Critical success and risk factors for circular business models valorising agricultural waste and by-products
Mechthild Donner, Anne Verniquet, Jan Broeze, Katrin Kayser, Hugo de Vries

To cite this version:

HAL Id: hal-03004851
https://hal.inrae.fr/hal-03004851
Submitted on 7 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Critical success and risk factors for circular business models valorising agricultural waste and by-products

Mechthild Donner, Anne Verniquet, Jan Broeze, Katrin Kayser, Hugo De Vries

ARTICLE INFO

Keywords:
Circular economy
Bioeconomy
Business models
Success factors
Agricultural waste valorisation

ABSTRACT

For a transition from a linear, ‘take-make-dispose’ economy to a sustainable usage of all constituents of renewable resources in cascading and circular pathways, new business models valorising streams that are currently considered as waste are needed.

The aim of this article is to understand critical success and risk factors of eco-innovative business models that contribute to a circular economy via agricultural unavoidable waste or by-products valorisation. 39 cases were studied focusing on agricultural side stream conversion into valuable products. Semi-structured interviews were performed and secondary data collected. Cases were analysed according to types of initiatives, main objectives, resources and valorisation pathways, as well as external and internal factors that have influenced the businesses over time.

Following success and risk factor categories are identified: (1) technical and logistic, (2) economic, financial and marketing, (3) organisational and spatial, (4) institutional and legal, (5) environmental, social and cultural. Herein, specific factors for the agricultural sector are innovative conversion technologies, flexible in and out logistics, joint investments in R&D, price competitiveness for bio-based products, partnerships with research organisations, space availability, subsidies, agricultural waste management regulations, local stakeholder involvement and acceptance of bio-based production processes.

Insights from this study can help farmers and agribusiness managers by defining and adapting their strategies within their local contexts. They also show that for shifting from linear agro-food chains to a circular system, individual businesses need to evolve towards more dynamic and integrated business models, in which the macro-environment sets the boundary conditions for successful operations.

1. Introduction

The concerns about the limitations of economic growth and the efficient usage of all natural resources date back more than half a century. In 1972, the Club of Rome has published a first report Limits of Growth (Meadows et al., 1972). Fifteen years later, the famous report of the World Commission on Environment and Development Our Common Future (Brundtland et al., 1987) has called for new approaches to manage environmental resources. More recently, the circular economy approach has increasingly been promoted by policymakers. In circular economy thinking, the continuous flow of technical and biological materials in the value circle is enhanced, and waste is preferentially avoided, reduced, reused and valorised, or alternatively fully recycled (EMF, 2013; Murray et al., 2017). Various actions plans have been implemented worldwide (e.g. China Circular Economy Promotion Law, 2008; EU Report on the Implementation of the Circular Economy Action Plan, 2019), supported by instruments such as taxes or financial subsidies (Ghisellini et al., 2016) and specific indicators (Moraga et al., 2019).

Diverse strategies have been developed, in different parts of the value chain (Kalmykova et al., 2018). However, circular economy, as an
emerging concept (Velenturf et al., 2019), has rather been used as an umbrella term (Homrich et al., 2018), and is still not yet well defined (Kirchherr et al., 2017; Reike et al., 2018). Moreover, the relation between sustainability, bioeconomy and circular economy is also still underexplored (D’Amato et al., 2017; Geissdoerfer et al., 2017; Millar et al., 2019), despite recent efforts. Examples of the latter are (i) integrated biorefinery approaches (Venkata Mohan et al., 2016; Vea et al., 2018; Dahiya et al., 2018) based on the principle of cascading, i.e. a diversified use of waste streams through consecutive production processes (Gihiellini et al., 2016), (ii) food waste hierarchy approaches integrating the circular economy principles ‘reuse, recycle, recover’ (Papargyropoulou et al., 2014; Teigisrova et al., 2020), and (iii) approaches that analyse the links between sustainability and bioeconomy (Ronzon and Sanjuan, 2020).

For implementing the circular economy, large societal changes and reforms of the entire economic system are required, including production and consumption activities (Vermunt et al., 2019; Yuan et al., 2006). Firms are key actors within the transition by significantly changing their ways of production (Vermunt et al., 2019). Since several years, more and more research attention is paid to sustainable and/or circular business models aiming to increase economic growth while minimizing negative environmental and societal impact (Stubb and Cocklin, 2008; Boons and Lüdeke-Freund, 2013; Schaltegger et al., 2016; Lewandowski, 2016; Antikainen and Valkokari, 2016). Those ‘new business models’ create a multiple and shared value, i.e. not only economic but also environmental and social value (Jonker, 2012). Circular business models deal with the question of how to create, deliver and capture value with and within closed material loops (Mentink, 2014), e.g. by slowing, closing, and narrowing resource loops (Bocken et al., 2016).

The objective of this article is to identify and understand the critical success and risk factors of eco-innovative business models that contribute to the transition towards a circular economy via agricultural waste and by-products valorisation. Knowledge and empirical data about the reasons that favour or hinder a practical implementation of a circular economy are important and have until now been somewhat modest (Tura et al., 2019: 90). The agro-food sector is particularly concerned by circular economy thinking, as current food production and consumption habits are unsustainable (Jurgilevich et al., 2016; Barros et al., 2020). The European Circular Economy Action Plan has defined food waste as a priority area (EC, 2015). Food is wasted all along the food supply chain, in Europe mostly at the consumption stage (FUSSIONS, 2016), but for some food groups also substantially in primary production (fruits, vegetables, sugar beet) or processing and manufacturing (fish, oil crops) stages (Caldeira et al., 2019). It is estimated that around 88 million tonnes of food (FUSSIONS, 2016) and 700 million tonnes of crops (Pawelczyk, 2005) are wasted each year in Europe. Moreover, according to the FAO (2015), food production and food supply chains consume approximately 30% of the total global energy production, and with a population estimated to reach 9 billion people in 2050, the demand for agricultural resources and food products will further increase.

