers
and fiber-type switching. Altogether, PPARβ/δ contributes in a major way to muscle physiology
and plasticity, and tissue homeostasis (Figure 2). It would be interesting to know if there are any
compensatory effects of the other two PPAR isotypes in the muscle when there is a loss of PPARβ/δ.
This question could be addressed by studying the muscle-specific knockout of PPARα, PPARβ/δ,
and PPARγ and/or by analyzing double and triple PPAR KO mice.

Constitutive overexpression of PPARγ in skeletal muscle of mice induces adiponectin production
in muscle, decreases myosteatosis, and increases oxidative myofiber content and insulin sensitivity [118].
On the contrary, muscle-specific PPARγ KO mice display an increase in adipose tissue mass, glucose
intolerance, and insulin resistance, but these mice still respond to thiazolidinediones [119,120].
The PPARγ coactivators (PGC-1α and PGC-1β) are also expressed in skeletal muscle and are involved
in mitochondrial biogenesis [105]. The administration of synthetic PPARγ agonists in mice lacking
PPARγ in adipose tissue increases insulin sensitivity in liver and skeletal muscle despite increasing
circulating triglyceride levels suggesting that these drugs have hypoglycemic effects not dependent on
adipose tissue PPARγ [121]. However, activation of PPARγ in muscle increases glucose use through
GLUT1 and GLUT4 activation [122] (Figure 2). Together, the above suggests that all three PPAR
isotypes are involved in skeletal muscle lipid and glucose metabolism. Moreover, the activation of
PPARα, PPARβ/δ, and PGC-1α and -1β phenocopy some of the benefits of exercise.

4. PPARs in Muscle Wasting

The attention given to PPARs has also gained importance due to their role in muscle
pathophysiology associated with the metabolic syndrome, myopathies, muscular dystrophies,
cancer cachexia, aging, and respiratory and cardiovascular diseases [88,89]. The synthetic PPARα
agonists such as gemfibrozil, bezafibrate, and fenofibrate are used to treat cardiovascular diseases
as potent hypolipidemic drugs [89]. Fibrates lower the circulating triglyceride levels in the blood
by inducing hepatic fatty acid oxidation and reducing the apolipoprotein apoC3 expression levels,
and increasing the expression levels of high-density lipoproteins through an increase in apo-A1 and
-A2 levels [88]. The fibrates may also have a hypoglycemic anti-diabetic effect as a consequence of their
hypolipidemic action that warrants further studies. Further, the use of the pan-PPAR ligand bezafibrate
improves fatty acid oxidation defects in cultures of human fibroblasts deficient in CPT-2 and the very
long chain acyl-CoA dehydrogenase (VLCAD) [123,124]. Interestingly, the activation of PPARβ/δ

ameliorates the human Duchenne muscular dystrophy (DMD) phenotype in X-linked muscular
dystrophy (mdx) mice that have a spontaneous mutation in the dystrophin gene. PPARβ/δ regulates
Utrophin A by directly binding to the PPRE in the Utrophin A promoter region [125]. In these mdx
mice, the upregulation of Utrophin A compensates dystrophin deficiency and, thereby, myofiber
loss. Further, the activation of PPARβ/δ by synthetic agonists enhances calcineurin-dependent
remodeling of myofibers in the mdx mice [125]. The calcineurin- and nuclear factor of activated
T-cells (NFAT)-dependent pathway regulates Myf5 gene expression in an in vitro model of myotubes
reserve population of stem cells [126]. Further, the expression of Myf5 is transiently increased by the
pharmacological activation of PPARβ/δ [126]. The calcineurin/NFAT signaling-dependent activation
of Utrophin A also ameliorates the DMD phenotype in mdx mice [127]. The co-administration of
cyclosporine A with a PPARβ/δ agonist in mice inhibits the myofiber switch, suggesting an indirect
effect of the calcineurin pathway [111]. Interestingly, it has also been shown that cardiac angiogenesis
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and myocyte growth are mediated, at least in part, by transcriptional activation of calcineurin by
ligand-activated PPARβ/δ [128]. Together, these observations indicate that activation of PPARβ/δ by
synthetic ligands might have potential for the treatment of muscular dystrophies such as DMD.