Research on success and risk factors for circular business models is emergent, and to our best knowledge, no article exists yet on this topic in the agricultural domain. Previous studies analysing factors that drive or inhibit sustainable or circular businesses are often very general or conceptual in nature (Tura et al., 2019), limited to insights from a single country or their spatio-temporal contexts (Vermunt et al., 2019) - thus cannot automatically be applied to other countries; in addition, they focus either on companies internal (Long et al., 2018) or external (Laukkonen and Patala, 2014) factors.

In this article, an empirical and multiple case study of critical success and risk factors of circular business models in the agricultural sector is presented, with an analysis of 39 cases mainly from Europe but also from Asia and two from the USA. These initiatives valorise agricultural waste and by-products via circular and closed-loop approaches. In the next section, opportunities and challenges of agricultural waste and by-products conversion are highlighted and a short review of previous literature on general success factors and barriers of circular business models from other sectors than agriculture is given.

2. Background

2.1. Agricultural waste and by-products conversion: opportunities and challenges

Definitions of food losses and waste vary amongst institutions and are not always consistent (Chaboud and Daviron, 2017; Bellamare et al., 2017; Teigisrova et al., 2020). According to the FAO (2011) and the U. S. Department of Agriculture’s Economic Research Service (Buzy et al., 2014), food losses and waste refer to the decrease in edible food mass. Agricultural waste and by-products, however, are usually defined as plant or animal residues that are not (or not further) processed into food or feed (OECD, 1997). They are the non-food product outputs of agricultural production and processing and comprise animal waste (manure, animal carcasses), food processing waste, crop waste (e.g. corn stalks, drops and culls from fruit and vegetables) and hazardous or even toxic waste (e.g. pesticides, insecticides and herbicides) (Obi et al., 2016). They often create environmental and economic burdens in the farming and primary processing sectors, which can be amplified by regional specialization of either crop or animal production (Gontard et al., 2018). For example, a high concentration of animal manure results in ‘bacteria contamination, high greenhouse gas emissions and high organic matter and nutrients (e.g. nitrogen) loads’ (Gontard et al., 2018: 2). However, agricultural waste and by-products can be turned into valuable resources using intensified conversion processes, resulting in new value-added products such as bioenergy, bio-fertilizers, biomolecules (Dahiya et al., 2018; Vea et al., 2018), depending on the biomass volume. This is illustrated in the biomass value pyramid (Fig. 1) in which the preferable higher added value trend is depicted.

The diversion of residues is crucial for supporting the decoupling of economic growth and human well-being from primary resources use, and for preventing putting pressure on land, causing adverse effects on biodiversity and jeopardizing global food security (UNEP, 2011). However, profitably exploiting waste is a highly complex and multidisciplinary problem (Tuck et al., 2012), requiring knowledge of the material, technologies, market and socio-economic issues related to the side-stream valorisation. While the challenges and opportunities for valorising agricultural waste and by-products have often been approached from a technological perspective (Golembiewski et al., 2015; Duque-Acevedo et al., 2020), e.g. via anaerobic digestion (Batstone and Virdis, 2014), biorefinery (Abecassis et al., 2014; Venkata Mohan et al., 2016) or bio-catalysis (Pellis et al., 2018), the socio-economic side has been rather neglected. Research on agricultural waste has been performed for over 60 years, mostly in the USA, India and China, but also in Latin America (Brazil and Mexico (Duque-Acevedo et al., 2020), as well as Chile, Colombia, Peru, Trinidad-Tobago and other countries), and in Europe with a specific emphasis on capturing and recycling of nutrients in the production fields themselves (EL Agri, 2017). The number of publications has strongly increased in the past 13 years; this correlates with the introduction of the new regulatory frameworks for sustainable development and new policies and strategies for a circular economy and a bio-economy (Duque-Acevedo et al., 2020).

Spatial clustering of different businesses is considered as one adequate way for making biomass valorisations feasible (Smets, 2011). Eco-industrial parks have gained attention with inter-company collaborations aimed at optimizing resource efficiency, more commonly called industrial symbiosis (Massard et al., 2013). Most eco-industrial parks are petrochemical, chemical, or concern diverse industries; but there are also projects and studies in different regions of the world that are orientated on a cross-chain valorisation of agricultural by-products (for...
2.2. Circular business models: enablers and barriers

A business model is a conceptual tool to understand how a company does business (Magretta, 2002; Teece, 2010). It describes the logic of a firm, the way it operates and creates value for its stakeholders (Baden-Fuller et al., 2016; Casadesus-Masanell and Ricart, 2010). The largely recognized business model canvas by Osterwalder and Pigneur (2010) provides a simple, visual representation of the business model consisting of nine building blocks linked to the main business elements: (i) value creation (key activities, resources, partners), (ii) value proposition and delivery (products and services offered to specific customer segments via customer relations and distribution channels) and (iii) value capture (cost structure and revenues of a firm). This model offers a useful approach to understand and analyse details of an organization’s current business model, and to support its innovation process along the value chain, towards value capturing.