Furthermore, synthetic PPARγ agonists such as rosiglitazone and pioglitazone are used in type
2 diabetic patients for their potent antidiabetic effects [89]. More recently, it has been shown that
rosiglitazone treatment of in vitro cocultured insulin-resistant mouse 3T3-L1 adipocytes and C2C12
myotubes improved the insulin resistance in C2C12 myotubes, suggesting an organ–organ crosstalk
between the adipocytes and skeletal muscle in type 2 diabetes [129]. However, the direct link between
PPARγ and glucose homeostasis in skeletal muscle has not been known likely because of the low
level of expression of this receptor. The RXR agonist LG100268 and the heterodimeric partner PPARγ
agonist troglitazone have also been tested against diabetes for their potent hypoglycemic effect in the
human myotubes culture model [130].

Mesenchymal stromal cells (MSC) may provide a source of cells to treat muscle diseases such
as DMD. In light of the role of Wnts (wingless-type) in myogenesis during embryogenesis and
muscle repair, it was hypothesized that the Wnt pathway could be implicated in the myogenic
differentiation of MSC [131]. It was indeed demonstrated that overexpression of activated β-catenin in
MSC stimulated myogenic differentiation of these cells, and suppressed their adipogenic differentiation
via downregulating the expressions of PPARγ and the CCAAT/enhancer binding protein C/EBPα [131].
More recently, it has also been demonstrated that PPAR agonists stimulate bone marrow mesenchymal
stem cells to enter either the myogenic and adipogenic lineages [132]. Along the same line of
experimentation, culture conditions have been established to obtain pure mesenchymal precursors
from human embryonic stem cells, which can be differentiated into skeletal muscle cells, adipocytes,
cartilage, and bone [133]. Interestingly, PPARγ and its ligands also promote osteoclast differentiation and
bone resorption [134–136]. Taken together, these findings on the roles of PPARs in MSC differentiation
could inspire new pharmacological approaches to generate different mesenchymal cell types for
potential future clinical applications. Although there is a long way to go before implementing cell
therapy, these works provide a basis for stem-cell-based tissue repair interventions.

5. PPAR Interactions with the Gut Microbiota

The gastrointestinal tract harbors a wealth of microorganisms, viz., bacteria, archaea, protozoa,
yeast, and fungi. The gut microbial population is defined by high composition variability in
different hosts. In humans, the individual bacterial makeup is determined by various factors from
childbirth to geriatrics, gender, lifestyle, immunization, antibiotic use, demography, and diet [137–140].
Microbiota dysbiosis is associated with multiple disorders, such as inflammatory bowel disease (IBD),
irritable bowel syndrome (IBS), non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes (T2D).
All three PPARs show distinct ways of interacting with the microbiota, mostly in the context of
inflammation and metabolism [54] (Figure 3). PPARs are expressed along the gastrointestinal tract with
an individual expression pattern from the duodenum to the distal colon [141,142]. The highest PPARα
expression is in the proximal intestine and its levels decrease with a lowest expression in the colon [68].
The PPARα KO mice phenotype is associated with dysbiosis caused by an increase in the number of
intestinal Th1 and Th17 (T-helper) cells and regulation of the expression levels of interleukin IL-22 as well
as the antimicrobial peptides of the regenerating family members Reg3β, Reg3γ, and calprotectin [143].
Consistently, PPARα is associated with the anti-inflammatory response of the intestine to commensal
microbiota activity. It protects the intestine from colitis-induced permeability by preventing neutrophil
infiltration [144–147]. Furthermore, PPARα is a major contributor to functional circadian rhythm in
the gut, thereby affecting the body’s chrono-metabolism [148–150], whereas gut dysbiosis alters the
circadian rhythm. Importantly, in intestinal epithelial cells, microbiota signals to PPARα via toll-like
receptors (TLR) and consequently contributes to the regulation of expression of intestinal circadian
genes [151]. Moreover, alteration of the circadian rhythm also affects the gut-microbiota composition,
revealing a two-way dialog between the microbiota and its host.
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Figure 3. Roles of PPARs in the gastrointestinal tract. All three PPAR isotypes act in the intestine to
reduce inflammation, whereby they modulate the microbiota composition. PPARα functionally interacts
with gut bacteria and mediates their signals to regulate the circadian rhythm. Intestinal PPARβ/δ