A circular business model can be considered as a subcategory of business models (Antikainen and Valkokari, 2016). However, contrary to a classical business model, it does not principally aims at economic performance, but rather at the efficient use of resources, while maintaining good financial health and thus, the long-term viability of the firm (Micheaux and Aggeri, 2016). Linder and Willander (2015: 2) define a circular business model as ‘a business model in which the conceptual logic for value creation is based on utilizing the economic value retained in products after use in the production of new offerings’. A common characteristic of all circular business models is the objective to reduce energy, water and material consumption and recycle or revalorise waste generated by the business. For doing so, redesign processes and new strategies are needed, which can consist of slowing, closing or narrowing resource loops (Bocken et al., 2016). Antikainen and Valkokari (2016) emphasize the collaborative character of circular business models, requiring cooperation, communication, and coordination with a wide range of actors and stakeholders. Hence, circular business models are related to sustainable business models, as they aim to create economic and environmental, and to a lesser extent social value, imply multiple stakeholders and have a long-term perspective (Ünal et al., 2019; Geissdoerfer et al., 2018).

Literature dealing with critical success or risk factors of circular business models is emergent, and as far as we know, not such a study has yet been performed for agricultural waste and by-product valorisation. Some earlier studies have presented factors that enable or hinder sustainable business model innovation in other sectors. For example, Laukkanen and Patala (2014), using institutional theory and an innovation systems approach, identified three types of external barriers for the innovation of sustainable business models: regulatory, market and financial barriers, next to behavioural and social barriers. They criticised the fact that business model innovation studies usually are focused on the firm’s internal activities, although the institutional environment can have an important influence on these activities. Asswad et al. (2016) reviewed literature on sustainable business model innovation (Bocken et al., 2014; Cheshbrough, 2010; Hansen et al., 2009; Liède-Freund, 2010; Rennings, 2000; Schaltegger et al., 2016; Zott et al., 2011) and assigned the identified barriers – e.g. a lack of consumer acceptance of waste-based products, a missing willingness to invest in unsure and risky environmental innovations by businesses, a missing industry framework to seize and communicate sustainability to different stakeholders – to the eight archetypes of sustainable business models developed by Bocken et al. (2014). Long et al. (2018) focused on the firm’s internal success factors and therefore use a change management approach. They showed that key success factors for a transition to business models for sustainability are collaboration, continuous innovation, a clear narrative
from the 4R framework ‘reduce, reuse, recover, recycle’ compared barriers of four different circular business models, derived from the 4R framework ‘reduce, reuse, recover, recycle’. Internal barriers were a lack of knowledge and technology, organisational and financial structures, and external barriers related to the supply chain, markets and institutions (e.g. policies, standards). Finally, Tura et al. (2019) developed a literature-based framework of drivers and barriers for circular economy businesses across various industrial sectors, proposing seven main categories: environmental, economic, social, institutional, technological-informational, supply chain, and organisational. In our article, the focus is on critical success and risk factors for circular business models that valorise agricultural waste and by-products via a cascading (i.e. diversified and consecutive valorisation paths e.g. by integrated biorefineries) or simple closed-loop (single valorisation path e.g. by biogas plants) approach.

3. Methodology

The NoAW project1 aims at contributing to the development of innovative holistic approaches for eco-efficient conversion routes of agricultural residues and technology-oriented management strategies. One complementary work stream deals with research on the development and integration of businesses valorising agricultural waste and by-products in a circular economy context.

In this work package, multiple case studies were performed, mainly in project-partner countries from Europe and Asia, and focusing on waste and by-products valorisation in the agricultural domain (cf. Verniquet et al., 2018: NoAW Deliverable 5.1; Donner et al., 2020). The case study approach was chosen as ‘an empirical enquiry that investigates a contemporary phenomenon in depth and within its real-life context’ (Yin, 2009: 18). This method is particularly appropriate for developing new theories and answering questions of why and how, while it allows a better understanding of the nature and complexity of a phenomenon (Voss et al., 2002). Multiple case studies increase external validity (Voss et al., 2002). In our study, selected cases implied one or several actors more or less geographically close and involved in agricultural waste and by-products valorisation; this valorisation relied either on a simple closing loop approach or a cascade of valorisation paths implying many actors. From a technological point of view, special attention is given to initiatives implying by-products valorisation via an anaerobic digestion process.

For each case, one semi-structured interview with a key informant (a firm owner, CEO, business or R&D manager, expert from the NoAW project locally involved in the case) was performed by members of the work package team. There were four exceptions, namely two cases from the USA (cases 3 and 15, not being a geographical focus of the NoAW project) and two cases from Europe covering a wide range of circular economy orientated projects (cases 5 and 34); these cases were consulted via public data sources and served as reference. The interviews were done face-to-face, often succeeded by field visits, or alternatively by telephone, mostly in English or in some countries (Germany, France, the Netherlands) also in the mother tongue and then translated into English. As an analytical framework, the Business Model Canvas by Osterwalder and Pigneur (2010) was used, recognized worldwide as a tool to analyse business models in a synthetic and holistic way. It was completed by elements of the sustainable circular business model framework of Antikainen and Valkokari (2016), integrating the wider business eco-system, stakeholder expectations and sustainability dimensions. The interview guide included internal business aspects such as historical (origin, triggers and development of the initiative), technological (type and maturity of technologies used, examples of waste and/or by-products valorisation and outputs), organizational (governance, coordination, cooperation, logistics), financial (investments, cost-benefit structure), as well as environmental and social characteristics, but also external political-legal (policies, laws, regulations) and economic (markets, subsidies) conditions. Moreover, secondary data was collected, e.g. case-related academic and online articles (e.g. Stadler and Chauvet, 2018; Smeets, 2011; Horlings and Hinsen, 2014), websites as well as public and internal documents received from the companies. Interview and secondary data were treated via content analysis (Berg, 2009). A coding was done for each case to explore the main themes (within-case analysis), and a one-page user-friendly factsheet was elaborated for each case. Data of all cases was analysed regarding the types of initiatives, main objectives, resources and valorisation pathways, as well as external and internal factors that have influenced the development of such businesses over time.

In total, 39 cases of agricultural waste and by-products valorisation were studied in 2016–2019 (cf. annex), and that in 15 different countries: France (6 cases), Germany (4), the Netherlands (4), Switzerland (3), Italy (2), Denmark (2), Norway (1), Sweden (1), Poland (1), Hungary (1), Austria (1), Taiwan (8), Vietnam and Brazil (1), and 4 reference cases as mentioned above, two from Europe (2), and two from the USA (2). From these initiatives, 30 were classified as ‘commercial enterprise and/or for profit’, 7 were ‘public-private partnerships’ and 2 were ‘non for profit’. 37 of the cases were ‘on-going’ while 2 ‘on-hold’. Moreover, 20 of the initiatives analysed were classified in the category ‘Agro Food and other industries’, 5 in ‘Agro Food Only’, 9 in ‘centred around anaerobic digestion’ and 5 in ‘non-food industries’. Finally, 30 of the cases were ‘non-clustered’ and 9 ‘clustered’.

4. Results

Overall, results show that there is a large diversity and complementarity of initiatives that valorise agricultural waste and by-products.

The main objectives of the various businesses differ. While some initiatives aim at directly and locally adding value to agricultural by-products via anaerobic digestion processes, others look for more diversified bio-refinery applications for agro-food and other industries; quite some applications are still in a pilot-scale phase. A third group can be identified focusing on the development and commercialisation of innovative technologies, but not always exclusively based on agricultural by-products.

There is also a wide range of agricultural waste and by-products valorised, such as pig, horse or chicken manure, diverse fruit and vegetable residues, woodchips, olive cake, by-products from sugar beet and wheat, slaughterhouse waste. Furthermore, the valorisation processes and technologies vary, going from e.g. natural conversion via fly larvae or composting, traditional distillery, anaerobic digestion up to highly specialized and patented technological processes. In addition, businesses target diverse markets, including e.g. agriculture, chemistry, cosmetics and pharma, energy, construction, transport, textile or (packaging) material sectors.

With regard to the success and risk factors that have influenced the businesses over time, a large number of various factors exist, either internal to the business model or external to the business eco-system, which can be grouped in five categories. These are (1) technical and logistic (e.g. innovative or proven technologies, optimal in and out logistics), (2) economic, financial and marketing (e.g. economies of scale for clusters, co-investments and/or financial support, price competitiveness of bio-based products), (3) organisational and spatial (e.g. successful cooperation, geographical proximity, sufficient space for efficient infrastructure) (4) institutional and legal (e.g. public subsidies) and (5) environmental, social and cultural factors (e.g. acceptance or even involvement of local stakeholders).

1 http://noaw2020.eu/
Table 1 shows the factors mentioned by the businesses/interviewees, according to the five categories. The specific success and risk factors of circular business models valorising agricultural waste and by-products are discussed in section 5.

5. Discussion

Our analysis of the success and risk factors leads to three questions: (i) what are the specific success and risk factors of circular business models valorising agricultural waste and by-products, (ii) which are the implications on the business model canvas concept for a circular economy in the agricultural sector, (iii) which management recommendations can be drawn from these insights?

(i) Results reveal that success and risk factors exist for businesses valorising agricultural waste that are generic and crucial for sustainable or circular business models in other sectors as well, as presented in recent literature. These factors concern high (initial) investment costs (Vermunt et al., 2019; Tura et al., 2019), technical uncertainties (Rizos et al., 2016; Vermunt et al., 2019), the importance of collaboration and networking (Long et al., 2018; Rizos et al., 2016), need for governmental support in particular in the starting phase of business development (Rizos et al., 2016; Tura et al., 2019), difficulty due to region-specific regulations and complex legal requirements (Laukkanen and Patala, 2014; Tura et al., 2019), the relevance of social awareness as well as customer and consumer responsiveness (highlighted by all authors mentioned in Section 2.2). Results also confirm earlier insights that for reducing risks, an exhaustive view on different factors is necessary for firms, and that the significance of success factors and barriers is highly context-specific (Tura et al., 2019). Switching to a sustainable and/or circular business model is in general considered as challenging, and there is no unique solution to overcome barriers (Aswad et al., 2016). Management scholars have therefore called for ‘Open Business Models’ (Zott and Amit, 2010) or ‘Open Innovation’ (Chesbrough, 2003), encouraging firms to open up its business model and to also use external resources and ideas as input for innovation (Aswad et al., 2010).

However, our results show that several factors are specific for circular business models valorising agricultural waste; we have grouped them in five categories, as previously specified. For the first category, concerning technical and logistic factors, innovative bio-based product-orientated technologies are often needed for enabling new, but sophisticated, conversion pathways – and technologies – from heterogeneous agricultural waste into high added value products such as biomaterials, feed, food ingredients, biomolecules. In addition, efficient and flexible in and out logistics and high storage capacities are required, because agricultural resources are voluminous and heterogeneous, their input quality varies, may rapidly deteriorate, and seasonality results in changing quantities and qualities over time. For the second category (economic, financial and marketing), enabling factors are economies of scale (for clusters such as biorefineries and agro-parks, but also for biogas plants), taking into account biological variation of resources, and strong innovative public-private or even triple helix partnerships fostering technological innovations, with joint investments in R&D. A high risk is the general lack of price competitiveness of new bio-based compared to fossil-based products dominating existing markets, especially due to often immature and still pilot-scale processes as well as quite complex characteristics of biomass. Another risk concerns the competition between different markets for the same agricultural by-products. Regarding the third category of factors (organisational and spatial), geographical proximity of different actors e.g. for ensuring the availability of local agro-resources, a sufficient space with efficient infrastructure and simplified logistics, often in form of eco-industrial parks, are conditions for success. Hereby, the investments, profits, risks and benefits are to be clearly defined with all stakeholders involved, both private and public. This is also needed to avoid resistance from inhabitants of nearby villages due to potential disturbing factors such as noise or odour emissions e.g. produced by biogas plants or stored

Table 1

Success and Risk factors of circular business models in the agricultural sector underlined in the case studies.