plays an important role in the development of the intestine, whereas in muscle it is activated by
bacterial metabolites, such as short-chain fatty acids like butyrate. Besides its key role of extinguishing
inflammation and its dialog with gut bacteria, PPARγ also mediates information concerning nutrient
status from the gut to the adipose tissue. Circled P indicates phosphorylation. Red and blue arrows
indicate microbiota and host effects, respectively. Solid lines represent the reciprocal interactions of
PPARs in the intestines and microbiota. Dotted lines show the distant effects of intestinal PPARs
and organ-organ crosstalk on various metabolic organs such as pancreas, muscle and white adipose
tissue. TLR: toll-like receptors; LPS: lipopolysaccharides; SNS: sympathetic nervous system; Reg3:
regenerating islet-derived 3; GLP-1: glucagon-like peptide-1; Th1, 17 cells: T-helper type 1, 17 cells;
IL-22: interleukin-22.

PPARβ/δ is highly expressed in the gastrointestinal tract except for the colon and is involved in
the proliferation and differentiation of intestinal epithelial cells, paneth cells differentiation, and tissue
homeostasis [142,152,153]. Intestinal PPARβ/δ shows anti-inflammatory properties in IBD and
experimental colitis [153–155]. PPARβ/δ induces the glucagon-like peptide GLP-1 production in
enteroendocrine L-cells after food consumption, thereby modulating pancreatic β-cell function [156]
and translating microbial signals to peripheral organs. Recent studies have highlighted an impact of
the interactions of gut microbiota and PPARs in skeletal muscle physiology and pathology [157–161]
(Figure 3). Butyrate, a product of bacterial fiber fermentation, stimulated the expression level of
PPARβ/δ in the skeletal muscle of mice and in rat L6 myoblasts in vitro [162]. We have also demonstrated
that treatment of mice with the antibiotic drug metronidazole leads to an increase in proteobacteria
and results in skeletal muscle atrophy [142].

The gastrointestinal tract shows the second-highest expression levels of PPARγ after adipose
tissue [68,163]. So far, the role of PPARγ expression in the intestine has largely been explored for
its anti-tumorigenic role, which is evidenced by its regulation of cell proliferation, differentiation,
and apoptosis [164–166]. However, PPARγ also acts as an anti-inflammatory factor and is responsible
for the selective killing of bacteria associated with IBD by maintaining constitutive epithelial
expression of a subset of beta-defensin in the colon [167] (Figure 3). Consequently, its agonists
have been applied to mitigate the symptoms of IBD, ulcerative colitis, and Crohn’s disease [168–171].
Colonic mucosa of PPARγ KO mice is defective in killing several major strains of the intestinal
microbiota, including Candida albicans, Bacteroides fragilis, Enterococcus faecalis, and Escherichia coli [165].
Moreover, PPARγ maintains an anaerobic condition in the large intestine limiting the inducible nitric
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oxide synthase (iNOS) production from butyrate through β-oxidation, facilitating the growth of
facultative anaerobes [172]. However, various commensal bacteria belonging to Firmicutes, Bacteriodetes,
Fusobacteria, and Actinobacteria also modulate PPARγ expression and activity [173]. Diverse bacterial
byproducts and metabolites such as butyrate, propionate, H2O2, and lipopolysaccharides impact
the expression and/or activity of PPARγ [173–176]. Bacterial strains including Enterococcus faecalis,
Roseburia hominis, Roseburia intestinalis, Fusobacterium naviforme, and Streptococcus salivarius influence the
phosphorylation status of PPARγ and thereby its transcriptional activity [173,177,178]. In the mouse
model of experimental colitis, Lactobacillus paracasei B21060 induces the expression of PPARγ and
β-defensin, which promotes intestinal homeostasis. Butyrate and propionate produced by Akkermansia
municiniphila modulate the expression levels of PPARγ and its downstream target gene angiopoietin-like
protein-4 (Angptl4) [142]. However, Akkermansia municiniphila is associated with decreased expression
of PPARγ in mouse organoids [179]. Furthermore, we have shown that intestinal PPARγ regulates
body fat mass by signaling through the sympathetic nervous system [180]. Thus, intestinal PPARγ
activation by nutrients and bacterial metabolites can impact the adipose tissues. Together, this suggests
that the expression level of PPARγ in the intestines can be modulated by gut microbial species and,
in turn, PPARγ can alter the gut microbiota composition leading to an impact at the whole-body
level. Thus, it is conceivable, but remains to be demonstrated, that all PPARs are influenced by the
gut-microbiota composition in maintaining the intestinal homeostasis (Figure 3).

6. PPARs and the Gut-Muscle Axis

Recently, the importance of the gut–muscle axis has been underscored by several research
groups [181–188]. However, the causal connection between gut dysbiosis and musculoskeletal disorders
and diseases are not known yet. Compared to specific-pathogen-free (SPF) mice, the whole-body mass
was found to be higher in germ-free (GF) mice and in mice treated with the antibiotics beta-lactum
and macrolide, suggesting a link between the gut microbiome and muscle [189,190]. This increase
in the whole-body weight can be attributed, at least in part, to the increased cecum weight in these
GF mice. GF mice display skeletal muscle atrophy with a decrease in muscle growth factors such
as insulin-like growth factor 1 (IGF1), the amino acids alanine and glycine, and in mitochondrial
function [157]. However, the GF mice colonized with fecal samples of SPF mice displayed an increase
in their muscle mass and oxidative capacity and decrease in muscle atrophy [157]. Additionally,
the mouse grip strength and endurance exercise capacity were reduced in GF mice as compared to SPF
mice [157]. Germ-free mice colonized with fecal samples of highly physically active adults increased
their grip strength as compared to adults with low physical activity; however, their whole-body lean
mass and endurance capacity were not changed [157]. These observations suggest that additional
factors associated with or produced by exercise and the enrichment of Barnesiella intestinihominis might
promote a higher physical activity of older adults with lean body mass when compared to adults
with low physical performance [158]. The antibiotic-treated mice showed increased fatigue, decreased
treadmill running endurance exercise capacity, and reduced muscle mass [159–161]. Interestingly,
the muscle endurance capacity can be regularized by natural bacterial reseeding [160]. Aging causes
an alteration in the gut microbiota composition such as an increase in proteolytic bacteria and a
decrease in saccharolytic bacteria, which are associated with sarcopenia [139,191]. Oral gavaging of
Lactobacillus casei or Bifidobacterium longum in aged mice increases muscle mass and grip strength [192].
Further, colonization by Eubacterium rectal, Lactobacillus plantarum, and Clostridium coccoides increases
the energy metabolism in GF mice [193]. Inoculation of Veillonella atypica obtained from the fecal
samples of marathon runners into mice enhanced their treadmill running capacity [194]. GF mice
transplanted with obese pig microbiota develop increased lipogenesis and fat mass with decreased
fast glycolytic type 2b myofibers in gastrocnemius muscle, when compared to microbiota transplants
coming from lean pig microbiota [195]. Further, GF mice fed with the short-chain fatty acids acetate,
propionate, and butyrate increased muscle mass and function [157]. In vitro, the differentiated
human skeletal myoblasts LHCN-M2 treated with the gut microbial metabolite isovanillic acid
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3-O-sulfate that circulates in the blood increased glucose metabolism through GLUT1/4-PI3K-Akt
signaling [196]. In aged people with higher muscle strength, there is an increase in Prevotellaceae,
Prevotella, and Barnesiella compared to people with lower muscle strength. Additionally, a 12-week of
endurance exercise in aged people promotes an increase in Bacteroids species [158]. However, further
detailed investigations are needed to better elucidate the gut–muscle axis and its functions in aged
individuals, and in muscle pathophysiology.