<table>
<thead>
<tr>
<th>Category</th>
<th>Success Factors</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) technical and logistic</td>
<td>• Using a proven technology such as anaerobic digestion (Case 2)</td>
<td>• Outputs quality may vary due to process instabilities and mixing biomass streams (Case 2)</td>
</tr>
<tr>
<td></td>
<td>• Breakthrough technology development allowing new processes (Cases 12, 14, 18, 19, 20, 21, 22)</td>
<td>• Clients do not trust easily a new kind of fuel (Case 12)</td>
</tr>
<tr>
<td></td>
<td>• Processing facilities with sufficient capacity (Case 35)</td>
<td>• Technology has never been tested on a large scale (12)</td>
</tr>
<tr>
<td></td>
<td>• Different companies in charge of the different steps in the biogas production (Case 38)</td>
<td>• The technological upscaling is critical (17)</td>
</tr>
<tr>
<td></td>
<td>• Development of Bio-CCP (Carbon Capture Products) in the region (38)</td>
<td>• Working with fresh by-products requires efficient logistics (29); scaling up might result into insufficient by-products available in nearby surroundings (26)</td>
</tr>
<tr>
<td></td>
<td>• Availability of huge quantities of feedstock, high storage capacity (10, 39)</td>
<td>• Depending on the local context, agricultural residues or by-products are limited in volume per farm – need to collect them from many sources, possibly with varying qualities (26)</td>
</tr>
<tr>
<td></td>
<td>• Vertical integration for value creation through non-food applications (10)</td>
<td>• Vertical integration for value creation through non-food applications (10)</td>
</tr>
<tr>
<td></td>
<td>• Optimal logistic model for in and out flows (1)</td>
<td>• Optimal logistic model for in and out flows (1)</td>
</tr>
<tr>
<td></td>
<td>• Use of local biomass resources based on long-term contracts for high security of supply (6, 30)</td>
<td>• Use of local biomass resources based on long-term contracts for high security of supply (6, 30)</td>
</tr>
<tr>
<td></td>
<td>• Combining a variety of energy and supply tasks in a unified system concept to optimize synergies between individual elements by making efficient use of the energy flows between the individual plants (30) and users (13)</td>
<td>• Combining a variety of energy and supply tasks in a unified system concept to optimize synergies between individual elements by making efficient use of the energy flows between the individual plants (30) and users (13)</td>
</tr>
<tr>
<td></td>
<td>• Economies of scale in a cluster or an agro-industrial park (1, 10, 31)</td>
<td>• Economies of scale in a cluster or an agro-industrial park (1, 10, 31)</td>
</tr>
<tr>
<td></td>
<td>• Joint investment in R&D and demonstration plants (3, 5)</td>
<td>• Joint investment in R&D and demonstration plants (3, 5)</td>
</tr>
<tr>
<td></td>
<td>• Economic promotion of local areas through the creation of new industries, products and jobs (24, 25, 32)</td>
<td>• Economic promotion of local areas through the creation of new industries, products and jobs (24, 25, 32)</td>
</tr>
<tr>
<td></td>
<td>• A non-profit principle leading to maximum hedging for investors, creditors and clients (30)</td>
<td>• A non-profit principle leading to maximum hedging for investors, creditors and clients (30)</td>
</tr>
<tr>
<td></td>
<td>• Going from the R&D innovation phase to</td>
<td>• Going from the R&D innovation phase to</td>
</tr>
<tr>
<td></td>
<td>• Dependency on large investment (1)</td>
<td>• Going from the R&D innovation phase to</td>
</tr>
<tr>
<td></td>
<td>• Difficult to be competitive with bio-based products in a context of ‘too cheap’ fossil-based products / energies (28, 32, 34)</td>
<td>• Difficult to be competitive with bio-based products in a context of ‘too cheap’ fossil-based products / energies (28, 32, 34)</td>
</tr>
<tr>
<td></td>
<td>• Relevancy of economy of scale, especially for capital-intensive processes (10)</td>
<td>• Relevancy of economy of scale, especially for capital-intensive processes (10)</td>
</tr>
<tr>
<td></td>
<td>• The biogas sector relies on subsidies to be profitable (6, 23, 28)</td>
<td>• The biogas sector relies on subsidies to be profitable (6, 23, 28)</td>
</tr>
<tr>
<td></td>
<td>• Entering an existing market with a new</td>
<td>• Entering an existing market with a new</td>
</tr>
<tr>
<td></td>
<td>(continued on next page)</td>
<td>(continued on next page)</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Success Factors</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>institutional and legal</td>
<td>- Driven top-down strategy to benefit from efficient Industrial Symbiosis (1)</td>
<td>- Fiscal incentives are critical for economic feasibility (31)</td>
</tr>
<tr>
<td></td>
<td>- Development of local areas by exploiting old industrial sites that are decommissioned (32)</td>
<td>- Future remuneration of electricity (power) coming from anaerobic digestion carefully considered (2)</td>
</tr>
<tr>
<td></td>
<td>- Available local agricultural or industrial by-products (2, 12, 35)</td>
<td>- Sufficient space is needed to set up a small biogas plant (23)</td>
</tr>
<tr>
<td></td>
<td>- Possibility of valorising multiple by-products when involving other local businesses (23)</td>
<td>- Odour emission needs to be considered (depended on the local context and the baseline) when designing the concept of a biogas plant (11)</td>
</tr>
<tr>
<td></td>
<td>- Mobilizing existing clusters (4, 8)</td>
<td>- Seasonality alters the availability of by-products; thus, stocks must be carefully planned (transport, storage, processing) (29)</td>
</tr>
<tr>
<td></td>
<td>- Building biorefinery plants next to wastewater-treatment stations to reduce energy and water consumption through resource exchange (27)</td>
<td>- If too far away from the production location, farmers may not benefit from the added value generated via the by-products (26)</td>
</tr>
<tr>
<td></td>
<td>- Successful collaboration between a company and farmers in different countries (33)</td>
<td>-</td>
</tr>
<tr>
<td>Category</td>
<td>Success Factors</td>
<td>Risk Factors</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>(5) Environmental, social and cultural</td>
<td>• Allowance to use slaughterhouse by-products as substrate for biogas production (11)</td>
<td>• Public financial support is difficult to get for scaling up from pilot scale to full-scale size (2, 4)</td>
</tr>
<tr>
<td></td>
<td>• The biogas branch is supported by states (Switzerland and EU) and the current strategy supports the use of alternative energies (23)</td>
<td>• Change in legislation might be a risk (26, 28)</td>
</tr>
<tr>
<td></td>
<td>• Financial support by the European Union for research projects (28, 34)</td>
<td>• Dependency on public subsidies (8)</td>
</tr>
<tr>
<td></td>
<td>• Feed-in tariffs or other financial mechanisms to promote producing electricity or bioenergy via anaerobic digestion (2, 39)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Public financial support (6, 8, 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Setting-up a large facility/cluster can only happen when local governments, citizens, entrepreneurs and NGOs are involved (1)</td>
<td>• High dependency of the society on fossil-based energy (1)</td>
</tr>
<tr>
<td></td>
<td>• Creation of jobs in rural areas while developing technological know-how (8, 34)</td>
<td>• Resistance from third parties (31)</td>
</tr>
<tr>
<td></td>
<td>• Hundreds of thousands of CO₂ equivalents saved per year (32)</td>
<td>• Biogas plants are sometimes not wanted in the landscape (23, 24)</td>
</tr>
<tr>
<td></td>
<td>• Well-accepted processes (energy and material recovery from manure) in the local context (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Very clean biodigested manure (12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Buying by-products from local farmers avoids throwing tons of co-products into the sea (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Consumers become increasingly interested in ecological products (4, 9, 35)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transparency and traceability for an ethical and ecological production is appreciated and an important marketing argument (29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Winning prizes/awards facilitates promotion (11, 18, 21, 33, 39)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Designing for sustainability from the start (17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pro-active citizen awareness raising (17)</td>
<td></td>
</tr>
</tbody>
</table>

Manure. For the fourth category (institutional and legal), public subsidies and local public-private cooperation were considered as critical success factor, while changes in regulations for agricultural waste treatment were seen as a risk. Fifth (environmental, social and cultural), the generally increased awareness and interest of consumers and communities in ecological products including transparent and traceable bio-based production processes were perceived as favouring conditions. The public perception of ‘green products and processes’ also favour business development, in particular the fact that they may be locally produced and are exploiting nature-based functionalities. All factors that are reducing the environmental impact have had a positive impact if separately monitored, too. However, negative trade-offs may arise if considered from a wider perspective, e.g. from an acceptability or aesthetic point of view as for the case of biogas plants installed in landscapes (NIMBY syndrome). As shown transversally in the five categories, the local dimension of valorising agricultural waste via the involvement of local stakeholders such as governments, citizens, entrepreneurs and NGOs is important for all individual businesses, and more easily achieved in case local employment and engagement is created by the initiative.

(ii) Factors most often mentioned in interviews fit in category 2 (economic, financial and marketing), confirming the overall goal of businesses for ensuring economic and financial health, above environmental or social benefits also in the agricultural waste valorisation domain. This was followed by category 3 (organisational and spatial), indicating that agricultural waste and by-products valorisation is in most cases strongly depending on local multi-actor collaboration and territorial embeddedness. Then, factors from category 1 (technological and logistic) and 5 (environmental, social and cultural) were equally often cited, and a little less from 4 (institutional and legal factors); again, the local scale variables are underlined as key importance for a successful business.

These findings confirm that the success of circular business models for agricultural and by-products valorisation depends on both internal business model elements, but also on the external business eco-system, i.e. the micro- (local context) and macro-environment ((inter)national context), which set the boundary conditions for successful business operations. While the macro-environmental conditions are only to be appreciated by individual businesses, the micro-environmental conditions can be controlled and influenced. They are context-dependant, which means that business concepts that are successful in one context may fail in another. Therefore, it is very important to well understand the local and (inter)national contextual factors and their evolutions (like subsidies changing in time), legislative measures and restrictions. It should be noted that as we are dealing in this study with many cases from different regions and countries, it was beyond the scope of this study to describe and compare each area- or case-specific context in detail, however some tendencies are apparent such as the scale of operations. Particularly in the USA and Taiwan, one is dealing with large scale and international business activities, quite often technology-orientated, while in Europe, a business mix of large and small scale, international and local activities is observed. This corresponds with differences in local and national bioeconomy strategies, policies and subsidies, especially also in Europe (Priefer et al., 2017; FAO, 2018)² and with the general structure of the agricultural sector ranging from family-owned micro-enterprises and farms to multinationals (Dabbert et al., 2017). In order to be able to analyse and benchmark even very different local and regional cases, a set of indicators has recently been developed by the FAO (2018); results are not yet published. Hence, we have made the choice to highlight more general and recurrent, and on the other hand also specific statements concerning the agricultural waste valorisation activities. However, no claim concerning the

generalizability of the identified success and risk factors to different contexts can be made due to potentially biased inputs from interviews and insufficient stakeholder’s opinions.