Recently, we have shown that metronidazole-treated mice present gut dysbiosis and skeletal muscle
atrophy [159]. Further, in these mice treated with metronidazole, there are changes associated with the
muscle peripheral circadian clock machinery and metabolic regulators such as PPARγ, suggesting
a possible link between gut dysbiosis and the observed muscle chrono-metabolism phenotype [159].
Interestingly, both PPARγ and its target gene adiponectin were significantly upregulated in the skeletal
muscle of metronidazole-treated SPF mice, which might enhance muscle fatty acid uptake and insulin
sensitivity effects, however, that remains to be demonstrated. Furthermore, the peripheral core
clock repressor proteins cryptochrome Cry1 and Cry2 modulate PPARβ/δ in skeletal muscle through
AMPK-dependent signaling, suggesting that PPARβ/δ is a downstream target gene of the circadian
clock machinery possibly as part of its involvement in chrono-metabolism [159].

7. Conclusions

Even though all three PPAR isotypes are expressed in skeletal muscle to varying degrees, the roles
of the individual PPARs or their complementary and/or compensatory effects are still not well-known.
The predominantly expressed PPARβ/δ isotype in skeletal muscle has been widely studied both in vivo
and in vitro. PPARβ/δ acts as a key regulator of glucose metabolism and in promoting the uptake
of lipids and their use as an energy source during fasting and exercise. Pharmacological activation
of PPARβ/δ in skeletal muscles also phenocopies some of the benefits of physical exercise in muscle
remodeling with a myofiber switch to oxidative phenotype and alleviation of muscle disorders.
However, very little is known about the other two PPAR isotypes, i.e., PPARα and PPARγ, in both
healthy muscle physiology and in pathological conditions. Furthermore, the effects of agonists in
muscle remain to be clarified as they also have effects in other organs and the whole organism. Recently,
the gut–muscle axis has emerged and causal connections between PPARs and muscle pathophysiology
and chrono-metabolism are being progressively unveiled. Present knowledge suggests that much more
work is needed in skeletal muscle health and disease for designing lifestyle interventions and therapies,
even though it is well-established that PPARs play an important role in regulating energy metabolism,
inflammation, and circadian rhythm. The use of single- and multiple-tissue-specific KO models for
PPARs will contribute to the gaining of valuable additional knowledge on the central contribution of
these receptors in muscle.
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Akt Protein kinase B
Ampk AMP-activated protein kinase
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ATP Adenosine Triphosphate
CD36 Cluster of differentiation 36
C/EBP CCAAT/enhancer binding protein
Cox10 Cytochrome oxidase 10
CPT1/2 Carnitine palmitoyltransferase 1

2
Cry1/2 Cryptochrome 1

2
DMD Duchenne muscular dystrophy
FA Fatty acid
FABP3 Fatty acid binding protein 3
FoxO1 Forkhead box O1
GLP-1 Glucagon-like peptide-1
GLUT1/4 Glucose transporter 1

4
HGF Hepatocyte growth factor
H2O2 Hydrogen peroxide
IGF1 Insulin-like growth factor
IBD Inflammatory bowel disease
IBS Irritable bowel syndrome
IL-22 Interleukin-22
iNOS Inducible nitric oxide synthase
KO Knockout
LPL Lipoprotein lipase
LPS Lipopolysaccharide
mdx Muscular dystrophy X-linked
Mef2 Myocyte enhancer factor 2
MRF4 Myogenic regulatory factor 4
MyoD Myogenic differentiation
Myf5 Myogenic factor 5
NAFLD Nonalcoholic fatty liver disease
NFAT Nuclear factor of activated T-cells
NR1C1-3 Nuclear receptor 1C-1-3
Pax3/7 Paired box 3/7
PDK4 Pyruvate dehydrogenase kinase 4
PGC1 PPAR gamma coactivator 1
PI3K Phosphoinositide 3-kinase
PPAR Peroxisome proliferator-activated receptor
PPRE Peroxisome proliferator response element
Reg3 Regenerating islet-derived protein 3
SDH Succinate dehydrogenase
SF Scatter factor
SNS Sympathetic nervous system
T2D Type 2 diabetes
Th1/17 T-helper cells 1/17
TLR Toll-like receptor
VLCAD Very long-chain acyl-CoA dehydrogenase
Wnt Wingless-type MMTV integration site family
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