Regarding the internal business model canvas elements, we see that success or risks are mainly dealing with the left-hand side of the model, including the value creation mechanisms, with key activities (logistics, storage, valorisation processes), key resources (raw materials, technological resources) and key partners (waste suppliers, public, research and logistic partners), as well as on the building blocks cost structure (economies of scales for clusters, joint investments in R&D and technologies) and revenue streams (price competitiveness). This implies that the success of circular business models in the agricultural domain is actually not primarily dependant on the type of value creation (problem solved by the value proposition, low or high-value products), nor on the customers or distribution or communication channels.

Results also suggest that the transition from linear chains to a circular economy in the agricultural sector let individual business models evolve towards more dynamic and integrated business models, with a high degree of interaction of all actors (i.e. public partners, companies, research institutes, and other stakeholders such as local communities, customers or consumers) in a local context (e.g. cases 1, 2, 10, 13, 24, 25, 31). Hence, their strategies are correlated and can be mutually influenced. This implies that not only the business model of an individual company is impacted, but even more, that new, more integrated business models are required in order to lead to a successful co-creation of value in a territorial circular economy. Examples of integrated business model types for agricultural waste and by-product valorisation are biogas plants, environmental biorefineries, upcycling entrepreneurship, agricultural cooperatives, support structures, and agroparks (Donner et al., 2020); only upcycling entrepreneurship is not bound by territorial limits, however, it takes them also very strongly into consideration. For all actors involved, this asks for open and flexible management and transparent communication, while respecting each other’s position. Overall, there seems to be a positive attitude since many more success than risk factors have been mentioned.

(iii) We recommend farmers and agribusiness managers to be entrepreneurial and flexible in the sense that agricultural waste and by-products valorising activities concerning new products and new market sectors can be taken into account; hence learning from other businesses, also from other sectors, is recommended and in particular how these can be translated into new, pertinent value propositions. Moreover, a deep understanding of the contextual factors and their changes (like subsidies changing in time), of the typical agricultural characteristics (such as heterogeneity of resources, flexibility in production due to seasonality and environmental stress), and of the consequences for markets that are traditionally not facing large fluctuations in product quality outputs (e.g. as for synthetic/chemical products) is needed. Here, farmers and local agri-food producers have a competitive advantage as compared to outsiders, because dealing with those characteristics is their daily business. Knowing about the environmental impact in both positive and negative terms is required, as green products have a positive image, a wide spectrum of potentially new natural applications and hence can substantially well contribute to a green environment; it should be noted that green does not always mean positive environmental impact due to losses, off-flavours (malodour), accumulation of previously used pesticides, aesthetics of installations, etc. Thus, an approach should be developed that counteracts potential negative side-effects. An open and differentiating communication towards inhabitants and consumers is strongly recommended.

To conclude and resume this discussion section, the main results, their conceptual implications and management recommendations are highlighted in the following Table 2.

6. Conclusion

The study of 39 business cases valorising agricultural waste and by-products has resulted in a long list of critical success and risk factors, which could be classified in five categories: (1) technical and logistic, (2) economic, financial and marketing, (3) organisational and spatial, (4) institutional and legal, and (5) environmental, social, and cultural. Findings have revealed that while several success factors are also crucial for circular business models in general, some are very specific for ones valorising agricultural waste and by-products. These factors are innovative conversion technologies, flexible in and out logistics, joint investments in R&D, price competitiveness for bio-based products, partnerships with research organisations, space availability, subsidies, agricultural waste management regulations, local stakeholder involvement, and acceptance of bio-based production processes. Overall, the local context is directly impacting business models to become more dynamic and integrated with the involvement of other territorial players. The new, more dynamic and integrated business models allow valorising agricultural waste and by-products, closing material fluxes

Table 2

Main results, conceptual implications and management recommendations.

<table>
<thead>
<tr>
<th>Category and citation ranking (+)</th>
<th>Specific agricultural success (+) and risk factors (-)</th>
<th>Conceptual implications</th>
<th>Management recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) technical and logistic ++</td>
<td>+ innovative and proven biotechnologies for agro-waste conversion + flexible in and out logistics + storage facilities + specificities of agricultural resources</td>
<td>➢ importance of key conversion activities and resources (logistics, storage, technological resources, raw materials)</td>
<td>➢ understanding agricultural characteristics ➢ being aware of new market dynamics due to potentially large fluctuations in product quality outputs</td>
</tr>
<tr>
<td>(2) economic, financial and marketing +++++</td>
<td>+ economies of scale for clusters + co-investments in R&D - price competitiveness of new bio-based products</td>
<td>➢ high importance of cost structure (economies of scales for clusters, joint investments in R&D and technologies) and agreements on revenue streams (price competitiveness)</td>
<td>➢ being entrepreneurial and flexible, as agro-waste conversion activities concern new products and markets ➢ learning from other businesses and sectors ➢ collaborating with different partners, searching for synergies</td>
</tr>
<tr>
<td>(3) organisational and spatial +++</td>
<td>+ partnerships + sufficient space with efficient infrastructure (clusters)</td>
<td>➢ high importance of key partners (waste suppliers, public, research and logistic partners)</td>
<td>➢ understanding the contextual factors and their changes</td>
</tr>
<tr>
<td>(4) institutional and legal +</td>
<td>+ public subsidies + agro-waste management regulations</td>
<td>➢ importance of the business eco-system (macro-environment)</td>
<td>➢ knowing about the (positive and negative) environmental impact ➢ communicating transparently with stakeholders</td>
</tr>
<tr>
<td>(5) environmental, social and cultural ++</td>
<td>+ involvement of local stakeholders + consumers’ interest in bio-based products + resistance of third parties</td>
<td>➢ importance of the business eco-system (both micro- and macro environment)</td>
<td></td>
</tr>
</tbody>
</table>
locally, hence responding to the ambitions of the circular economy. Besides, the local contexts also favour public-private partnerships, even including citizens as consumers of local products to be part of valorising agricultural waste and by-products.

Finally, the traditional thinking about the production of food and of other products as two different sectors is to be reconsidered in a local context and replaced by a debate about most efficiently exploiting agricultural waste and by-products without sacrificing the nutrient cycle necessary for sustainable farming and crop production. It should be underlined that food as a primary need always serves as a baseline, however this doesn’t exclude valorisation pathways for agricultural waste and by-products following the value pyramid (Fig. 1). In addition, network, cluster and local development theory can be useful to further deepen these insights on circular business models in the agricultural sector concerning the types and usage of local resources, kind of collaboration and partnerships, joint investments and synergies, their embeddedness in specific socio-economic and environmental contexts and impact on sustainable territorial development. Moreover, a global, in-depth benchmarking of local initiatives with the relevant national bioeconomy strategies deserves attention to gain insights into the range of different circular business models, their dissimilarities but also synergies.

Annex: List of cases studied within WP5 of the NOAW project

<table>
<thead>
<tr>
<th>Case number</th>
<th>Country</th>
<th>Type of organisation / for profit</th>
<th>Status</th>
<th>Typology of initiative 1</th>
<th>Typology of initiative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Netherlands</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>2</td>
<td>Germany</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Centred around anaerobic digestion</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>3</td>
<td>USA</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>4</td>
<td>France</td>
<td>Association / non for profit</td>
<td>On-going</td>
<td>Non-food industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>5</td>
<td>Europe</td>
<td>Public private partnership</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>6</td>
<td>France</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food only</td>
<td>Clustered</td>
</tr>
<tr>
<td>7</td>
<td>Hungary</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food only</td>
<td>Clustered</td>
</tr>
<tr>
<td>8</td>
<td>France</td>
<td>Association / non for profit</td>
<td>On-going</td>
<td>Agro Food only</td>
<td>Clustered</td>
</tr>
<tr>
<td>9</td>
<td>Poland</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Non-food industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>10</td>
<td>France</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>11</td>
<td>Austria</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Centred around anaerobic digestion</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>12</td>
<td>France</td>
<td>Public private partnership</td>
<td>On-going</td>
<td>Centred around anaerobic digestion</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>13</td>
<td>Netherlands</td>
<td>Public private partnership</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>14</td>
<td>Taiwan</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>15</td>
<td>USA</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food only</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>16</td>
<td>Taiwan</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Non-food industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>17</td>
<td>Switzerland</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>18</td>
<td>Taiwan</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>19</td>
<td>Taiwan</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>20</td>
<td>Taiwan</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>21</td>
<td>Taiwan</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>22</td>
<td>Taiwan</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>23</td>
<td>Switzerland</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Centred around anaerobic digestion</td>
<td>Clustered</td>
</tr>
<tr>
<td>24</td>
<td>Germany</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Centred around anaerobic digestion</td>
<td>Clustered</td>
</tr>
<tr>
<td>25</td>
<td>Sweden</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>26</td>
<td>France</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>27</td>
<td>Denmark</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Centred around anaerobic digestion</td>
<td>Clustered</td>
</tr>
<tr>
<td>28</td>
<td>Italy</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Centred around anaerobic digestion</td>
<td>Clustered</td>
</tr>
<tr>
<td>29</td>
<td>Switzerland</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>30</td>
<td>Denmark</td>
<td>Public private partnership</td>
<td>On-going</td>
<td>Centred around anaerobic digestion</td>
<td>Clustered</td>
</tr>
<tr>
<td>31</td>
<td>Netherlands</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>32</td>
<td>Italy</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>33</td>
<td>Germany</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>34</td>
<td>Europe</td>
<td>Public private partnership</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Clustered</td>
</tr>
<tr>
<td>35</td>
<td>Netherlands</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food only</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>36</td>
<td>Switzerland to Vietnam and Brazil</td>
<td>Public private partnership</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>37</td>
<td>Taiwan</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Non-food industries</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>38</td>
<td>Norway</td>
<td>Public private partnership</td>
<td>On-going</td>
<td>Centred around anaerobic digestion</td>
<td>Non-clustered</td>
</tr>
<tr>
<td>39</td>
<td>Germany</td>
<td>Commercial enterprise / for profit</td>
<td>On-going</td>
<td>Agro Food and other industries</td>
<td>Non-clustered</td>
</tr>
</tbody>
</table>

Credit author statement

Mechthild Donner (M.D.), Anne Verniquet (A.V.), Jan Broeze (J.B.), Katrin Kayser (K.K.), Hugo de Vries (H.V.) contributed to the conception of the study, the acquisition of data, the analysis of the data, the revision of the manuscript, and approved the final version of the manuscript. A. V. coordinated the collection of the data. M.D. and H.V. drafted the manuscript, the figures and tables.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors acknowledge financial support from the project NoAW (No Agro-Waste) funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No 688338.